Getting Started with SPIM

The rest of this appendix contains a complete and rather detailed description of SPIM. Many details
should never concern you; however, the sheer volume of information can obscure the fact that SPIM is a
simple, easy-to-use program. This section contains a quick tutorial on SPIM that should enable you to load,
debug, and run simple MIPS programs.

SPIM comes in multiple versions. One version, called spim, is a command-line-driven program and
requires only an alphanumeric terminal to display it. It operates like most programs of this type:you type a
line of text, hit the enter key, and spim executes your command.

A fancier version, called xspim, runs in the X-windows environment of the Unix system and therefore
requires a bit-mapped display to run it. xspim, however, is a much easier program to learn and use because
its commands are always visible on the screen and because it continually displays the machine’s registers.
Another version, PCSpim, is compatible with Windows 3.1, Windows 95, and Windows NT. The Unix, Win-
dows, and DOS versions of SPIM are available through www.mkp.com/cod2e.htm. This section of the docu-
ment describes PCSpim, the Windows version of SPIM under Windows 95.

Installation and Graphic Interface Description

To install the Windows version of SPIM, you can download the installation file, spimwin. exe, through
www.mkp.com/cod2e.htm. Execute the installation file and follow the installation procedure. In Windows 95,
you can simply activate the icon associated with the file just like any Windows program, or you can select
Start->Run and type in the directory path and filename. The installation program will execute and inform
you when the installation process is complete. When the installation is complete, a group folder with execut-
able file, help files, and uninstaller program is created.

To start PCSpim for Windows, you simply activate the icon labeled PCSpim for Windows like any other
Windows program. For example, in Windows 95, you can use select Start->Programs->PCSpim for Win-
dows ->PCSpim for Windows from the Windows 95 task bar. In Windows 3.1, you can select the application
from the File Manager.

When PCSpim starts up, it brings up a large window on your screen (see FigureA.1). The application
window is divided into four parts:

¢ The top section is the menu bar. The menu bar allows you to select File operations, set Simulator set-
tings, select Windows views, and obtain online Help information.

¢ The next section below the menu bar is the toolbar. The toolbar provides quick mouse access to many
tools used in PCSpim for Windows.

¢ The large section in the middle of the application window is the window display section. There are
four display windows: Registers, Text Segment, Data Segment, and Messages. To change the view of
these four windows, you can select a tiled view from the menu bar: Windows->Tile. All of the display
windows will be empty when you first execute the program. The following list describes each display -
window.

® The Register window display shows the values of all registers in the MIPS CPU and FPU.

® The Text Segment window display shows instructions both from your program and the system
code that is loaded automatically when PCSpim is running.

¢ The Data Segment window display shows the data loaded into your program’s mémory and the
data of the program’s stack.

® The Messages window display is the where PCSpim uses to write messages. This is where error
messages appear.

When selected, PCSpim for Windows will record the position of its windows when you exit, and restore
them to the same location the next time you run PCSpim.

Bare machine

When selected, you can simulate a bare MIPS machine without pseudoinstructions or the additional
addressing modes provided by the assembler.

Allow pseudo instructions

If this setting is selected, pseudoinstructions are allowed in your program,; otherwise, if the setting is not
selected, they are not allowed.

Load trap file

If this setting is selected, the standard exception handler and start-up code is loaded. When an exception
occurs, SPIM jumps to location 80000080hex, which must contain code to service the exception. In
addition, the trap handler contains start-up code that invokes the routine main. Without the start-up rou-
tine, SPIM begins execution at the instruction labeled __start. The default trap file comes with PCSpim,
but you can choose another using Browse button.

Mapped I/O

If this setting is selected, the memory-mapped I/O facility is enabled. Programs that use SPIM syscalls to
read from the terminal cannot also use memory-mapped I/O.

Quiet

When this setting is enabled, PCSpim does not print a message at exceptions; otherwise, a message is
printed when an exception occurs.

It

Figure A.2. PCSpim simulator setting dialog box

PCSpim performs other functions that are occasionally useful. When you are more comfortable with
PCSpim, you should look at the description in the online help to see what they do and how they can save you
time and effort. You can view the online help available with the simulator by selecting Help->Help_topics
from the menu bar.

Simulator Setting

PCSpim has a graphical interface to view the current setting of the simulator (see FigureA.2). When
you start PCSpim, you do not have to enter with any command line parameters. However, you should check
your simulator settings either on PCSpim’s status bar or the simulator setting dialog box before you load
your program. To view or change PCSpim settings in the simulator setting dialog box, select Simulator-
>Settings from the menu bar.

It is very important to set the simulator in the correct setting for your program. PCSpim determines how
to load and how your program executes from these settings, so an incorrect setting may cause errors when
you run your program. If the simulator setting is incorrect and the program is unable to load correctly,
PCSpim allows you to change the simulator settings and reload your program. If you want to change
PCSpim settings after you load your program, you should reload your program by selecting Simulator-
>Reload from the menu bar.

The following paragraphs describes the operation of each of the settings in the simulator setting dialog
box shown in Figure A.2. Most of the functions are similar to SPIM, its counterparts in the terminal interface
version without the graphical interface.

¢ Display

You can select to view the register contents in decimal or hexidecimal notation. If the check boxes for
general registers or floating point registers are selected, a check mark will appear and the register con-
tents will be displayed in hexidecimal notation.

* Save window positions

7

[0x00400000] 0x8fa40000 Iw $4, 0($29); 89: lw $a0, 0($sp)

The first number on the line, in square brackets, is the hexadecimal memory address of the instruction.
‘The second number is the instruction’s numerical encoding, again displayed as a hexadecimal number. The
third item is the instruction’s mnemonic description. Everything following the semicolon is the actual line
from your assembly file that produced the instruction. The number 89 is the line number in that file. Some-
times nothing is on the line after the semicolon. This means that the instruction was produced by SPIM as
part of translating a pseudoinstruction.

To run your program, click on the Go button in the toolbar. Alternatively, you can select Simulator->Go
from the menu bar. Your program will begin execution. If you want to stop the execution of your program,
select Simulator->Break from the menu bar. Altematively, you can type Control-C when PCSpim applica-
tion window is in focus. A dialog box will appear and ask if you want to continue execution. Select No to
break the execution. Before doing anything, you can look at memory and registers contents in the Register
display window to find out what your program was doing. When you understand what happened, you can
either continue the program by selecting Simulator->Continue or stop your program by selecting Simulator-
> Break from the menu bar.

If your program reads or writes from the terminal, PCSpim pops up another window called the console.
All characters that your program writes appear on the console, and everything that you type as input to your
program should be typed in this window.

Suppose your program does not do what you expect. What can you do? SPIM has two features that help
debug your program. The first, and perhaps the most useful, is single-stepping, which allows you to run your
program an instruction at a time. Select Sirmulator->Single_Step to execute only one instruction. Alterna-
tively, you can press the F10 function key to single step. Each time you step through a program, PCSpim will
execute the next instruction in. your program, updates the display, and returns control to you. You can also
choose the number of instructions in your program to step by selecting Simulator->Multiple_Step instead of
single stepping through your program. A dialog box will appear and ask you the number of instructions to
step.

What do you do if your program runs for a long time before the bug arises? You could single-step until
-you get to the bug, but that can take a long time, and it is easy to get so bored and inattentive that you step
past the problem. A better alternative is to use a breakpoint, which tells PCSpim to stop your program imme-
diately before it executes a particular instruction. Select Simulator->Breakpoints from the menu bar. The
PCSpim program pops up a dialog box window with two boxes. The top box is for you to enter breakpoint
address and the second box is a list of active breakpoints. Type in the first box the address of the instruction
at which you want to stop. Or, if the instruction has a global label, you can just type the name of the label.
Labeled breakpoints are a particularly convenient way to stop at the first instruction of a procedure. To actu-
ally set the breakpoint, and click on the button labeled Add. When you are done adding breakpoints, click on
the button labeled Close. You can then run your program.

When the simulator is about to execute the breakpointed instruction, PCSpim pops up a dialog box with
the instruction’s address and asks if you want to continue the execution. The Yes button continues running
your program and the No button stops your program. If you want to delete a breakpoint, you can select Sim-
ulator->Breakpoints from the menu bar, click on the address in the dialog box, and click on the button
labeled Remove.

Single-stepping and setting breakpoints will probably help you find a bug in your program quickly. How
do you fix it? Go back to the editor that you used to create your program and change your source file. After
you have made the changes to your source file, simply reload it into PCSpim for Windows by choosing Sim-
ulator->Reload<filename> from the menu bar. This causes PCSpim to clear its memory and registers and
return the processor to the state it was in when PCSpim first started. Once the simulator has reinitialized
itself, it will reload your recently modified file.

X3

-asm Simulate the virtual MIPS machine provided by the assembler. This is the default.

-pseudo Allow the input assembly code to contain pseudoinstructions. This is the default.
-nopseudo Do not allow pseudoinstructions in the input assembly code.
-notrap Do not load the standard exception handler and start-up code. This exception handler

handles exceptions. When an exception occurs, SPIM jumps to location 800000804,
which must contain code to service the exception. In addition, this file contains start-
up code that invokes the routine main. Without the start-up routine, SPIM begins exe-
cution at the instruction labeled __start. '

-trap Load the standard exception handler and start-up code. This is the default.
-noquiet Print a message when an exception occurs. This is the default.
-quiet Do not print a message at exceptions.

-nomapped_io Disable the memory-mapped I/O facility. This is the default.

-mapped_io Enable the memory-ma I/O facility. Programs that use SPIM syscalls to read
pp Ty-map ty. g Y
from the terminal cannot also use memory-mapped I/O.

-file Load and execute the assembly code in the file.

-execute Load and execute the code in the MIPS executable file a.out. This command is only
available when SPIM runs on a system containing a MIPS processor.

-s <seg> size Sets the initial size of memory segment seg to be size bytes. The memory segments
are named:text, data, stack, ktext, and kdata. The text segment contains instructions
from a program. The data segment holds the program’s data. The stack segment holds
its runtime stack. In addition to running a program, SPIM also executes system code
that handles interrupts and exceptions. This code resides in a separate part of the
address space called the kernel. The ktext segment holds this code’s instructions, and
kdata holds its data. There is no kstack segment since the system code uses the same
stack as the program. For example, the pair of arguments -sdata 2000000 starts the
user data segment at 2,000,000 bytes.

-1 <seg> size Sets the limit on how large memory segment seg can grow to be size bytes. The mem-
ory segments that can grow are data, stack, and kdata.

Loading and Running a Program

Let’s see how to load and run a program. The first thing to do is to select the open file icon from the
toolbar. Alternatively, you can select from the menu bar: File->Open. A file open dialog box will appear for
you to select the appropriate assembly file. Select the appropriate assembly file and click on the button
labeled Open in the dialog box. If simulator settings are not correct for the file, and it fails to load, PCSpim
will provide you an opportunity to change simulator settings and automatically reload the file.

If you change your mind, click on the button labeled Cancel, and PCSpim removes the dialog box.
When you load an assembly file, PCSpim removes dialog box, then loads your program and redraws the
screen to display its instructions and data. If you have not done so, change the view of the four display win-
dows to a tiled format by selecting from the menu bar: Windows->Tile. You should be able to see the pro-
gram in the Text segment window display.

Each instruction in the Text segment window display is shown on a line that looks like

PC 00400000 EPC 00000000 Cause 00000000
Status = 00000000 HI = (0000000 10 = 00000000
General Registers
RO (r0) = 0 R8 (t0) =0 R16 (s0) = 0
Rl (at) = 0 RS9 (t1) =0 R17 (sl) = 0

0=x00400000 0x0c100008 Jjal 0x00400020 [mai
[0x00400004] 000000021 addu $0, $0, $0
[0=00400008] 0x2402000a addiu $2, $0, 10
[0x0040000c] 0x0000000c syscall
[0x00400010] 0x00000021 addu $0, $0, $0

DATA '
[0x10000000] 0x00000000 Ox6ch96146 0x20206465
[0x10000010] 0x676e6974 (0x44444120 0x6554000a
[0x10000020] 0x44412067 0x=000a4944 0x74736554

ee the file or a full copyright notice.
Memory and registers have been cleared, and the simulator reinitial

D:\temp \dos\TESTS\Alubare.s has been successfully loaded

Figure A.1. PCSpim’s window interface

¢ The Status bar section is at the bottom of the application window. The status bar provides information
and the current settings of the simulator.

SPIM Command-Line Options
The Windows version of SPIM accepts the following command-line options:

-bare Simulate a bare MIPS machine without pseudoinstructions or the additional address-
ing modes provided by the assembler. Implies quiet.

20

SPIM S20: A MIPS R2000 Simulator*

th
“515 the performance at none of the cost”

James R. Larus
larus@cs.wisc.edu
Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706, USA
608-262-9519

Copyright (©1990-1997 by James R. Larus
(This document may be copied without royalties,
so long as this copyright notice remains on it.)

1 SPIM

SPIM S20 is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.!
SPIM can read and immediately execute files containing assembly language. SPIM is a self-
contained system for running these programs and contains a debugger and interface to a few
operating system services.

~ The architecture of the MIPS computers is simple and regular, which makes it easy to learn
and understand. The processor contains 32 general-purpose 32-bit registers and a well-designed
instruction set that make it a propitious target for generating code in a compiler.

However, the obvious question is: why use a simulator when many people have workstations
that contain a hardware, and hence significantly faster, implementation of this computer? One
reason is that these workstations are not generally available. Another reason is that these ma-
chine will not persist for many years because of the rapid progress leading to new and faster
computers. Unfortunately, the trend is to make computers faster by executing several instruc-
tions concurrently, which makes their architecture more difficult to understand and program.
The MIPS architecture may be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for low-level programming than an
actual machine because they can detect more errors and provide more features than an actual
computer. For example, SPIM has a X-window interface that is better than most debuggers for
the actual machines.

"I grateful to the many students at UW who used SPIM in their courses and happily found bugs in a professor’s
code. In particular, the students in CS536, Spring 1990, painfully found the last few bugs in an “already-debugged”
simulator. I am grateful for their patience and persistence. Alan Yuen-wui Siow wrote the X-window interface.

'For a description of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture, Prentice
Hall, 1992.

2

Finally, simulators are an useful tool for studying computers and the programs that run on
them. Because they are implemented in software, not silicon, they can be easily modified to add
new instructions, build new systems such as multiprocessors, or simply to collect data.

1.1 Simulation of a Virtual Machine

The MIPS architecture, like that of most RISC computers, is difficult to program directly because
of its delayed branches, delayed loads, and restricted address modes. This difficulty is tolerable
since these computers were designed to be programmed in high-level languages and so present
an interface designed for compilers, not programmers. A good part of the complexity results
from delayed instructions. A delayed branch takes two cycles to execute. In the second cycle,
the instruction immediately following the branch executes. This instruction can perform useful
work that normally would have been done before the branch or it can be a nop (no operation).
Similarly, delayed loads take two cycles so the instruction immediately following a load cannot
use the value loaded from memory.

MIPS wisely choose to hide this complexity by implementing a virtual machine with their
assembler. This virtual computer appears to have non-delayed branches and loads and a richer
instruction set than the actual hardware. The assembler reorganizes (rearranges) instructions
to fill the delay slots. It also simulates the additional, pseudoinstructions by generating short
sequences of actual instructions.

By default, SPIM simulates the richer, virtual machine. It can also simulate the actual
hardware. We will describe the virtual machine and only mention in passing features that
do not belong to the actual hardware. In doing so, we are following the convention of MIPS
assembly language programmers (and compilers), who routinely take advantage of the extended
machine. Instructions marked with a dagger (1) are pseudoinstructions.

1.2 SPIM Interface

SPIM provides a simple terminal and a X-window interface. Both provide equivalent function-
ality, but the X interface is generally easier to use and more informative.

spim, the terminal version, and xspim, the X version, have the following command-line
options:

-bare
Simulate a bare MIPS machine without pseudoinstructions or the additional addressing
modes provided by the assembler. Implies -quiet.

-asm
Simulate the virtual MIPS machine provided by the assembler. This is the default.

-pseudo
Accept pseudoinstructions in assembly code.

-nopseudo
Do not accept pseudoinstructions in assembly code.

-notrap
Do not load the standard trap handler. This trap handler has two functions that must
be assumed by the user’s program. First, it handles traps. When a trap occurs, SPIM
jumps to location 0x80000080, which should contain code to service the exception. Second,

12

this file contains startup code that invokes the routine main. Without the trap handler,
execution begins at the instruction labeled __start.

-trap
Load the standard trap handler. This is the default.

-trap_file
Load the trap handler in the file.

-noquiet
Print a message when an exception occurs. This is the default.

-quiet
Do not print a message at an exception.

-nomapped._io
Disable the memory-mapped 10 facility (see Section 5).

-mapped_io
Enable the memory-mapped IO facility (see Section 5). Programs that use SPIM syscalls
. (see Section 1.5) to read from the terminal should not also use memory-mapped IO.

-file
Load and execute the assembly code in the file.

-s seg size Sets the initial size of memory segment seg to be size bytes. The memory
segments are named: text, data, stack, ktext, and kdata. For example, the pair of
arguments -sdata 2000000 starts the user data segment at 2,000,000 bytes.

-1seg size Sets the limit on how large memory segment seg can grow to be size bytes. The
memory segments that can grow are: data, stack, and kdata.

1.2.1 Terminal Interface

The terminal interface (spim) provides the following commands:

exit
Exit the simulator.

read "file"
Read file of assembly language commands into SPIM’s memory. If the file has already
been read into SPIM, the system should be cleared (see reinitialize, below) or global
symbols will be multiply defined.

load "file"
Synonym for read.

run <addr>
Start running a program. If the optional address addr is provided, the program starts
at that address. Otherwise, the program starts at the global symbol __start, which is
defined by the default trap handler to call the routine at the global symbol main with the
usual MIPS calling convention. :

(&

step <N>
Step the program for N (default: 1) instructions. Print instructions as they execute.

continue
Continue program execution without stepping.

print $N
Print register V.

print $£fN
Print floating point register N.

print addr
Print the contents of memory at address addr.

print_sym
Print the contents of the symbol table, i.e., the addresses of the global (but not local)
symbols.

reinitialize
Clear the memory and registers.

breakpoint addr
Set a breakpoint at address addr. addr can be either a memory address or symbolic label.

delete addr
Delete all breakpoints at address addr.

list
List all breakpoints.

Rest of line is an assembly instruction that is stored in memory.

<nl>
A newline reexecutes previous command.

Print a help message.
Most commands can be abbreviated to their unique prefix e.g., ex, re, 1, ru, s, p. More
dangerous commands, such as reinitialize, require a longer prefix.
1.2.2 X-Window Interface

The X version of SPIM, xspim, looks different, but should operate in the same manner as spim.
The X window has five panes (see Figure 1). The top pane displays the contents ‘of the registers.
It is continually updated, except while a program is running.

The next pane contains the buttons that control the simulator:

quit
Exit from the simulator.

Ly

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

Data and
Stack
Segments

SPIM
Messages

xspim

PC = 00000000 EPC
Status= 00000000 HI

RO (r0) = 00000000 R8
Rl (at) = 00000000 R9
R2 (v0) = 00000000 R10
R3 (vl) = 00000000 R11
R4 (a0) = 00000000 R12
RS (al} = 00000000 R13
R6 (a2) = 00000000 R14
R7 (a3) = 00000000 R15
FPO = 0.000000 FP8
FP2 = 0.000000 FP10Q
Fp4 = 0.000000 FP12
FP6 = 0.000000 FP14

00000000 Cause = 0000000 BadVaddr = 00000000

00000000 LO = 0000000
General Registers

{t0) = 00000000 16 (s0) = 0000000
(tl) = 00000000 R17 (sl) = 0000000
(t2) = 00000000 R18 (s2) = 0000000
{t3) = 00000000 R1% (s3} = 0000000
(td4) = 00000000 R20 (s4) = 0000000
(£5) = 00000000 R21 (sS) = 0000000
(t6) = 00000000 R22 (s6) = 0000000
(£7) = 00000000 R23 (s7) = 0000000
Double Floating Point Registers
= 0.000000 F§16 & 0.00000
= 0.000000 FP18 = 0.00000
= 0.000000 FP20 = 0.00000
= 0.000000 FP22 = 0.00000

Single Floating Point Registers

(quit) Cload)

(run) (step) (clear) éer. va@

(prinD (breakpo

(help) QeminaD (mode)

Text Segments

{0x00400000] 0x8£a40000
{0x00400004} 0x27a50004
(0x00400008]) 0x24a60004
(0x0040000c} 0x00041090
{0x00400010] 0x00c23021
[0x00400014] 0x0c000000
[0x00400018] 0x3402000a
{0x0040001c} 0x0000000c

lw R4, O(R29) [}
addiu RS, R29, 4 []
addiu R6, RS, 4 (]
sll R2, R4, 2

addu R6, R6, R2

jal 0x00000000 (}
ori RO, RO, 10 [}
syscall

Data Segments

{0x10000000] . .. [0x100100
[0x10010004) 0x74706563
{0x10010010] 0x72727563
{0x10010020} 0x000a6465
{0x10010030] 0x0000205d
(0x10010040] 0x61206465
[0x10010050] 0x642£7473
(0x10010060] 0x555b2020
[0x10010070] 0x73736572

00} 0x00000000

0x206e6£69 0x636£2000

0x61206465 0x6920646e 0x726£6e67
0x495b2020 0x7265746e 0x74707572
0x20200000 0x616e555b 0x6e67636c
0x65726464 0x69207373 0x6e69206e
0x20617461 0x63746566 0x00205d68
0x696c6l6e 0x64656e67 0x64646120
0x206e6920 0x726£7473 0x00205d65

SPIM Version 3.2 of Janu

ary 14, 1990

Figure 1: X-window interface to SPIM.

D = O 0o

HoggEERe
N o

[

load
Read a source file into memory.

run
Start the program running.

step
Single-step through a program.

clear
Reinitialize registers or memory.

set value
Set the value in a register or memory location.

print
Print the value in a register or memory location.

breakpoint
Set or delete a breakpoint or list all breakpoints.

help
Print a help message.

terminal
Raise or hide the console window.

mode
Set SPIM operating modes.

The next two panes display the memory contents. The top one shows instructions from the
user and kernel text segments.? The first few instructions in the text segment are startup code
(s-start) that loads argc and argv into registers and invokes the main routine.

The lower of these two panes displays the data and stack segments. Both panes are updated
as a program executes.

The bottom pane is used to display messages from the simulator. It does not display output
from an executing program. When a program reads or writes, its IO appears in a separate
window, called the Console, which pops up when needed.

1.3 Surprising Features

Although SPIM faithfully simulates the MIPS computer, it is a simulator and certain things are
not identical to the actual computer. The most obvious differences are that instruction timing
and the memory systems are not identical. SPIM does not simulate caches or memory latency,
nor does it accurate reflect the delays for floating point operations or multiplies and divides.

Another surprise (which occurs on the real machine as well) is that a pseudoinstruction
expands into several machine instructions. When single-stepping or examining memory, the
instructions that you see are slightly different from the source program. The correspondence be-
tween the two sets of instructions is fairly simple since SPIM does not reorganize the instructions
to fill delay slots.

*These instructions are real—not pseudo—MIPS instructions. SPIM translates assembler pseudoinstructions
to 1-3 MIPS instructions before storing the program in memory. Each source instruction appears as a comment
on the first instruction to which it is translated.

26

1.4 Assembler Syntax

Comments in assembler files begin with a sharp-sign (#). Everything from the sharp-sign to the
end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (-), and dots (.) that do not
begin with a number. Opcodes for instructions are reserved words that are not valid identifiers.
Labels are declared by putting them at the beginning of a line followed by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Strings are enclosed in double-quotes ("). Special characters in strings follow the C conven-
tion:

newline \n
tab \t
quote \"

SPIM supports a subset of the assembler directives provided by the MIPS assembler:

.align n
Align the next datum on a 2" byte boundary. For example, .align 2 aligns the next value
on a word boundary. .align O turns off automatic alignment of .half, .word, .float,
and .double directives until the next .data or .kdata directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciiz str
Store the string in memory and null-terminate it.

.byte b1, ..., bn
Store the n values in successive bytes of memory.

.data <addr>
The following data items should be stored in the data segment. If the optional argument
addr is present, the items are stored beginning at address addr.

.double d1, ..., dn
Store the n floating point double precision numbers in successive memory locations.

.extern sym size
Declare that the datum stored at sym is size bytes large and is a global symbol. This
directive enables the assembler to store the datum in a portion of the data segment that
is efficiently accessed via register $gp.

.float f1, ..., fn
Store the n floating point single precision numbers in successive memory locations.

.globl sym .
Declare that symbol sym is global and can be referenced from other files.

7

[Service [System Call Code | Arguments [Result |

print_int 1 $a0 = integer

print_float 2 $£12 = float

print_double 3 $£12 = double

print_string 4 $a0 = string

read_int 5 integer (in $vO0)
read float 6 float (in $£0)
read_double 7 double (in $£0)
read_string 8 $a0 = buffer, $al = length

sbrk 9 $a0 = amount address (in $v0)
exit 10

Table 1: System services.

.half hi, ..., hn
Store the n 16-bit quantities in successive memory halfwords.

.kdata <addr>
The following data items should be stored in the kernel data segment. If the optional
argument addr is present, the items are stored beginning at address addr.

.ktext <addr>
The next items are put in the kernel text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr.

.space n
Allocate n bytes of space in the current segment (which must be the data segment in
SPIM).

.text <addr>

The next items are put in the user text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr.

.word wi, ..., wn
Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).

1.5 System Calls

SPIM provides a small set of operating-system-like services through the system call (syscall)
instruction. To request a service, a program loads the system call code (see Table 1) into register
$v0 and the arguments into registers $a0...$a3 (or $£12 for floating point values). System calls
that return values put their result in register $v0 (or $£0 for floating point results). For example,

to print “the answer = 5", use the commands:

.data
str: .asciiz "the answver =
.text

[3]

xxxxxxxxxxxx

CPU

FPU (Coprocessor 1)
Registers

$0

Registers
$0
|— $31 |
Arithmetic Multiply
Unit Divide

$31

Arithmetic
Unit

Coprocessor 0 (Traps and Memory)

BadVAddr

Cause

Status

EPC

Figure 2: MIPS R2000 CPU and FPU

1i $voO, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string

1i $vO0, 1 # system call code for print_int
1i $a0, 5 # integer to print

syscall # print it

print_int is passed an integer and prints it on the console. print.float prints a single
floating point number. print_double prints a double precision number. print_string is passed

a pointer to a null-terminated string, which it writes to the console.

read_int, read_float, and read double read an entire line of input up to and including the
newline. Characters following the number are ignored. read_string has the same semantics as
the Unix library routine fgets. It reads up to n — 1 characters into a buffer and terminates
the string with a null byte. If there are fewer characters on the current line, it reads through
the newline and again null-terminates the string. Warning: programs that use these syscalls
to read from the terminal should not use memory-mapped IO (see Section 5).

sbrk returns a pointer to a block of memory containing n additional bytes. exit stops a

program from running.

17

| Register Name | Number | Usage
Zero 0 | Constant 0
at 1 | Reserved for assembler
v0 2 | Expression evaluation and
vl 3 results of a function
a0 4 | Argument 1
al 5 | Argument 2
a2 6 | Argument 3
a3 7 | Argument 4
t0 8 | Temporary (not preserved across call)
t1 9 | Temporary (not preserved across call)
t2 10 | Temporary (not preserved across call)
t3 11 | Temporary (not preserved across call)
t4 12 | Temporary (not preserved across call)
t5 13 | Temporary (not preserved across call)
t6 14 | Temporary (not preserved across call)
t7 15 | Temporary (not preserved across call)
s0 16 | Saved temporary (preserved across call)
sl 17 | Saved temporary (preserved across call)
s2 18 | Saved temporary (preserved across call)
s3 19 | Saved temporary (preserved across call)
s4 ' 20 | Saved temporary (preserved across call)
s5 21 | Saved temporary (preserved across call)
s6 22 | Saved temporary (preserved across call)
s7 23 | Saved temporary (preserved across call)
t8 24 | Temporary (not preserved across call)
t9 25 | Temporary (not preserved across call)
kO 26 | Reserved for OS kernel
ki 27 | Reserved for OS kernel
gp 28 | Pointer to global area
sp 29 | Stack pointer
fp 30 | Frame pointer
ra 31 | Return address (used by function call)

Table 2: MIPS registers and the convention governing their use.

2 Description of the MIPS R2000

A MIPS processor consists of an integer processing unit (the CPU) and a collection of coproces-
sors that perform ancillary tasks or operate on other types of data such as floating point numbers
(see Figure 2). SPIM simulates two coprocessors. Coprocessor 0 handles traps, exceptions, and
the virtual memory system. SPIM simulates most of the first two and entirely omits details of
the memory system. Coprocessor 1 is the floating point unit. SPIM simulates most aspects of
this unit.

2.1 CPU Registers

The MIPS (and SPIM) central processing unit contains 32 general purpose 32-bit registers that
are numbered 0-31. Register n is designated by $n. Register $0 always contains the hardwired
value 0. MIPS has established a set of conventions as to how registers should be used. These
suggestions are guidelines, which are not enforced by the hardware. However a program that

10

76

15 10 5 4 3 2 1 0

— Old — —Previous— ~—Current—
Interrupt
X
Mask & éQ: QQ @é; & &
e CO%N 0N TN N S QY
* N 7 0 & & N0 [%S 0
{.oga \oé\ta +09Q \oé\o 0"0 \oé\o

Figure 3: The Status register.

violates them will not work properly with other software. Table 2 lists the registers and describes
their intended use.

Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and operating
system.

Registers $a0-$a3 (4-7) are used to pass the first four arguments to routines (remaining
arguments are passed on the stack). Registers $v0 and $vi (2, 3) are used to return values
from functions. Registers $t0-$t9 (8-15, 24, 25) are caller-saved registers used for temporary
quantities that do not need to be preserved across calls. Registers $s0-$s7 (16-23) are callee-
saved registers that hold long-lived values that should be preserved across calls.

Register $sp (29) is the stack pointer, which points to the last location in use on the stack.?
Register $£p (30) is the frame pointer.* Register $ra (31) is written with the return address for
a call by the jal instruction.

Register $gp (28) is a global pointer that points into the middle of a 64K block of memory
in the heap that holds constants and global variables. The objects in this heap can be quickly
accessed with a single load or store instruction.

In addition, coprocessor 0 contains registers that are useful to handle exceptions. SPIM does
rot implement all of these registers, since they are not of much use in a simulator or are part of
the memory system, which is not implemented. However, it does provide the following:

[Register Name | Number l Usage B
BadVAddr 8 Memory address at which address exception occurred
Status 12 Interrupt mask and enable bits
Cause 13 Exception type and pending interrupt bits
EPC 14 Address of instruction that caused exception

These registers are part of coprocessor 0’s register set and are accessed by the 1wcO, mfcO, mtcO,
and swcO instructions.

Figure 3 describes the bits in the Status register that are implemented by SPIM. The
interrupt mask contains a bit for each of the five interrupt levels. If a bit is one, interrupts at
that level are allowed. If the bit is zero, interrupts at that level are disabled. The low six bits of
the Status register implement a three-level stack for the kernel/user and interrupt enable
bits. The kernel/user bit is 0 if the program was running in the kernel when the interrupt
occurred and 1 if it was in user mode. If the interrupt enable bit is 1, interrupts are allowed.

31n earlier version of SPIM, $sp was documented as pointing at the first free word on the stack (not the last
word of the stack frame). Recent MIPS documents have made it clear that this was an error. Both conventions
work equally well, but we choose to follow the real system.

4The MIPS compiler does not use a frame pointer, so this register is used as callee-saved register $s8.

11

15 10 5 2

Pending Exception
Interrupts Code

Figure 4: The Cause register.

If it is O, they are disabled. At an interrupt, these six bits are shifted left by two bits, so the
current bits become the previous bits and the previous bits become the old bits. The current
bits are both set to 0 (i.e., kernel mode with interrupts disabled).

Figure 4 describes the bits in the Cause registers. The five pending interrupt bits corre-
spond to the five interrupt levels. A bit becomes 1 when an interrupt at its level has occurred
but has not been serviced. The exception code register contains a code from the following
table describing the cause of an exception.

[Number | Name | Description |
0 INT External interrupt
4 ADDRL Address error exception (load or instruction fetch)
5 ADDRS Address error exception (store)
6 IBUS Bus error on instruction fetch
7 DBUS Bus error on data load or store
8 SYSCALL | Syscall exception
9 BKPT Breakpoint exception
10 RI Reserved instruction exception
12 OVF Arithmetic overflow exception

2:2 Byte Order

Processors can number the bytes within a word to make the byte with the lowest number either
the leftmost or rightmost one. The convention used by a machine is its byte order. MIPS
processors can operate with either big-endian byte order:

Byte #

or little-endian byte order:

(3[2]1]0]
SPIM operates with both byte orders. SPIM’s byte order is determined by the byte order of

the underlying hardware running the simulator. On a DECstation 3100, SPIM is little-endian,
while on a HP Bobcat, Sun 4 or PC/RT, SPIM is big-endian.

2.3 Addressing Modes

MIPS is a load/store architecture, which means that only load and store instructions access
memory. Computation instructions operate only on values in registers. The bare machine
provides only one memory addressing mode: c(rx), which uses the sum of the immediate

12

[y

(integer) c¢ and the contents of register rx as the address. The virtual machine provides the
following addressing modes for load and store instructions:

| Format | Address Computation |
(register) contents of register
imm immediate
imm (register) immediate + contents of register
symbol address of symbol
symbol + imm address of symbol + or — immediate
symbol + imm (register) | address of symbol + or — (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is aligned if its
memory address is a multiple of its size in bytes. Therefore, a halfword object must be stored
at even addresses and a full word object must be stored at addresses that are a multiple of 4.
However, MIPS provides some instructions for manipulating unaligned data.

2.4 Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).
The immediate forms of the instructions are only included for reference. The assembler will
translate the more general form of an instruction (e.g., add) into the immediate form (e.g.,
addi) if the second argument is constant.

abs Rdest, Rsrc Absolute Value T
Put the absolute value of the integer from register Rsrc in register Rdest.

add Rdest, Rsrcl, Src2 Addition (with overflow)
addi Rdest, Rsrci, Imm Addition Immediate (with overflow)
addu Rdest, Rsrcl, Src2 Addition (without overflow)
addiu Rdest, Rsrcl, Imm Addition Immediate (without overflow)

Put the sum of the integers from register Rsrcl and Src2 (or Imm) into register Rdest.

and Rdest, Rsrcl, Src2 AND
andi Rdest, Rsrci, Imm AND Immediate
Put the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

div Rsrci, Rsrc2 Divide (signed)
divu Rsrcl, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. divu treats is operands as unsigned values. Leave the
quotient in register lo and the remainder in register hi. Note that if an operand is negative,
the remainder is unspecified by the MIPS architecture and depends on the conventions of the
machine on which SPIM is run.

div Rdest, Rsrcl, Src2 Divide (signed, with overflow) t
divu Rdest, Rsrcl, Src2 Divide (unsigned, without overflow) f
Put the quotient of the integers from register Rsrcl and Src2 into register Rdest. divu treats
is operands as unsigned values.

mul Rdest, Rsrci, Src2 Multiply (without overflow) f
mulo Rdest, Rsrcl, Src2 Multiply (with overflow) f

13

73

mulou Rdest, Rsrcl, Src2 Unsigned Multiply (with overflow) |
Put the product of the integers from register Rsrc1 and Src2 into register Rdest.

mult Rsrcl, Rsrc2 Multiply
multu Rsrcl, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the product in register
lo and the high-word in register hi.

neg Rdest, Rsrc Negate Value (with overflow)
negu Rdest, Rsrc Negate Value (without overflow)
Put the negative of the integer from register Rsrc into register Rdest.

nor Rdest, Rsrcl, Src2 NOR
Put the logical NOR of the integers from register Rsrcl and Src2 into register Rdest.

not Rdest, Rsrc NOTt
Put the bitwise logical negation of the integer from register Rsrc into register Rdest.

or Rdest, Rsrcl, Src2 OR
ori Rdest, Rsrci, Imm ' OR Immediate
Put the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

rem Rdest, Rsrcl, Src2 Remainder |
remu Rdest, Rsrcl, Src2 Unsigned Remainder t
Put the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into register
Rdest. Note that if an operand is negative, the remainder is unspecified by the MIPS architecture
and depends on the conventions of the machine on which SPIM is run.

rol Rdest, Rsrcl, Src2 Rotate Left t
ror Rdest, Rsrcl, Src2 Rotate Right t
Rotate the contents of register Rsrci left (right) by the distance indicated by Src2 and put the
result in register Rdest.

s1l1l Rdest, Rsrcl, Src2 Shift Left Logical
sllv Rdest, Rsrcl, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrcl, Src2 Shift Right Arithmetic
srav Rdest, Rsrcl, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrcl, Src2 Shift Right Logical
srlv Rdest, Rsrcl, Rsrc2 Shift Right Logical Variable

Shift the contents of register Rsrci left (right) by the distance indicated by Src2 (Rsrc2) and
put the result in register Rdest.

sub Rdest, Rsrcl, Src2 Subtract (with overflow)
subu Rdest, Rsrcl, Src2 Subtract (without overflow)
Put the difference of the integers from register Rsrc1 and Src2 into register Rdest.

xor Rdest, Rsrcl, Src2 XOR
xori Rdest, Rsrcil, Imm XOR Immediate
Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

14

77

2.5 Constant-Manipulating Instructions

1i Rdest, imm Load Immediate |
Move the immediate imm into register Rdest.

lui Rdest, imm Load Upper Immed:iate
Load the lower halfword of the immediate imm into the upper halfword of register Rdest. The
lower bits of the register are set to 0.

2.6 Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).

‘ seq Rdest, Rsrcl, Src2 Set Equal 1
Set register Rdest to 1 if register Rsrcl equals Src2 and to be 0 otherwise.

sge Rdest, Rsrcl, Src2 Set Greater Than Equal‘t
sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned T
Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.
sgt Rdest, Rsrcl, Src2 Set Greater Than !
sgtu Rdest, Rsrcl, Src2 Set Greater Than Unsignedf
Set register Rdest to 1 if register Rsrcl is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrcl, Src2 Set Less Than Equal"
sleu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned |
Set register Rdest to 1 if register Rsrcl is less than or equal to Src2 and to 0 otherwise.

slt Rdest, Rsrcl, Src2 Set Less Than
slti Rdest, Rsrci, Imm Set Less Than Immediate
sltu Rdest, Rsrcl, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrcl, Imm Set Less Than Unsigned Immediate

Set register Rdest to 1 if register Rsrcl is less than Src2 (or Imm) and to 0 otherwise.

sne Rdest, Rsrcil, Src2 Set Not Equal t
Set register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0 otherwise.

2.7 Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer). Branch
instructions use a signed 16-bit offset field; hence they can jump 215 _ 1 instructions (not bytes)
forward or 2!° instructions backwards. The jump instruction contains a 26 bit address field.

b label Branch instruction |
Unconditionally branch to the instruction at the label.

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False

Conditionally branch to the instruction at the label if coprocessor z’s condition flag is true
(false).

15

1]

beq Rsrcl, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals Src2.

begz Rsrc, label Branch on Equal Zero t
Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

bge Rsrcl, Src2, label Branch on Greater Than E'qualt
bgeu Rsrcl, Src2, label Branch on GTE Unsz’gned‘L

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than or equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0. Save the address of the next instruction in register 31.

bgt Rsrci, Src2, label Branch on Greater Than
bgtu Rsrcl, Src2, label Branch on Greater Than Unsigned |
Conditionally branch to the instruction at the label if the contents of register Rsrc1l are greater
than Src2.

bgtz Rsrc, label Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than 0.
ble Rsrci, Src2, label Branch on Less Than E'qualT
bleu Rsrcl, Src2, label Branch on LTE Unsigned |

Conditionally branch to the instruction at the label if the contents of register Rsrci are less
than or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than or equal
to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater or equal
to 0 or less than 0, respectively. Save the address of the next instruction in register 31.

blt Rsrcl, Src2, label Branch on Less Than |
bltu Rsrcl, Src2, label Branch on Less Than Unsigned !
Conditionally branch to the instruction at the label if the contents of register Rsrc1l are less
than Src2.

bltz Rsrc, label Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than O.

16

34

bne Rsrcl, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if the contents of register Rsrcl are not
equal to Src2.

bnez Rsrc, label Branch on Not Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to 0.

j label Jump
Unconditionally jump to the instruction at the label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to the instruction at the label or whose address is in register Rsrc. Save
the address of the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.

2.8 Load Instructions

la Rdest, address Load Address
Load computed address, not the contents of the location, into register Rdest.

1b Rdest, address ' Load Byte
1bu Rdest, address Load Unsigned Byte
Load the byte at address into register Rdest. The byte is sign-extended by the 1b, but not the
1bu, instruction.

1d Rdest, address Load Double-Word
Load the 64-bit quantity at address into registers Rdest and Rdest + 1.

1h Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword is sign-extended
by the 1h, but not the lhu, instruction

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor
Load the word at address into register Rdest of coprocessor z (0-3).

1wl Rdest, address Load Word Left

lwr Rdest, address Load Word Right

Load the left (right) bytes from the word at the possibly-unaligned address into register Rdest.

ulh Rdest, address Unaligned Load Halfword !

ulhu Rdest, address ' Unaligned Load Halfword Unsigned |
17

1t

Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest. The
halfword is sign-extended by the ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word
Load the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.

2.9 Store Instructions

sb Rsrc, address Store Byte
Store the low byte from register Rsrc at address.

sd Rsrc, address Store Double-Word
Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.

sh Rsrc, address Store Halfword
Store the low halfword from register Rsrc at address.

sw Rsrc, address Store Word
Store the word from register Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from register Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from register Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword f
Store the low halfword from register Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word 1
Store the word from register Rsrc at the possibly-unaligned address.

2.10 Data Movement Instructions

move Rdest, Rsrc Move t
Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and lo. These
instructions move values to and from these registers. The multiply, divide, and remainder
instructions described above are pseudoinstructions that make it appear as if this unit operates
on the general registers and detect error conditions such as divide by zero or overflow.

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to register Rdest.

18

39

mthi Rdest Move To hi
mtlo Rdest Mowve To lo
Move the contents register Rdest to the hi (lo) register.

Coprocessors have their own register sets. These instructions move values between these
registers and the CPU’s registers.

mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z’s register CPsrc to CPU register Rdest.

mfcl.d Rdest, FRsrcl Move Double From Coprocessor 1 f
Move the contents of floating point registers FRsrcl and FRsrc1l + 1 to CPU registers Rdest
and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU register Rsrc to cOprocessor 2’s register CPdest.

2.11 Floating Point Instructions

The MIPS has a floating point coprocessor (numbered 1) that operates on single precision (32-
bit) and double precision (64-bit) floating point numbers. This coprocessor has its own registers,
which are numbered $£0-$£31. Because these registers are only 32-bits wide, two of them are
required to hold doubles. To simplify matters, floating point operations only use even-numbered
registers—including instructions that operate on single floats.

Values are moved in or out of these registers a word (32-bits) at a time by lwcl, swel, mtcl,
and mfcl instructions described above or by the 1.s, 1.4, s.s, and s.d pseudoinstructions
described below. The flag set by floating point comparison operations is read by the CPU with
its bc1t and bc1f instructions.

_In all instructions below, FRdest, FRsrcl, FRsrc2, and FRsrc are floating point registers
(e.g., $£2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
Compute the absolute value of the floating float double (single) in register FRsrc and put it in
register FRdest. :

add.d FRdest, FRsrcl, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrcl, FRsrc2 Floating Point Addition Single
Compute the sum of the floating float doubles (singles) in registers FRsrcl and FRsrc2 and put
it in register FRdest.

c.eq.d FRsrcl, FRsrc2 Compare Equal Double
c.eq.s FRsrcl, FRsrc2 Compare Equal Single
Compare the floating point double in register FRsrcl against the one in FRsrc2 and set the
floating point condition flag true if they are equal.

c.le.d FRsrcl, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrcl, FRsrc2 Compare Less Than Equal Single
Compare the floating point double in register FRercl against the one in FRsrc2 and set the
floating point condition flag true if the first is less than or equal to the second.

19

