Fourier Series Representation
of Continuous-Time
Periodic Signals
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Fourier Series Representation

« Focus on the representation of continuous-
time and discrete-time periodic signals
referred to as Fourier series

* Powerful and important tools for analyzing,
designing, and understanding signals and
LTI systems
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Theresponse of LTI systemsto complex exponentials

Representation of signals aslinear combinations of
basic signals that have the following properties:

1) The set of basic signal's can be used to construct a broad and
useful class of signals

2) Theresponse of an LTI system to each signal should be
simpleenoughin structureto provide uswith the convenient
representation for the response of the system to any signal
constructed asalinear combination of the basic signals

Both of these properties are provided by the set of
complex exponentid signalsin CT and DT
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Theresponse of LTI systemsto complex exponentials

» Theresponse of an LTI system to a complex
exponentia is the same complex exponential with
only achange in amplitude:

— Continuous-time: esT -> H(s) e

— Discretetime: z" >H(@2)z"
where the complex amplitude factor H(s) or H(z) will
be a function of the complex varigble sor z
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Theresponse of LTI systemsto complex exponentials

« A signa for which the system output is a constant
times the input is referred to as an eigenfunction of the
system, and the amplitude value is referred asthe
eigenvalue of the system

» This property for complex exponentials can be shown
using:

— The impulse response and
— The convolution
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Continuous- Time Systems

 For an input X(t)=e the convolution integral gives:
+¥ +¥
yO = ghe)xe-t)d = Git)eX et
-¥ -¥
+¥ +¥
= Jt)ede S d =e* Gt )T ot
-¥ -¥

+¥
= x(t) e )e St
-¥
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Continuous-Time Systems

* A complex exponentiad X(t)=€ is now the eigenfunction of
the LTI system withimpulseresponseh(t):

+¥
y(t) = x(t) ¢t )e Fdt =H (s)e™
-¥ v
where  H(9= (t)e st gt
-¥

H(s) isthetransfer function or system function
representing the system behavior in the s-domain
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Discrete-Time Systems

* For aninput x{n]=2" the convolution sum gives:
+¥ +¥ +¥

yinl= & hikIx[n- k]= & hik]z"* = 2" § hKk]z
k=-¥ k=-¥ k=-¥

+¥
yinl=2"H(2) = X{rlH (2) , whereH(2= & hk]z X
k=¥
H(2) isthe ztransform of the unit impul se response
H(2) describesthe system behavior in the zdomain
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Linear Combination of Signals

 Let x(t) correspond toa linear combination of complex
exponentids:
x(t) =a,eSt+aes! + agest

* From the eigenfunction property the responseto each term:
e ® aH(s)e
et ® ayH (s )e!

age™ ® agH (s3)e™
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Linear Combination of Signals

» From the superposition property the responsetothe sum is
the sum of the responses:

y(t) =aH (9)eX +apH (s2)e™ +agH (s3)e™
* The representation of signals asalinear combination of
complex exponentids leads toa convenient expression for
the response of an LTl sysem
Input:  x(t) =Q axe™!
k
Output :  y(t) =& aH (sc)e™
k
Tik-61.140 / Chapter 3 10
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Linear Combination of Signals

« Inasimilar way, for discretetime systemsthe response of a
linear combination of complex exponentidsisthe linear
combination of individual responses:

Input: XN =& azp
k

Output:  y[nl=§ aH(z)z]
k

The decomposition of more general signalsin terms
of eigenfunctionsisthe basis for frequency domain

representation and analysis of LTI systems

Tik-61.140 / Chapter 3 1
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Fourier Series Representation
of Continuous-Time
Periodic Signals
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Linear Combinations of Harmonically
Related Complex Exponentials
« A sgnd isperiodicif for somevaueof T:
X(t) =x(@t+T), for all t
¢ The fundamentd period of X(t) isthe minimum positive
nonzerovalue of T for whichthe aboveissatisfied;

* The vauew=2n/T is referred to as the fundamental
frequency

0t simia Tik-61.140 / Chepter 3 13

Linear Combinations of Harmonically
Related Complex Exponentials

» Basic periodic sgnas
— Sinusoidd signdl : X(t) = coswt
— Complex exponentia: x(t) = el

« Both of these signds are periodic with fundamental
frequency W, and fundamental period of T=2pAw,

Tik-61.140 / Chapter 3 14
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Harmonically Related Complex
Exponentials

fi ) =elWl = k@ /Mt =g 4142 .

* Each of these signds has a fundamenta frequency thet isa
multipleofw,

» Each isperiodic with period T

* For|K>2, the fundamenta period of f (t) isa fraction of T

Tik-61.140 / Chapter 3 15
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Linear Combination of Harmonically
Related Complex Exponentials

A ¥
xH= ake]kwol = 3 akelk(Zp/T)t
k=¥ k=-¥
¢ X(t) is periodic with period T
* Thetam for k=0isa constant
* The terms for k=+1 and k=-1 both have fundamental
frequency equal tow, and referred to asthe fundamental
components or the first harmonic components
* The two terms for k=+2 and k=-2 are periodic with haf the
period of the fundamental componentsand referred to as
the second harmonic components
Tik-61.140 / Chapter 3 16
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Example 3.2

» Congtruction of the signal X(t) as linear
combination of harmonically related sinusoidal
signals "

o Periodicsignal:  xt)= § axe*®

k=-3

where apg=1 a=a =1 p=a =1 y=a =1
o 1=a1= 2%7 373

(1) :1+%(912m +e JzP‘)»r%(eJ“p‘ +e 19t )+%(e16pt +e JG”‘)
X(t) =1+% cos(2pt)+ cos(épt) +§cos(€p 1)

Tik-61.140 / Chapter 3 17
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Fourier Series Representation

¢ Ingenerd, the componentsfor k=+N and k=N aredso
periodic with a fraction of the period of the fundamental
components and are referred to as the Nth harmonic
components

? jk -';‘ jk(2p/
x(t)= a akel Wol = a ake] (2p/ Tt
k=-¥ k=-¥

=> Fourier Series representation

Tik-61.140 / Chepter 3 18
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Determination of the Fourier Series
Representation of a CT Periodid Signal

» Multiplying both sides and integrating gives:

x(tye” jnwt é akeJk""ote' jnw, t
k=-¥

T 4y . .

o é akejkw"te_ ]nw"tdt

ok=-¥

InWot gy =

;
Ox(e’
0

w8 u
= Bacep & Ml
k=¥ & H
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Determination of the Fourier Series
Representation of a CT Periodid Signal

T . v & b
e ™etdt= § acegp!® Mdgra
0 k=-¥ 8o H

T . 1T, k=n
(‘?J(k'n)wotd[:}

0 fo, ktn
* The expression for determining the coefficients a,is

1T -
a0 == (e Inwot gt
0
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Fourier Series Representation

:¥ jk -'°¥ jk(2p /
x(t) = a ake] Wt — a akel (2p /Tt
k=-¥ k=-¥

N kw1 - jk(2p IT)t
ay = T Qx(t)e dt =T Qx(t)e dt

» Thesetof coefficients{a} arecdled theFourier series
coefficients or spectral coefficientsof x(t)

» These complex coefficients measure the portion of the
signal x(t) that isa each harmonic of the fundamenta

Convergence of the Fourier Series

 Let us gpproximate agiven periodic signal x(t) by alinear
combination of a finitenumber of harmonicaly related
complex exponentials
+N .
XM = § aelvd
k=-N

* Let g (t) denotethe approximation error

+N )
en(®) =x)- Xy O=xE)- § ae"d

k=-N
component
oo smin Tik-61.140 / Chepter 3 2 o smn Tik-61.140 / Chapter 3 2
Convergence of the Fourier Series Properties Of‘) Et‘g(i-hrpai?li:'er Sei 1S

* Quantitativemeasure for the goodness of the approximation
isdefined by the energy in the error over one period

EN = di‘N (tjzdt
T

« |t can be shown that the particular choice for coefficients
that minimize the energy inthe error is

a =2 ox(e at
T T

Tik-61.140 / Chapter 3 23
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y
y(t)p fundamental frequency wo =2 /T by

Linearity: AX(t) + By(t) Aay +Bby
Time shifting: x(t- to) P
Frequency shifting:  x(t)elMWot - M

Periodic convolution: CY((t Jy(t-t)dt Tab,
T +¥
Multiplication: x(t) y(t) a ab.,

I=-¥
Tik-61.140 / Chapter 3 24
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Fourier Series Representation
of Discrete-Time
Periodic Signals
The Fourier series representation of a
discretetime periodic signal isafinite
series, as opposed to the infinite series

representation required for continuous-time
periodic signals

Soli smua

Linear Combinations of Harmonically
Related Complex Exponentials

* A discretetime signd is periodic with period N if
x[n] = x[n+ N]

* The fundamental period isthe smallest positive integer for
which the above equation holds

* wF20/N isthe fundamental frequency

ot simia Tik-61.140 / Chepter 3 2

Linear Combinations of Harmonically
Related Complex Exponentials

e Asatof al DT complex exponentia signasthet are periodic
with period N isgiven by

fi[n] =elwd = k(P /NI ) =0 +142 .
« Thereareonly N distinct signals in the above st due tothe
fact thet DT complex exponentials which differ in frequency
by amultiple of 2 are identica

filn] =f irn [N]

S0l simia Tik-61.140 / Chepter 3 27

Linear Combinations of Harmonically
Related Complex Exponentials

fi[n] =F een []

* When kis changed by any integer multiple of N,
theidentical sequence isgenerated

* This differs from the situation in continuous-time inwhich
thesignals f (t) are al different from one another

60l Simia Tik-61.140 / Chapter 3 28

Linear Combinations of Complex Exponentials
Al =& af ([n]= & aelvn =§ a.ek@/Nn
k k k

» Sincef [n] are distinct only over arangeon N successive values
of k, the summation need only include terms over this range
« Expressing thelimits of summation as k = (N}
x{n] = é af [n]= é_ akejkWo” = é_ akeik(Zp/N)n
k=(N}) k=(N}) k=(N})

« Thisis referred to asthe discretetime Fourier series and the
coefficients g, asthe Fourier series coefficients

S0l simia Tik-61.140/ Chapter 3 2

Discrete-Time Fourier Series

¢ Multiplying both sides and summing over Nterms
xnle’ jr(2p IN)n — é_ akej(k- r)(2p/N)n

k=(N)
é x[nle” jr(2p/N)n — é é akej(k- r)(2p/N)n
n=(N}) n=(N)k=(N})
= & a QelknN@/Nn
k=(N) n=(N)

o smia Tik-61.140/ Chapter 3 0




Discrete-Time Fourier Series

8 x[ne T@/NN= & 5 8 eilk-n(@/N)n

n=(N) k=(N) n=(N)
_ fN. k=0£N.£2N...
é eJk(2p/N)n =
n=(N) fo, otherwise

» Now, the expression for determining the coefficients a, is
=~ & xnje’ @ /NN
n=(N)

0t simia Tik-61.140 / Chepter 3 a1

Discrete Fourier Series Representation

¢ The synthes's and analys's equations for the discretetime
Fourier seriesis given by the following pair of equations:

x[n] = é_ akejkwon = é akeik(zp/ N)n
k=<N) k=<N>
1 o _ i 1 o i
ay :ﬁ a Hnle jkw,n =ﬁ a Hnle jk(2p/ N)n
) ()

» Thesetof coefficients{a} are caled thediscretetime
Fourier series coefficients or spectral coefficientsof X{n]

Tik-61.140 / Chapter 3 32
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Discrete Fourier Series Representation
= & ad[n]
k=(N)
« If wetake kin the range from 0to N-1, we have
] = af o[n]+af [n] +..+ ay_1f - 1[n]
Similarly, if k ranges from 1to N, wehave
] = af 4[]+ ayf o[n]+...+anf y[N]

» Fromf,[n]=f,, [n] wehavef [n]=f[n]
» Thus we condude that a;=a,

Tik-61.140 / Chapter 3 33
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Discrete Fourier Series Representation

 Lettingk range over any setof N consecutive integers we
conclude that
A =N

* The vaues of Fourier coefficients a, repesat periodicaly
with period N

Since there are only N distinct complex exponentias that
are periodic with period N, the discretetime Fourier series
representation is a finite serieswith N terms

Tik-61.140 / Chapter 3 34
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Properties of the DT Fourier Series
x[n]PPenodic with period N and ak‘uPeriodic with

Y y
\,{H]"’J fundamental frequency wo=2p/N qbperiod N

Linearity: AX[n]+ By[n] Aay +Bby
Time shifting: Xn- ng] a e K@ INN,
Frequency shifting: ><[n]eWI (@ /N)n ag- M

Periodic convolution: & X{r]y[n- r]  Nagh
r=(N)
Multiplication: x[n]y[n] a by

r=(N)

Tik-61.140 / Chapter 3 35
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Fourier Series and
Linear Time-Invariant
Systems




Fourier Seriesand LTI Systems

« Fourier series representation can be used to
construct any periodic signal in discretetime
and essentially all periodic continuous-time
signals of practical importance

» Theresponse of an LTI system to alinear
combination of complex exponentials take a

Response of an LTI System

In continuous-time:

x(t) = y)=H(s)et  where H(s) :éw(t ye st
In discretetime
+¥
x[n] = 2"; vin=H(zz" Wwhere H(= § hklz ¥
k=-¥

When sand z are generd complex numbers

simple form H(s) and H(2) arereferred to as system functions
60l Smda Tik-61.140 / Chapter 3 37 0l Smia Tik-61.140 / Chapter 3 38
Frequency Response Frequency Response

* WithReg =0, i.e, s5jw, and consequently theinput
X(t)=et= @™ isthe complex exponentid a frequency w
¢ The system function H(w) asa function of w is given by

H(jw) = S:h(t)e' W gy

H(jw) isthe frequency response of the system in
continuous-time

Tik-61.140 / Chapter 3 39
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* In discretetime we focuson values of zfor which |4=1,
sothat z= €¥and 2= @"
» The system function H(2) for z of the form z= € is given by

jwy — -t’¥ - jwn
HEe™)= ahinle
n=-¥

H(2) isthe frequency responseof the sysemin
discretetime

Tik-61.140 / Chapter 3 40
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Frequency Response

« The response of an LTl systemto a complex exponentia
signa of the form € or e issimple to express
interms of the frequency response

¢ In discretetime W= & akejk(Qp/N)n
k=(N)
yinj= & aH (ej2pkl N) oik(@/N)n
k=(N)
The effect of theLTI system isto modify individualy each
of the Fourier coefficients of the input by multiplying it
with the vaue of the frequency response

Tik-61.140 / Chapter 3 41
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Filtering

Need to change the relative amplitudes of
the frequency componentsin asignal or
eliminate some frequency components
entirely

=> FILTERING PROCESS

O 0lii sima




Filtering operations

* Frequency-shaping filters arelinear time-
invariant systems that changethe shape of the
spectrum

* Frequency-sdlective filters are designed to pass
some frequencies and significantly attenuate or
eliminate others

* Fourier series coefficients of the output of an LTI
system arethose of the input multiplied by the
frequency response of the system

ol smia Tik-61.140 / Chepter 3 2

Filtering operations

* Filtering can be conveniently accomplished
through the use of LTI systems with an
appropriately chosen frequency response

* Frequency-domain methods provide us withthe
ideal toolsto examinethisimportant class of
applications

* Examples:

— Frequency shaping filters: Equaizer structures
— Frequency sdlective filters: Differentiating filters

Tik-61.140 / Chepter 3 4
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Example: Image Filtering

6ol simda Tik-61.140 / Chapter 3 45

Example: Two-Point Averaging Filter
Al o1l

D3 m=bnon-1)

1
* Impuiseresponse Ml =-(drl+dn-1)
« Frequency response
H(ej"")=%ﬁ+e' jw]: e W/2cosp /2)
|H(eJ'W)|=cos(w/2), and arg(H(eiW))= w/2

Tik-61.140 / Chapter 3 46
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Example: Two-Point Averaging Filter

* |H(ew)|islargefor frequencies

near w=0 and decreasesasw

3; approachespor -p

| |+ Higher frequenciesare
B W A T attenuated more than lower
. ones
» * The phaseresponseislinear

« Discrete -time frequency
response is periodic with
S N period 2p

[

fess

Tik-61.140 / Chapter 3 47
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Example: Two-Point Averaging Filter
» Consider a constant input, i.e,, a zero-frequency complex
exponential
Xn] =Ken=K
The output is
y{n] = H(e™Ke=[el%2cog(0/2)]Ke™ =K = x{n]
« If theinput isthe high-frequency signal
Xn] = Ker=K(-1)
The output is
yin] = H(e")Ke= [elP2coq(p/2)[Ken = 0
» The system separates out the long-term congtant vaue of a
signd from its high-frequency fluctuations

Tik-61.140 / Chepter 3 48
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Frequency-Sdlective Filters

» A class of filters specifically intended to accurately
or approximately select some bands
of frequencies and reject others
* Examples:
— Removing noisein certain bands
— Communication systems channel separation

0t simia Tik-61.140 / Chepter 3 49

Frequency-Sdective Filters

* Lowpass filter
— Passeslow frequencies i.e., frequencies around w=0 and attenuates
or rejects higher frequencies
 Highpass filter
— Passes high frequenciesand attenuates or rejects lower frequencies
* Bandpass filter
— Passesa band of frequenciesand attenuates or rejects frequencies
both higher and lower than those in the band that is passed
» Bandstop filter

— Attenuatesor rejects a band of frequenciesand passes frequencies
both higher and lower than those in the band thatis rejected

Tik-61.140 / Chapter 3 50
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Frequency-Sedlective Filters

« Cutoff frequencies
— The frequencies defining the boundaries between frequencies
that are passedand frequencies that are rejected, i.e.,
frequenciesin the passhand and in the stopband
« Notch filter
— A bandstop filter which rejectsa specific frequencyand passes all
other frequencies
« Multiband filter
— A filter that has several passbands and stopbands

¢ Comb filter
— A multiband filter in which passbands and/or stopbands are
(usually) equally spaced in frequency

S0l simia Tik-61.140 / Chepter 3 51

Ideal Frequency-Selective Filters
* |deal lowpass filter with cutoff frequency w

][1, |w [Ewg
H(jw) =i
fo, |wpwe

H(w)

— Stopband ™ T Passband T Stopband ™

Tik-61.140 / Chapter 3 52
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Ideal Frequency-Selective Filters
« |deal highpassfilter with cutoff frequency w

_}O, |w [<we
H(jw) =t
(I
H(w)
W 0 W, w
— Passtens — Stopband } Passband ——

Tik-61.140 / Chepter 3 53
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Idea Frequency-Selective Filters

* |deal bandpass filter with cutoff frequenciesw,_, adw ,
1L, wg E|w|Ewgo
H(jw) =1
10, elsewhere

‘{H(iW)
o g e Ve w
Tik-61.140 / Chepter 3 54
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Ideal Frequency-Selective Filters
* Ideal bandstop filter with cutoff frequenciesw,, adw ,
10, wg £|w [Ewgo
H(jw) =1
i1, elsewhere

H(w)
W Wa g Wa Wea ™
0t simia Tik-61.140 / Chepter 3 55

Ideal Frequency-Selective Filters
» Each of theseideal continuous-time filtersis symmetric
aboutw=0

 There are two passhands for the highpass and bandpass
filters and three passbands for the bandstop filter

 |deal discretetime filters frequency-sdlective filters are
defined in the similar way

« For discretetime filters the frequency responseis periodic
with period 2o, with

* Low frequencies near even multiples of p
« High frequencies near odd multiples of p

ot simia Tik-61.140 / Chepter 3 56

Ideal Discrete-Time Frequency -Selective Filters

Ideal Discrete-Time Frequency-Selective Filters

« Lowpass HE@) « Bandpass H(e")
11
-2p P We 0o We P 2p w 2 PWe W We Weo P 2 w
* Highpass HE + Bandstop H(e)
2p oW o W P 2w ,zlp —Ip—wc; Wi g We WDZFI’ 2;7 w
0l smia Tik-61.140/ Chepter 3 57 5o smia Tik-61.140 / Chepter 3 58

First-Order RC Lowpass Filter

RC—dVgt(t) Ve (1) =ve(t) v = v

Input voltage: vg(t)=e™';  Output voltage: vc (t) =H (jw)e!™"
RC%[H(jw)ejW‘]m (jw)el™ =eMt
RGWH (jw)e™ + H (jw)el"t =l

) ) o O |
RCjwH (jw) +H (jw) =1 :> H(JW)_—1+RCjW

S0l simia Tik-61.140/ Chapter 3 50

Transfer Function of the First-Order RC Lowpass Filter

1

H(w)= 1+ RCjw

 For frequenciesnear w=0, |[H(jw)| isdoseto 1
« For larger values of w, |H(j w)|is considerably smaller
¢ |H({ w)| approaches zero when w approaches infinity

o smia Tik-61.140/ Chapter 3 6




Transfer Function of the First-Order RC Lowpass Filter
1

« Impul h(t) =——et/RC y(t

mpulse response (t) oh u()

s(t) = [1 e“’RC] u(t)

First-Order RC Highpass Filter

« Theoutput is now the voltage vyl
acrossthe resistor

ve (1) = s (1) - VR(t)

* Step response he g
in=cdcl _od .
i)=C===C (ws(®)- w())
* Trade-offsin filter design: Va() =R (0 = chdv_;(t)_ %
— Narrow passhand requirement: Large RC et .
VR(t _ Ivg (t
— Fast step response Small RC :> RC—4 *VRO=RC—=
S0l Smda Tik-61.140/ Chapter 3 61 S o smia Tik-61.140 / Chepter 3 62
First-Order RC Highpass Filter V(0 - Discrete-Time Filters Described by
v Constant Coefficient Difference Equations
dvg(t) _ o A% (1) vy(t) « Discretetime LTI systems described by difference
RC%HR(U R e equations can be either
Recursive and have an infinite impulse response
Input voltage: vs(t):ej"‘"; Output voltage: vR(t):G(jw)eth or (IR systems)

Rci[G(jw)el"“]m(jw)eJW‘ =rcdeimt
ot ot
RGWG( jw)e™ +G(jw)el™ = Rgjwe ™

. . . - jwy =—RE
RCiWG( jw) + G(jw) = RCjw :> G(iw) =77 JWRC

Tik-61.140 / Chapter 3 63
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Nonrecursive and have afinite impulse response

(FIR systems)

¢ |IR systems are direct counterparts of continuous-time
systems described by differentid equations

Tik-61.140 / Chapter 3 64
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First-Order Recursive Discrete-Time Filters

x[n] —® Jul
Difference equation !ﬂ
yn- 1]

y[n]- ay[n- 1] = x[n]
Input: x[n]=e"™;  Output: y[n]:H(ejW)eJWn

H(elW)el" - aH (elV)elW(n-D = gIwn

T )
(- ae ] Hieyeln g ST | HEel)=
[ ae e™e e e PP

Tik-61.140 / Chepter 3 65
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Transfer Function of the First-Order Recursive
Discrete-Time Filter

1
1- ae” W

HeM)=

» Parameter a controlsthe behavior of the filter
* For apostive => Lowpassfilter

a controls therate of atenuation at low frequencies, w=0
» For anegative => Highpassfilter

a controls therate of atenuation a high frequencies, w=p

Tik-61.140 / Chepter 3 66
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Transfer Function of the First-Order Recursive
Discrete-Time Filter

o Impulseresponse  Hnj=a" u[n]
1- gt

a
1-a

+ Sepresponse n=UYn]*h[n] = ufn]

|g contrals the speed with which the impulse and
step responses approach their long-term values,
With faster responses for smaler vaues of |9, and
hence for broader passbands

For |g<1the sysem is stable i.e., h[n] is absolutely
summable

0t simia Tik-61.140 / Chepter 3 67

Nonrecursive Discrete-Time Filters

« Genera formof an FIR nonrecursive difference equation

M
ylnl= @ bxxin- K]
k=-N

* The output is the weighted average of the (N+M+1) vaues
of X{n] from x{n-M] through X{n+N] with the weights given
by coefficients b

 Such afilter is often caled amoving-average filter, where
the output y{n] for any n, eg. for n, isan average of
values of X[n] inthe vicinity of n,

Tik-61.140 / Chapter 3 68
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Three-Point Moving-Average Filter
« Difference equation
yin] = %(x[n- 1]+ x[n] +x[n+1])
» The impulse response
hin] = < (dln - 9 +d{r] + d[n+1])
* The frequency response

H (e™) :%(e’ M 1) :%(1+ 2cosw)

Tik-61.140 / Chapter 3 69

60l Smia

Causal Three-Point Moving-Average Filter
« Difference equation
yin] =3 (4n] + X[n- 1]+ X[n - 2])
e The impulse response
h[n] :%(d[n]m[n- 17+d[n- 2])
* The frequency response
H(el") =%(l+e‘ Wye jzw) =e J""’%(ej‘” +1l+e j"")
:%e’ W (142 cosw)

Tik-61.140 / Chapter 3 70
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Three-Point Moving-Average Filter

1

Magnitude (¢8)

86 8588

% o1 02 03 o4 05 06 07 08 05 1
Normatzed Frequency (- radisample)
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General Moving-Average Filter

1 M
e Di i n=—m—mo—— x[n- k
Difference equation  y[n] NERY +1ng[ |
» The impulseresponse isa rectangular pulss i.e,
h[n]=1/(N+M+1) for -N<n<M and h[n]=0 otherwise

* The frequency response

1 ejw[(N_M)/zl sin[w(N +M +l)/2]

HeWy=—— -
N+M+1 sinfv /2)
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Moving-Average Filter with N+M+1=25

Magnitude (¢8)

Phase (degrees)

03 04 05 06 07 08 09 1
Normaized Freauency (<= radisample)

03 04 05 06 07 08 09 1
Normaized Frequency (<= radsample)

Moving-Average Filter with N+M+1=50
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NamtsedFreqry (5 adari)
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03 o4 05
Nomatzed Frequency (<= radisample)

P Tik-61.140 / Chapter 3 73 S o smia Tik-61.140 / Chapter 3 74
Differentiating Nonrecursive Filter First-Order Nonrecursive Highpass Filter
« Consder the difference equation o S
X[n]- x[n- 1 “.3;:
yin] = [n] 2[ ] £
30
+ Forinput signdls thet vary greetly from sample to sample e O S S
the value of y{r] islarge N e
» Theimpulseresponse  h[n] =%(d[n]— d[n- 1)) i
« The frequency response !N
H(ejw)zéﬁ_ . jw) = jem /2 gin(w /2) S L
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Nonrecursive Discrete-Time Filters

* The impulse response of a nonrecursive FIR filter is
of finite length

* The impulse responseis, thus, always absolutely
summable for any h[n]=D,

=> FIRfilters are always stable

Tik-61.140 / Chepter 3 77

60l Smia




