▲□▶▲□▶▲□▶▲□▶ □ のQで

Chapter 4: Modelling Exchangeability and Invariance

Markus Harva

17.10. / Reading Circle on Bayesian Theory

Models via exchangeability

Models via invariance

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • ● ◆

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Statistical models

- Events of interest defined in terms of random quantities x_1, \ldots, x_n
- Individual's degrees of belief specified as a joint distribution function P(x₁,..., x_n) (or density p(x₁,..., x_n))
- In an application a specific form for *p* is chosen
- Here we study more general belief structures that lead to a mathematical representation of a model

- Sometimes the indices of the random quantities x₁,..., x_n are judged not to be significant
- This leads to the notion of finite exchangeability

Definition (Finite exchangeability)

The random quantities x_1, \ldots, x_n are finitely exchangeable under a probability measure *P* if

$$P(x_1,\ldots,x_n)=P(x_{\pi(1)},\ldots,x_{\pi(n)})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

for all permutations π .

• Partial and infinite exchangeability

(日) (日) (日) (日) (日) (日) (日)

The Bernoulli model

Infinite exchangeability for 0-1 random quantities
⇒ the Bernoulli model

Theorem (Representation theorem for 0-1 random quantities)

If $x_1, x_2, ...$ are 0-1 random quantities and infinitely exchangeable under P, their joint mass function p is of the form

$$p(x_1,\ldots,x_n)=\int_0^1\prod_{i=1}^n\theta^{x_i}(1-\theta)^{1-x_i}dQ(\theta),$$

where $Q(\theta) = \lim_{n\to\infty} P(y_n/n \le \theta)$ with $y_n = x_1 + \cdots + x_n$.

The multinomial model

Infinite exchangeability for 0-1 random vectors
the multinomial model

Theorem

If $\mathbf{x}_1, \mathbf{x}_2, \ldots$ are 0-1 random vectors and infinitely exchangeable under P, their joint mass function p is of the form

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \int_{\Theta} \prod_{i=1}^n \theta_1^{\mathbf{x}_{i1}} \ldots \theta_k^{\mathbf{x}_{ik}} \left(1 - \sum_{j=1}^k \theta_j\right)^{1 - \sum_j \mathbf{x}_{ij}} dQ(\boldsymbol{\theta}),$$

where $Q(\theta) = \lim_{n\to\infty} P((\bar{x}_{1n} \le \theta_1) \cup \cdots \cup (\bar{x}_{kn} \le \theta_k))$, with $\bar{x}_{in} = n^{-1}(x_{1i} + \cdots + x_{ni})$.

The general model

Infinite exchangeability for real-valued random quantities
something rather abstract:

Theorem

If $x_1, x_2, ...$ are real-valued infinitely exchangeable random quantities under probability measure *P*, the form of *P* is

$$P(x_1,\ldots,x_n)=\int_{\mathcal{F}}\prod_{i=1}^n F(x_i)dQ(F)\,,$$

where $Q(F) = \lim_{n\to\infty} P(F_n)$, F_n being the empirical distribution defined by x_1, \ldots, x_n .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Spherical symmetry

- The general representation theorem does not provide a concrete usable model
- More assumptions needed in addition to infinite exchangeability

Definition (Spherical symmetry)

A random vector $\mathbf{x} = [x_1, ..., x_n]$ has spherical symmetry under *P*, if $P(\mathbf{x}) = P(\mathbf{Ax})$ for all orthogonal matrices **A**.

The normal model

• Spherical symmetry \implies the normal model

Theorem (Representation theorem under spherical symmetry)

If $x_1, x_2, ...$ is an infinite sequence of real-valued random quantities with probability measure P, and if, for any n, $\mathbf{x}_n := [x_1, ..., x_n]$ has spherical symmetry, the distribution of \mathbf{x}_n has the form

$$P(\mathbf{x}_n) = \int_0^\infty \prod_{i=1}^n \Phi(\lambda^{1/2} x_i) dQ(\lambda),$$

where Φ is the standard normal distribution function and $Q(\lambda) = \lim_{n \to \infty} P(s_n^{-2} \le \lambda)$ with $s_n^2 := n^{-1}(x_1^2 + \dots + x_n^2)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Origin invariance

- Exchangeability of positive random quantities ⇒ symmetry of events w.r.t. the 45° line through the origin
- Extension of this:

Definition (Origin invariance)

An infinitely exchangeable sequence $x_1, x_2, ...$ of positive real-valued random quantities with probability measure *P* has origin invariance if for all *n* and any event $A \subset \mathbb{R}^n_+$

$$P((x_1,\ldots,x_n)\in A)=P((x_1,\ldots,x_n)\in A+a)$$

for all $\mathbf{a} \in \mathbb{R}^n$ such that $\mathbf{a}^T \mathbf{1} = 0$.

Models via exchangeability

Models via invariance

Exercise

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The exponential model

• Origin invariance \implies the exponential model

Theorem (Continuous representation under origin invariance)

If the sequence x_1, x_2, \ldots of positive real-valued random quantities has origin invariance under P, the joint density has the form

$$p(x_1,\ldots,x_n) = \int_0^\infty \prod_{i=1}^n \theta \exp(-\theta x_i) dQ(\theta),$$

where $Q(\theta) = \lim_{n \to \infty} P(\bar{x}_n^{-1} \leq \theta)$ with $\bar{x}_n = n^{-1}(x_1 + \cdots + x_n)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Exercise

Come up or find in literature a model for a sequence of real-valued random variables x_1, x_2, \ldots that is infinitely exchangeable and whose representation in terms of the general representation theorem genuinely involves an integral over measures. Write down the model using the notation of Proposition 4.3.