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Statistical models

Events of interest defined in terms of random quantities
x1, . . . , xn

Individual’s degrees of belief specified as a joint
distribution function P(x1, . . . , xn) (or density p(x1, . . . , xn))
In an application a specific form for p is chosen
Here we study more general belief structures that lead to a
mathematical representation of a model
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Exchangeability

Sometimes the indices of the random quantities x1, . . . , xn
are judged not to be significant
This leads to the notion of finite exchangeability

Definition (Finite exchangeability)

The random quantities x1, . . . , xn are finitely exchangeable
under a probability measure P if

P(x1, . . . , xn) = P(xπ(1), . . . , xπ(n))

for all permutations π.

Partial and infinite exchangeability
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The Bernoulli model

Infinite exchangeability for 0-1 random quantities
=⇒ the Bernoulli model

Theorem (Representation theorem for 0-1 random quantities)
If x1, x2, . . . are 0-1 random quantities and infinitely
exchangeable under P, their joint mass function p is of the form

p(x1, . . . , xn) =

∫ 1

0

n∏
i=1

θxi (1− θ)1−xi dQ(θ) ,

where Q(θ) = limn→∞ P(yn/n ≤ θ) with yn = x1 + · · ·+ xn.
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The multinomial model

Infinite exchangeability for 0-1 random vectors
=⇒ the multinomial model

Theorem
If x1, x2, . . . are 0-1 random vectors and infinitely exchangeable
under P, their joint mass function p is of the form

p(x1, . . . , xn) =

∫
Θ

n∏
i=1

θxi1
1 . . . θxik

k

(
1−

k∑
j=1

θj

)1−
P

j xij
dQ(θ) ,

where Q(θ) = limn→∞ P((x̄1n ≤ θ1) ∪ · · · ∪ (x̄kn ≤ θk )), with
x̄in = n−1(x1i + · · ·+ xni).
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The general model

Infinite exchangeability for real-valued random quantities
=⇒ something rather abstract:

Theorem
If x1, x2, . . . are real-valued infinitely exchangeable random
quantities under probability measure P, the form of P is

P(x1, . . . , xn) =

∫
F

n∏
i=1

F (xi)dQ(F ) ,

where Q(F ) = limn→∞ P(Fn), Fn being the empirical
distribution defined by x1, . . . , xn.
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Spherical symmetry

The general representation theorem does not provide a
concrete usable model
More assumptions needed in addition to infinite
exchangeability

Definition (Spherical symmetry)

A random vector x = [x1, . . . , xn] has spherical symmetry
under P, if P(x) = P(Ax) for all orthogonal matrices A.
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The normal model

Spherical symmetry =⇒ the normal model

Theorem (Representation theorem under spherical symmetry)
If x1, x2, . . . is an infinite sequence of real-valued random
quantities with probability measure P, and if, for any n,
xn := [x1, . . . , xn] has spherical symmetry, the distribution of xn
has the form

P(xn) =

∫ ∞

0

n∏
i=1

Φ(λ1/2xi)dQ(λ) ,

where Φ is the standard normal distribution function and
Q(λ) = limn→∞ P(s−2

n ≤ λ) with s2
n := n−1(x2

1 + · · ·+ x2
n ).
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Origin invariance

Exchangeability of positive random quantities =⇒
symmetry of events w.r.t. the 45◦ line through the origin
Extension of this:

Definition (Origin invariance)

An infinitely exchangeable sequence x1, x2, . . . of positive
real-valued random quantities with probability measure P has
origin invariance if for all n and any event A ⊂ Rn

+

P((x1, . . . , xn) ∈ A) = P((x1, . . . , xn) ∈ A + a)

for all a ∈ Rn such that aT 1 = 0.
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The exponential model

Origin invariance =⇒ the exponential model

Theorem (Continuous representation under origin invariance)

If the sequence x1, x2, . . . of positive real-valued random
quantities has origin invariance under P, the joint density has
the form

p(x1, . . . , xn) =

∫ ∞

0

n∏
i=1

θ exp(−θxi)dQ(θ) ,

where Q(θ) = limn→∞ P(x̄−1
n ≤ θ) with x̄n = n−1(x1 + · · ·+ xn).
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Exercise

Come up or find in literature a model for a sequence of
real-valued random variables x1, x2, . . . that is infinitely
exchangeable and whose representation in terms of the
general representation theorem genuinely involves an integral
over measures. Write down the model using the notation of
Proposition 4.3.
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