Bayesian Theory

Chapters 2.5 – 2.8

Antti Sorjamaa Time Series Prediction Group

Outline

Actions and Utilities \rightarrow Bounds in Decision Problems Sequential Decision Problems →Complex Decision Problems Inference and Information \rightarrow Reporting beliefs in Decision Problems \rightarrow Information Theory

2.5 Actions and Utilities

Utilities assign a numerical value for consequences through utility function Bounds or no bounds? Conditional expected utility \rightarrow Degrees of belief for events and utilities \rightarrow Decision criterion General Utility function (Def. 2.17)

2.6 Sequential Decision Problems

Complex decision queues broken down to simpler ones Backward Induction →Optimal stopping problem Marriage problem Secretary problem Optimal solution close to Golden Ratio \rightarrow Needed in many real life problems

2.6.3 Design of Experiments

Null experiment (standard experiment) Optimal experiment Maximizing the Unconditional Expected Utility given the data \rightarrow "If experiment not optimal, no experiment" Value of information (Def. 2.18) Perfect Information (Def. 2.19)

2.7 Inference and Information

Individual "knows" something, but reports (possibly) something else Score function (utility function) →Proper (Def. 2.21), honesty \rightarrow Quadratic (Def. 2.22), simplest \rightarrow Local (Def. 2.23), weighting of mistakes \rightarrow Logarithmic (Def. 2.24), KL

2.7 Information Theory

KL Distance (Def. 2.30)
 Loss in approximation of "true beliefs"
 Derived from logarithmic score function
 Information from data (Def. 2.26)
 Expected info from Experiment (Def. 2.27)
 Shannon's Expected Information

2.8 Discussion

Crossing to other territories \rightarrow Information Theory \rightarrow Probability Theory Questions \rightarrow Can all problems be viewed as inference problems? \rightarrow Is there a possibility for cyclic inference problems? Can it be solved with Bayesian?

Exercises from last week $p_{x,y}(x,y) = \begin{cases} (x_1 + 3x_2)y & \text{when } x_1, x_2 \in [0,1] \text{ and} \\ 0 & \text{elsewhere} \end{cases}$ $p p_{\mathcal{Y}} = \int p_{\mathcal{X}, \mathcal{Y}} (\mathcal{X}, \mathcal{Y}) \mathcal{X} d\mathcal{X} d\mathcal{X$ ¥*2*₹2y

Antti Sorjamaa, TSP Group, CIS

Exercises from last week

Blackjack
Actions?
Events?
Consequences?
Preference relation to actions?
What it means?

