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Exercise from last week

Find the expectation of f (x) =
1

1+x2

I Answer:

I E [x] =
∫

∞

−∞

x
1+x2 dx .

I Now, let F (x) = ln(1 + x2), in which case∫ b
a

x
1+x2 dx =

F (b)
2 −

F (b)
2

I Here a = −∞ and b = ∞ and thus E [x] =
F (∞)

2 −
F (−∞)

2 ,
which is not defined
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Generalized options and utilities

Motivation and preliminaries

I The chapter 3.2 extended the quantitative coherence
theory (chapters 2.1-2.4) to the infinite domain

I The chapters 3.3 and 3.4 generalize the theory of options,
utilities and information measure (chapters 2.5-2.7) to the
infinite domain

key features are

I Convergence in expected utility
I Definition of decision
I propositions that ensure the existence of sequencies of

options a that converge in expected utility to the decision
I needed in defining (finding) the decision
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Generalized options and utilities

Generalized preferences

I Extension of the preference relation
I Maximization of expected utility for decision

I also in the case of conditional

The value of information

I Optimal experimental design
I The value of additional information
I Expected value of perfect information

I Additive decomposition
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Generalized information measures

The utility of general probability distribution

I Score function
I mapping u Q × � → R

I Prober score function
I if expected score is maximized when qω(.|D) = pω(.|D)

I quadratic score function
I Proved to be proper

I Local score function
I u is local if there exist functions uω such that

u(qω(.|D)) = uω(q(ω|D))

I Proper local score functions are logarithmic score function
A log (q(ω|D) + B(ω))
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Generalized information measures

Generalized approximation and discrepancy

I Expected loss in probability reporting
I Based on the logarithmic score function

I Discrepancy of an approximation
I the expected loss in approximating p with p̂

Generalized information

I Information from data
I Is the expected utility of data (given the prior information) in

the sense of logarithmic score function
I Expected information from an experiment
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Intrinsic Estimation

I The final result of Bayesian inference is the posterior
distribution of the quantity of interest

I However, often it is necessary to be able to give a good
point estimate

I Good estimate should be objective and invariant under
one-to-one transformations

I How to find a good estimate?
I The problem can be formulated as a decision problem

I let p(x |θ) be a probability model assumed to describe data
x,

I now action space is A = {θe
}, where θe is possible point

estimate
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Intrinsic Estimation
Loss function

I Let l(θe, θa) be a loss function measuring the consecuence
of estimating θa (the actual true parameter value) with θe

I conventional loss functions compare θe to θa

I for example squared, zero-one and absolute error loss
I Problems in invariance under one-to-one transformations

and generalization into higher dimensions
I Intrinsic loss function compares p(x |θe) to p(x |θa)

I for example, the one based on logarithmic score function
mentioned earlier (Kullback-Leibler divergence)

k(θ2|θ1) =

∫
X

p(x |θ1) log
p(x |θ1)

p(x |θ2)
d x (1)

I may diverge when the support of approximation and true
distribution are different

I is not symmetric
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Intrinsic Estimation

I Intrinsic discrepancy loss

δX (θ1, θ2) = min{k(θ2|θ1), k(θ1|θ2)} (2)

I does not diverge even if the support of approximation and
true distribution are different

I Symmetric, non-negative, invariant under one-to-one
transformations

I does not represent local (lograrithmic form) score function

I Intrinsic estimator

θ∗(x) = arg min
θe∈2

∫
2

δ(θe, θ)πδ(θ | x)dθ (3)

I πδ(θ | x)dθ is the reference posterior obtained using
non-informative prior π(θ)

I Ensures (some kind of) objectivity
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Intrinsic Estimation

I For more information see:
I Bernardo and Juárez. Intrinsic Estimation, Bayesian

Statistics 7, 2003
I http://www.uv.es/ bernardo/BernardoJuarez.pdf
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Excersize

Let x = {x1, ..., xn}, be a random sample from from the uniform
distribution Un(x |0, θ) = θ−1, 0 < x < θ . Let
Un(x |0, θ1) = θ−1

1 , 0 < x < θ1 be the approximate distribution.

I What is the discrepancy of an approximation by definition
3.20 (Kullback-Leibler divergence)?

I What is the intrinsic discrepancy loss (2) of an
approximation?

I How did the above results illustrate the behaviour of these
different discrepancies in the case of different supports of
an approximation and the true distribution?
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