Signals and Systems

Signals and Systems

® Signals are variables that carry
information

® Systemstake signals as inputs and
produce signals as outputs

The course deals with the passage of
signals through systems
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Signals

® Signalsdescribe a wide variety of (physical)
phenomena
® Signals may be represented in many ways
® Information in a signal is contained in a
pattern of variations of some form, i.e.
— variation of voltages over time in a circuit
— applied force and resulting velocity of a car

— fluctuations of acoustic pressure in speech
production by human vocal mechanism
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Examples of Signals

« A simple RC circuit  * An automobile responding
with source voltage to an applied force f from
vgand capacitor the engine and to a frac-

voltage v, tional force r v proportio-
nal to the velocity v
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Examples of Signals

Example of a
recording of speech:
The signal
represents acoustic
pressure variations
as a function of time
for the spoken
words:

"should we chase”
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Examples of Signals

= P ———

A monochromatic picture
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Representation of Signals

® Signals are represented mathematically
as functions of one or more
independent variables

® We will generally refer the independent
variable as time

® Two basic types of signals:
— Continuous-time (CT) signals and
— Discrete-time (DT) signals
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Continuous-Time and Discrete-Time Signals

® Symbol tis used to denote the independent
variable of continuous-time signals

® Symbol nis used to denote the
independent variable of discrete-time
signals

® Continuous-time signal: x(t)

® Discrete-time signal: x[n]
x[n] is a sequence, defined only for integer
values of n
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Continuous-Time and Discrete-Time Signals
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Digital Image

® Two-dimensional (digital) signal:
Intensity is a function of spatial coordinates

E
A g

60l Simula T-61.140 / Chepter 1 10

Signal Energy and Power

® Signals are directly related to physical
quantities capturing power and energy
in a physical system

® Instantaneous power, e.g.,

m0=vmu0=éw%0

where v(t) and i(t) are the voltage and current,
respectively, across the resistor of resistance R
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Signal Energy and Power

® Total energy expended over the time
intervalt, <t <t,

d2 R 1 2
Q p(t)dt = QRY (t)dt
® Average power over this time interval

1 t2 1 1l
——0 p(t)dt =——) =V*(t)dt
o0 PO = G RV O)
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Signals with Complex Values

® Total energy over time interval t; <t <t, of a
continuous-time signal x(t)

O K(OF dt

where [x| is the magnitude of the (possibly
complex) number x

® Similarly, the total energy of a discrete-time
signal x[n] over time interval t; <t<t, is

& 2
a Ix[n]|

n=n
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Total Energy over Infinite Time Interval

® In many systems we are interested in examining
power and energy in signals over infinite time

interval
. J 2 ¥ 2
E, =1im0, x| dt = g, x(t) dt
T® ¥
and
E, = lim & prif = & ]Xnf
¥ Ne¥ n=-N n=-¥
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Total Power over Infinite Time Interval

® The time-averaged power over infinite time
interval is defined as

R =lim570 Il ot
and
R =limsm— & {nf
v EIMoNT1,2)
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Three Important Classes of Signals 1(3)

® Signals with finite total energy, E¥
Such a signal must have zero average power
. E
R, = |Im—¥ =0

® Example: A signal that takes the value 1 for
0<t<1 and O otherwise.
In this case

E,=landR =0
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Three Important Classes of Signals 2(3)

® Signals with finite average power P¥

et P, >0 then, of necessity, E, =¥

® If there is nonzero average energy per unit time
(i.e. nonzero power) , then integrating or summing
this over an infinite time interval yields an infinite
amount of energy

® Example: Constant signal x[n] = 4 has infinite
energy, but average power R, =16
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Three Important Classes of Signals 3(3)

® There are also signals for which
neither B, nor E, are infinite

® A simple example is the signal x(t) =t
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Transformations of the Independent
Variable
® Time shift: x[n] = x[n-ny]
® Time reversal: x[-n] obtained from x[n]
® Time scaling: x(t); x(2t); x(t/2)
® Transformation: x(t) -> x(at+ b)
preserves the shape of x(t) ;
— linear stretching if|al <1or
— linear compression if |a| > 1
— time reversal ifa<0
— time shift if bis nonzero
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Time-Shift of a Discrete-Time Signal

® Original
d Hllh,,w e
T ® Delayed
il

Time-Reversal of a Discrete-Time Signal

xin)

wdll

(@

x(-n)

..

)
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Time-Scaling of a Continuous-Time Signal

:

x(2t)

x(t2)
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Examples of Operations

TN signalx

Advance x(t+1)
(shift to the left)

Reversed version of
X(t+1): x(-t+1)

Compressed version of
x): X(32))

Linearly compressed and
advanced signal: x((3/2)t+1)
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Periodic Signals

® A signal x(t) is periodic with period T if
X(t) = x(t+T)
for all values of t
® The fundamental period T, of x(t) is the

smallest positive value of T for which the
above equality holds

® A signal x(t) that is not periodic is referred
to as an aperiodic signal
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Examples of Periodic Signals

x(t)

x[n]

] ” h ” ] x[n] = x{n+3]
|l

L] "
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Even and Odd Signals
¢ Continuous and discrete even signals:
X(-t) =x(t) or x[-n] =x[n]
® Continuous and discrete odd signals:
X(-t) =-x(t) or x[-n] = -x[n]

® An odd signal must be necessarily zero
att=0orn=0
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Examples of Even and Odd Signals

x()

VAN

(@

)

[C]
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Even-Odd Decomposition
of a Signal

® Even part of x(t):

Ev{x®)} = xO+x(-0)] / 2
® Odd part of x(t):

Od {x(t)} = [x(t)}-x(-)] / 2

60l Simula T-61.140 / Chepter 1 28

Continuous-Time Complex Exponential
and Sinusoidal Signals
® Complex exponential signal: x(t) = C et
where C and a are in general complex numbers
® Real exponential signals: Cand a are real

x(t) (0

c c

t t
(@) ®

Growing exponential: a>0  Decaying exponential: a<0
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Periodic Complex Exponential and
Sinusoidal Signals

Number ais purelyimaginary: ~ X(t) =¢e'"?
jwot W (t+T

X(t) is periodic with period T : gt = gt

Since e]wo(t+T) - e]wote]on

It follows that for periodicity, we must have e’ =1

If w=0the x(t)=1which is periodic for any value of T.
If wyis nonzero, then the fundamental period T, of X(t) is

2p
TO i
el
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Periodic Complex Exponential and
Sinusoidal Signals

® A signal closelyrelated to the periodic complex
exponentialis the sinusoidal signal

X(t) = Acos(wt +f )

* Itis common to write W, = 2pf,
X = Acos ort + 9

f, has units of cycles per . S
second or Hertz (Hz)
W, has units of radians Reosd
per second \/‘ \/ X
31
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Sinusoidal Signal

=

® Fundamental period: T,
® Fundamental frequency:.

Wo=1/T,
® |llustration:
T <T,<T,
w; >W, >W,
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Discrete-Time Complex Exponential Signals

x[n=Ca"=Ce™; a=¢"

el

) [TrTveyess 5
-1<a <0
O<a <1 :
[Ee— %Ww%l
’ a<-1 o ‘
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Sinusoidal Signals (Sequences)

x{n] =cos(2pn/12)
X n] =cos(@n/3)

| -:IIII”l!lI“_Ii“IIIIIIl X n] = cos(n/6)
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General Complex Exponential Signals

C=|cle™, a=f|e™

Ca" =|Cla|" cosw,n +q )+ j|Cla| sinfwn +q)

la|>1 ___“‘_.Lumn;w_ﬂ‘m--"
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Periodicity Properties of Discrete-Time
Complex Exponentials

® Continuous-time exp(jw t):
1. Increasing w, increases the rate of oscillation
2. exp(jw,t) is periodic for any value of w,
® ConsiderDT complex exponential with frequency ws+2p:
gl (WP — giwongi2en — giwon
® The exponential at frequencywy+2p is the same as that of
frequency w,

® |In CT case, the exponential signalsexp(jw,t) are all
distinct for distinct values of w,
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Periodicity Properties of Discrete-Time
Complex Exponentials

® |In DT case, the signalsare not distinct, as the signal
with frequency w, is identical to the signalsto the
signalswith frequencieswy+ 2p,w,+ 4p etc.

® Considering complex exponentialswe need only
consider a frequency interval of length 2p, i.e.,

OEw,<2p or -pEw,<p
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DT Sinusoidal Sequences
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The Unit Impulse
and
the Unit Step Functions

Some Basic Sequences

« Unit sample sequence

il n=0 l|

=iy nio

0 n

¢ Unit step sequence

A
M=l h<o
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Relations between Basic Sequences

¢ Unit sample and unit step sequences are
related as follows:

dinl = nfn] - nfn- 1
nin] = & dim}

* The above relations can be implemented with
simple computational structures consisting of
basic arithmetic operations
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Relations between Basic Sequences

» The unit sample is the first difference of the

unit step:
d[n]=nin]- mn-1]
o I "M
v | B
din] 1| nin- 1
5 - Realization
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Relations between Basic Sequences
* Unit step is the running sum of the unit step:
3 51
ninl = @ d[m] = g d[m]+d[n]=nin- 1 +d[n]
¥

m=- m=-¥

Interval of summation

,,,,,,,,,,,,, o d[n] nin]
:‘ a

Relations between Basic Sequences

« By changing the variable of summation in the running
sum from mto k=n-m, the discrete-time unit step can be
written in terms of the unit sample as

Intorvalof summation

8ln—k]

min] = éd[n- K]

¥ n 0

ceoee —
K

H 'a)c v m - e} d[n— k] @

Interval of summation n k=0 Interval of summation

I nin- 1]

! i - Realization N P
) ®)
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Continuous-Time and
Examples

Discrete-Time Systems

* A system can be viewed as a process in
which input signals are transformed by the
system resulting in other signals as outputs

Continuous-time
t) — L
x® system y()

Discrete-time |
system yInl
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e Example 1.8: An RC circuit

* Example 1.9: A forces affecting the car

* Example 1.10: A balance in a bank account

* Example 1.11: Digital simulation of the
differential equation
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Mathematical Descriptions of Systems

* Classes of systems that have two important
characteristics:

1) The systems have properties and structures
that can be exploited to gain insight into their
behavior and to develop effective tools for
their analysis

2) Many systems of practical importance can
be accurately modeled using these systems

Tools are developed for a particular class of
systems referred to as
linear and time-invariant systems
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Interconnections of Systems

« Series or cascade interconnection

Input —| System 1 |—| System 2 |— Output

« Parallel interconnection

o

Output
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Interconnections of Systems

« Combination of parallel and cascade
interconnections

stem 1 stem 2
Input Output
pp— © System 4 [—
-stem

* Feedback interconnection
Input 0 Output
[
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Basic System Properties

Systems with and without memory
Invertibility and inverse systems
o Causality

« Stahility

» Time invariance

* Linearity

 Convolution
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Memoryless Systems

« Output for each value of the independent
variable at a given time is dependent only
on theinput at the sametime

Example:  y[n] = (2x[n] - XZ[”])2

Identity System

Continuous- time:  y(t) = x(t)

Discrete- time: y[n] =xn]

* Anidentity system isasimple memoryless
system whose output isidentical to itsinput
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Accumulator Delay
J n=x[n-1
yinl= & K] yinl =xn-1j
k=-¥

« Anaccumulator is a discrete-time system
with memory
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* Theoutput is the delayed version of the input
» Realization using amemory location or register
withdelay T
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Arbitrary Delay

yin] =Xn- K]

» An arbitrary delay of ktime instants can be
realized using a shift register of length k
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Accumulator or Running Sum

yinl = & XK{n]

yin] = yin- 1+ xn]

» The accumulator must remember the
running sum of previous input valuesto
obtain the output at current timen
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Invertible Systems

y[n]

X[l — System Sy [ Wl =1

* |f asystemisinvertible, then an inverse system
exists that when cascaded with the original
system yields an output w[n] equal to input x[n]
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Invertible Systems

ulr}
d[n] — System e [ Ll
U[n]=k{§n_1¥d[k] dirl=url- un-1

* Accumulator is an invertible discrete-
time system
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Causality

* A systemiscausal if the output at any time
depends only on the values of theinput at
the sametime and in the past

e Example:
Accumulator and delay are causal systems
¢ All memorylesssystems are causal
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Noncausality

» A systemisnoncausal if the output at any
time depends al so on the future val ues of
the input

» Noncausal systems are physically not
realizable

Example: y[n]=Xn]- x[n+]]
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Noncausality

» A noncausal averaging filter

Y
a xin- k]

nl =
y[n] ML

» Thefilter can be realized with adelay of M
samples
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Stability

 Informally, asystemis stable if small inputs
lead to responsesthat do not diverge

|

X(t) |

| v " yol
|

|
Pendulum  Inverted pendulum
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Time Invariance

* A systemistimeinvariant if atime shiftin
theinput signal resultsin an identical time
shift in the output signal

yin =T(x[ri)
yin- nol =T(x{n- ny])
» Thesystem properties do not change with

time
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Time Invariance
« A timeinvariant continuous-time system
y(t) =sin[x()]

* A time variant discrete-time system

yin] =nx{n]

Coefficient n is changing withtime
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Linearity

A linear system isasystem that possesses
the important property of superposition
Additivity:
The responseto x;(1)+x,(t) is y;(t)+ys(t)
Scaling or homogeneity:

The responseto ax(t) is ay;(t)
where a isany complex constant
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Linearity

» Combining the two properties of
superposition into asingle statement

Discrete-time:
ax [n] +bx,[n] ® ay,[n] +by,[n]
where a and b are any compl ex constants

The superposition property holdsfor linear
systemsin continuousand discretetime
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Linearity

x[n]
ay[n] +by,[n]

%[Nl

X[n]
ay;[n] +by,[n]
%]
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Basic Operations on Sequences

x[n]
i O XN+l

a
* Multiplication: ~ nl —[>— ax{n]
o1—{B]— -

» Addition:

 Unit delay:
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Arbitrary Sequence

]

x-3] 1]

-7-6»5»4-3-2-10123«*567 n
4]

« An arbitrary sequence x[n] can be expressed
as a superposition of scaled versions of
shifted unit impulses, d/n-k]

Arbitrary Sequence
x[n]

X-3] 1]

77—6—5—4—372—101234*567 n
4]

{n=|x[-3d[n+3]| + |x[1d[n- 1] .|x{4]d[n- 4]

* Ingeneral:  Xn]= g x[K]d[n- K]

k=-¥
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Convolution Convolution

« X[n] isrepresented as a superposition of scaled
versions of shifted unit impulses, dn-k]

¢ Linearity: The response of alinear system to x[n]
will be the superposition of the scaled responses of
the system to each of these shifted impulses

¢ Timeinvariance: The responses of atime-invariant
system to time-shifted unit impulses are the time-
shifted versions of one another
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» Theunit impulse response of a system
ish[n]

dm— T() —hm
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Convolution

yrl =) =T idn- 02

Ex=¥
Additivity: yin] :kéj(x[k]d[n. k)
Homogeneity : ylnl = é {KIT@[n- K])
Shift - invariance:  y{n] :i%zx[k]r[n— k]
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