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Models via sufficient statistics

Summary statistics

• Definition 4.6. (Statistic)

Given random quantities x1, . . . , xm, with specified sets of possible values

X1, . . . , Xm, respectively, a random vector tm : X1 × · · · ×Xm → Rk(m)

(k(m) ≤ m) is called a k(m)-dimensional statistic.

• Familiar examples: sample size, mean, median, total, sum of squares...

• Data reduction if k(m) < m, and often a fixed dimension k(m) = k



Models via sufficient statistics

Predictive sufficiency

• Definition 4.7. (Predictive sufficiency)

Given a sequence of random quantities x1, x2, . . ., with probability measure P ,

where xi takes values in Xi, i = 1, 2, . . . the sequence of statistics t1, t2, . . .,

with tj defined on X1 × · · · ×Xj , is predictive sufficient for x1, x2, . . . if, for all

m ≥ 1,r ≥ 1 and {i1, . . . , ir} ∩ {1, . . . ,m} = ∅,

p(xi1 , . . . , xir |x1, . . . , xm) = p(xi1 , . . . , xir |tm),

where p(·|·) is the conditional density induced by P .

• In other words, future observations and past observations are conditionally

independent given tm



Models via sufficient statistics

Parametric sufficiency

• Definition 4.8. (Parametric sufficiency)

If x1, x2, . . . is an infinitely exchangeable sequence of random quantities, where xi

takes values in Xi = X, i = 1, 2, . . . the sequence of statistics t1, t2, . . . with tj

defined on X1 × · · · ×Xj , is parametric sufficient for x1, x2, . . . if, for any n ≥ 1,

dQ(θ|x1, . . . , xn) = dQ(θ|tn),

for any dQ(θ) defining an exchangeable predictive probability model via the

representation

p(x1, . . . , xn) =

∫ n∏
i=1

p(xi|θ)dQ(θ).



Models via sufficient statistics

Sufficient summaries

• There is an equivalence between predictive and parametric sufficiencies

(Proposition 4.9.)

• Parametric sufficiency is also equivalent to the following conditions:

– Neyman factorisation criterion (Proposition 4.10.)

p(x1, . . . , xm|θ) = hm(tm,θ)g(x1, . . . , xm)

– Conditional independence (Proposition 4.11.)

p(x1, . . . , xm|θ, tm) is independent of θ

• Minimal sufficient statistic (Definition 4.9.)



Models via sufficient statistics

Sufficiency and exponential family

• Representations relating to sufficient statistics of fixed dimension

• Definition 4.10. (One-parameter exponential family)

A probability density p(x|θ) belongs to the one-parameter exponential family if it is

of the form

p(x|θ) = Ef(x|f, g, h, φ, θ, c) = f(x)g(θ) exp{cφ(θ)h(x)}, x ∈ X

where, given f , h φ and c, [g(θ)]−1 =
∫
X
f(x) exp{cφ(θ)h(x)}dx <∞.

• The family is either regular (X doesn’t depend on θ) or otherwise

non-regular.



Models via sufficient statistics

Sufficiency and exponential family

• Sufficient statistics for the one-parameter exponential family (Proposition

4.12.)

If x1, x2, . . . , xn ∈ X , is an exchangeable sequence such that, given regular

Ef(·|·),

p(x1, . . . , xn) =

∫
Θ

n∏
i=1

Ef(xi|f, g, h, φ, θ, c)dQ(θ)

for some dQ(θ), then tn = [n, h(x1) + . . .+ h(xn)], for n = 1, 2, . . . , is a

sequence of sufficient statistics.

• One-parameter cases can be generalised to k-parameter exponential family

(Definition 4.11. & Proposition 4.13.)



Models via sufficient statistics

Canonical exponential family

• The description of exponential family can be changed into canonical form

that is convenient for some cases (Definition 4.12.)

The probability density p(y|ψ) = Cef(y|a, b,ψ) = a(y) exp{ytψ − b(ψ)},

y ∈ Y , derived from Efk(·|·) via the transformations y = (y1, . . . , yk),

ψ = (ψ1, . . . , ψk), yi = hi(x), ψi = ciφi(θ), i = 1, . . . , k, is the canonical

form of representation of the exponential family.

• First two moments can be derived from b(ψ) (Proposition 4.14.)

• Sufficient statistic in the canonical exponential family can be expressed as a

sum of yi’s (Proposition 4.15.)



Models via sufficient statistics

• Until now, the exchangeable belief distributions are constructed by assuming

a mixing over finite-parameter exponential family forms

• Now, we consider whether there are structural assumptions about an

exchangeable sequence which imply that the mixing must be over

exponential family forms

• Previously, we started from exchangeability and invariance assumptions

• Now, we start from assumptions about conditional distributions, motivated by

sufficiency ideas



Models via sufficient statistics

• Proposition 4.16. (Representation theorem under sufficiency)

If y1,y2, . . . is any exchangeable sequence such that, for all n ≥ 2 and k < n,

p(y1, . . . ,yk|y1 + . . .+ yn = s) =
k∏

i=1

a(yi)a
(n−k)(s− sk)/a

(n)(s),

where sk = y1 + . . .+ yk and a(·) defines Cef(y|a, b,ψ), then

p(y1, . . . ,yn) =

∫ n∏
i=1

Cef(yi|a, b,ψ)dQ(ψ),

for some dQ(ψ).

• Information measures and exponential family

– Discrepancy of an approximation



Models via Partial exchangeability

Models for extended data structures

• Several sequences of observables (i)

• Structured layouts (ii)

• Covariates (iii)

• Hierarchical models (iv)



Models via Partial exchangeability

Several sequences of observables

• Model is extended to several sequences

• Unrestricted exchangeability for 0-1 sequences (Definition 4.13)

• Representation theorem for several sequences of 0-1 random quantities

(Proposition 4.18, generalisation of the Proposition 4.1)

• Further on, this representation theorem can be generalised for sequences

with predictive sufficient statistics (Definition 4.14.)



Models via Partial exchangeability

Structured layouts

• Furthermore, model is extended to structured layouts

• For instance, situations where random quantities are of the form xijk, where

subscripts indicate replicates, different contexts and various treatments

• Complete exchangeability often unacceptable

→ restricted set of permutations of the subscripts (partial exchangeability)



Models via Partial exchangeability

Covariates

• Situations where sequences of observables xi1, xi2, . . . , i = 1, . . . ,m

are functionally dependent (in some sense) on the observed values,

zi, i = 1, . . . ,m, of a related sequence of (random) quantities

• Some typical forms in examples 4.12-4.14, where it is proceeded as if:

– Random quantities are conditionally independent, given the values of

covariates, and given the unknown parameter φ

– The latter are assigned a prior distribution dQ(φ)

• Parameters are replaced by more complex functional forms involving the

covariates



Models via Partial exchangeability

Hierarchical models

• Judgements about relationships among various sequences lead to structured

forms of prior specification dQ(θi, . . . , θm)

• For instance, the following hierarchical structure can be used

p(y1(n1), . . . , ym(nm)|θ1, . . . , θm) =
m∏

i=1

p(yi(ni)|θi)

g(θ1, . . . , θm|φ) =
m∏

i=1

g(θi|φ)

Π(φ)

• Hierarchical modelling provides a powerful and flexible approach to the

representations of beliefs about observables in extended data structures



Exercise

• When studying the cost-effectiveness of a treatment period, a questioning is
performed before and after the treatment. In the questionary some
explanatory variables concerning patient characteristics are inquired,
besides some other questions reflecting the patient’s quality of life. Then
these questionaries are combined with corresponding cost information to
assess the cost-effectiveness through these measured values. What can you
say about the exchangeability of the following situations?

– You have all the questionaries and information about the costs from each
of the patients.

– In addition to previous, you also know in which hospital the patient was
treated.

– In addition to previous, you also know whether the patient has filled in the
questionary by his/herself or has he/she used an assistant.

What kind of model would you use in each of these cases?


