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Fourier Series Representation 
of Continuous-Time 

Periodic Signals
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Fourier Series Representation

• Focus on the representation of continuous-
time and discrete-time periodic signals 
referred to as Fourier series

• Powerful and important tools for analyzing, 
designing, and understanding signals and 
LTI systems
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The response of LTI systems to complex exponentials

Representation of signals as linear combinations of 
basic signals that have the following properties:

1) The set of basic signals can be used to construct a broad and 
useful class of signals

2) The response of an LTI system to each signal should be 
simple enough in structure to provide us with the convenient 
representation for the response of the system to any signal 
constructed as a linear combination of the basic signals

Both of these properties are provided by the set of 
complex exponential signals in CT and DT 
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The response of LTI systems to complex exponentials

• The response of an LTI system to a complex 
exponential is the same complex exponential with 
only a change in amplitude:
– Continuous-time:  e sT -> H(s) esT

– Discrete-time: z n -> H(z) z n

where the complex amplitude factor H(s) or H(z) will 
be a function of the complex variable s or z

 Olli Simula
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The response of LTI systems to complex exponentials

• A signal for which the system output is a constant 
times the input is referred to as an eigenfunction of the 
system, and the amplitude value is referred as the 
eigenvalue of the system

• This property for complex exponentials can be shown 
using:
– The impulse response and
– The convolution

 Olli Simula
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Continuous-Time Systems

• For an input x(t)=est the convolution integral gives:
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Continuous-Time Systems

• A complex exponential x(t)=est is now the eigenfunction of 
the LTI system with impulseresponseh(t):
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H(s) is the transfer function or system function 
representing the system behavior in the s-domain
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Discrete-Time Systems

• For an input x[n]=zn the convolution sum gives:
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H(z) is the z-transform of the unit impulse response
H(z) describes the system behavior in the z-domain
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Linear Combination of Signals

• Let x(t) correspond to a linear combination of complex
exponentials:
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• From the eigenfunction property the responseto each term:
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Linear Combination of Signals
• From the superposition property the response to the sum is 

the sum of the responses:
tststs esHaesHaesHaty 321 )()()()( 332211 ++=

• The representation of signals as a linear combination of 
complex exponentials leads to a convenient expression for 
the response of an LTI system
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Linear Combination of Signals

• In a similar way, for discrete-time systems the response of a 
linear combination of complex exponentials is the linear
combination of individual responses :
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The decompositionof more general signals in terms 
of eigenfunctions is the basis for frequency domain 
representation and analysis of LTI systems
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Linear Combinations of Harmonically 
Related Complex Exponentials

• A signal is periodic if for some value of T:

tallforTtxtx ,)()( +=

• The fundamental period of x(t) is the minimum positive, 
nonzero value of T for which the above is satisfied;

• The value ω0=2π/T is referred to as the fundamental 
frequency

 Olli Simula
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Linear Combinations of Harmonically 
Related Complex Exponentials

– Sinusoidal signal : ttx 0cos)( ω=
tjetx 0)( ω=

• Both of these signals are periodic with fundamental 
frequency ω0 and fundamental period of T=2π/ω0

– Complex exponential:

• Basic periodic signals

 Olli Simula
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Harmonically Related Complex 
Exponentials

• Each of these signals has a fundamental frequency that is a 
multiple of ω 0

• Each is periodic with period T
• For |k|>2, the fundamental period of φk(t) is a fraction of T

,...2,1,0,)( )/2(0 ±±=== keet tTjktjk
k

πωφ
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Linear Combination of Harmonically 
Related Complex Exponentials

• x(t) is periodic with period T
• The term for k=0 is a constant
• The terms for k=+1 and k=-1 both have fundamental 

frequency equal to ω 0 and referred to as the fundamental 
components or the first harmonic components

• The two terms for k=+2 and k=-2 are periodic with half the 
period of the fundamental components and referred to as 
the second harmonic components
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Example 3.2
• Construction of the signal x(t) as linear 

combination of harmonically related sinusoidal 
signals

• Periodic signal: ∑
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Fourier Series Representation

• In general, the components for k=+N and k=-N are also 
periodic with a fraction of the period of the fundamental 
components and are referred to as the Nth harmonic 
components
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=>  Fourier Series representation
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Determination of the Fourier Series 
Representation of a CT Periodid Signal

• Multiplying both sides and integrating gives:
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Determination of the Fourier Series 
Representation of a CT Periodid Signal

• The expression for determining the coefficients an is:












= ∫∑∫ −

∞+

−∞=

−
T

tnkj

k
k

T
tjn dteadtetx

0

)(

0

00)( ωω







≠

=
=∫ −

nk

nkT
dte

T
tnkj

,0

,

0

)( 0ω

∫ −=
T

tjn
n dtetx

T
a

0

0)(
1 ω

 Olli Simula

Tik-61.140 / Chapter 3 21

Fourier Series Representation

• The set of coefficients {ak} are called the Fourier series 
coefficients or spectral coefficients of x(t)

• These complex coefficients measure the portion of the 
signal x(t) that is at each harmonic of the fundamental 
component
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Convergence of the Fourier Series

∑
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• Let us approximate a given periodic signal x(t) by a linear 
combination of a finite number of harmonically related 
complex exponentials

• Let eN(t) denote the approximation error
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Convergence of the Fourier Series
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• Quantitative measure for the goodness of the approximation 
is defined by the energy in the error over one period

• It can be shown that the particular choice for coefficients 
that minimize the energy in the error is
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Properties of the CT Fourier Series
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Fourier Fourier Series Representation Series Representation 
of of DiscreteDiscrete--Time Time 
Periodic SignalsPeriodic Signals

The Fourier series representation of a 
discrete-time periodic signal is a finite
series, as opposed to the infinite series 
representation required for continuous-time 
periodic signals

 Olli Simula
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Linear Combinations of Harmonically 
Related Complex Exponentials

• A discrete-time signal is periodic with period N if

][][ Nnxnx +=

• The fundamental period is the smallest positive integer for 
which the above equation holds

• ω 0=2π/N is the fundamental frequency

 Olli Simula
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Linear Combinations of Harmonically 
Related Complex Exponentials

• A set of all DT complex exponential signals that are periodic 
with period N is given by

,...2,1,0,][ )/2(0 ±±=== keen nNjknjk
k

πωφ

• There are only N distinct signals in the above set due to the 
fact that DT complex exponentials which differ in frequency 
by a multiple of 2π are identical

][][ nn rNkk += φφ
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Linear Combinations of Harmonically 
Related Complex Exponentials

• This differs from the situation in continuous-time in which 
the signals φk(t) are all different from one another

][][ nn rNkk += φφ

• When k is changed by any integer multiple of N , 
the identical sequence is generated 
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Linear Combinations of Complex Exponentials
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• This is referred to as the discrete-time Fourier series and the 
coefficients ak as the Fourier series coefficients 

• Since φk[n] are distinct only over a range on N successive values 
of k, the summation need only include terms over this range

• Expressing the limits of summation as Nk =
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Discrete-Time Fourier Series
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• Multiplying both sides and summing over N terms:
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Discrete-Time Fourier Series
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• Now, the expression for determining the coefficients an is:
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Discrete Fourier Series Representation

• The set of coefficients {ak} are called thediscrete-time
Fourier series coefficients or spectral coefficients of x[n]

• The synthesis and analysis equations for the discrete-time 
Fourier series is given by the following pair of equations:
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Discrete Fourier Series Representation

• From φk[n]= φk+rN[n] we have φ0[n]= φN[n] 
• Thus, we conclude that a0=aN

• If we take k in the range from 0 to N-1, we have
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• Similarly, if k ranges from 1 to N, we have
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Discrete Fourier Series Representation

Since there are only N distinct complex exponentials that 
are periodic with period N, the discrete-time Fourier series 
representation is a finite series with N terms

• Letting k range over any set of N consecutive integers we 
conclude that

Nkk aa +=

• The values of Fourier coefficients ak repeat periodically 
with period N
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Properties of the DT Fourier Series
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Fourier Series and LTI Systems

• Fourier series representation can be used to 
construct any periodic signal in discrete-time 
and essentially all periodic continuous-time 
signals of practical importance

• The response of an LTI system to a linear 
combination of complex exponentials take a 
simple form 

 Olli Simula
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Response of an LTI System

 Olli Simula

In continuous-time:
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In discrete-time:
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When s and z are general complex numbers, 
H(s) and H(z) are referred to as system functions
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Frequency Response

• With Re{s}=0, i.e., s=jω, and consequently the input  
x(t)=est= ejωt is the complex exponential at frequency ω

• The system function H(jω ) as a function of ω is given by

∫
+∞

∞−
−= dtethjH tjωω )()(

H(jω) is the frequency response of the system in 
continuous-time
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Frequency Response

• In discrete-time, we focus on values of z for which |z|=1,  
so that  z= ejω and zn= ejωn

• The system function H(z) for z of the form z= ejω is given by
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H(z) is the frequency response of the system in 
discrete-time
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Frequency Response
• The response of an LTI system to a complex exponential 

signal of the form ejωt or ejωn is simple to express 
in terms of the frequency response

• In discrete-time:

The effect of the LTI system is to modify individually each 
of the Fourier coefficients of the input by multiplying it 
with the value of the frequency response
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FilteringFiltering

Need to change the relative amplitudes of 
the frequency components in a signal or 
eliminate some frequency components 
entirely

=>   FILTERING PROCESS

 Olli Simula
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Filtering operations
• Frequency-shaping filters are linear time-

invariant systems that change the shape of the
spectrum

• Frequency-selective filters are designed to pass 
some frequencies and significantly attenuate or 
eliminate others

• Fourier series coefficients of the output of an LTI 
system are those of the input multiplied by the 
frequency response of the system

 Olli Simula
Tik-61.140 / Chapter 3 44

Filtering operations
• Filtering can be conveniently accomplished 

through the use of LTI systems with an 
appropriately chosen frequency response

• Frequency-domain methods provide us with the 
ideal tools to examine this important class of 
applications

• Examples:
– Frequency shaping filters: Equalizer structures
– Frequency selective filters: Differentiating filters

 Olli Simula
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Example: Image Filtering

 Olli Simula
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Example: Two-Point Averaging Filter
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Example: Two-Point Averaging Filter

• |H(e jω)| is large for frequencies 
near ω=0 and decreasesas ω
approaches πor -π

• Higher frequencies are 
attenuated more than lower 
ones

• The phase response is linear
• Discrete -time frequency 

response is periodic with 
period 2π

 Olli Simula
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Example: Two-Point Averaging Filter
• Consider a constant input, i.e., a zero-frequency complex 

exponential
x[n] = Kej0n = K

The output is
y[n] = H(ej0n)Kej0n=[e-j0/2cos(0/2)]Kej0n = K = x[n]

• If the input is the high-frequency signal
x[n] = Kejπn= K(-1)n

The output is
y[n] = H(eπn)Keπn= [e-jπ/2cos(π/2)]Keπn = 0

• The system separates out the long-term constant value of a 
signal from its high-frequency fluctuations

 Olli Simula
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Frequency-Selective Filters
• A class of filters specifically intended to accurately 

or approximately select some bands 
of frequencies and reject others

• Examples:
– Removing noisein certain bands
– Communication systems; channel separation

 Olli Simula
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Frequency-Selective Filters
• Lowpass filter

– Passes low frequencies, i.e., frequencies around ω=0 and attenuates 
or rejects higher frequencies

• Highpass filter
– Passes high frequencies and attenuates or rejects lower frequencies

• Bandpass filter
– Passes a band of frequencies and attenuates or rejects frequencies 

both higher and lower than those in the band that is passed

• Bandstop filter
– Attenuates or rejects a band of frequencies and passes frequencies 

both higher and lower than those in the band that is rejected

 Olli Simula
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Frequency-Selective Filters
• Cutoff frequencies

– The frequencies defining the boundaries between frequencies 
that are passed and frequencies that are rejected , i.e., 
frequencies in the passband and in the stopband

• Notch filter
– A bandstop filter which rejects a specific frequency and passes all 

other frequencies

• Multiband filter
– A filter that has several passbands and stopbands

• Comb filter
– A multiband filter in which passbands and/or stopbands are 

(usually) equally spaced in frequency 
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Ideal Frequency-Selective Filters
• Ideal lowpass filter with cutoff frequency ω c
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Ideal Frequency-Selective Filters
• Ideal highpass filter with cutoff frequency ω c
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Ideal Frequency-Selective Filters
• Ideal bandpass filter with cutoff frequencies ωc1 and ω c2
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Ideal Frequency-Selective Filters
• Ideal bandstop filter with cutoff frequencies ωc1 and ω c2
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Ideal Frequency-Selective Filters
• Each of these ideal continuous-time filters is symmetric 

aboutω=0
• There are two passbands for the highpass and bandpass 

filters and three passbands for the bandstop filter

• Ideal discrete-time filters frequency-selective filters are 
defined in the similar way

• For discrete-time filters the frequency response is periodic 
with period 2π, with 
• Low frequencies near even multiples of π
• High frequencies near odd multiples of π

 Olli Simula
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Ideal Discrete-Time Frequency-Selective Filters

• Lowpass

• Highpass

-2π 2π-π π ωωc−ωc 0
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-2π 2π-π π ωωc−ωc 0

1

H(ejω)

 Olli Simula
Tik-61.140 / Chapter 3 58

Ideal Discrete-Time Frequency-Selective Filters

• Bandpass

• Bandstop

-2π 2π-π π ω−ωc1−ωc2 0

1

H(ejω)

ωc2ωc

-2π 2π-π π ω−ωc1−ωc2 0

1

H(ejω)

ωc2ωc
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First-Order RC Lowpass Filter

+
- C

R

+ v r(t) -

vs(t) vc(t)
+
-)()(

)(
tvtv

dt
tdv

RC sC
C =+

;)(: tj
s etvvoltageInput ω= tj

C ejHtvvoltageOutput ωω)()(: =

[ ] tjtjtj eejHejH
dt
d

RC ωωω ωω =+ )()(

tjtjtj eejHejHRCj ωωω ωωω =+ )()(

1)()( =+ ωωω jHjHRCj
ω

ω
RCj

jH
+

=
1

1
)(
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Transfer Function of the First -Order RC Lowpass Filter

ω
ω

RCj
jH

+
=

1
1)(

• For frequencies near ω=0, |H(j ω )| is close to 1

• For larger values of ω, |H(j ω )| is considerably smaller

• |H(j ω)| approaches zero when ω approaches infinity
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Transfer Function of the First -Order RC Lowpass Filter

• Impulse response: )(
1

)( / tue
RC

th RCt−=

• Step response: [ ] )(1)( / tuets RCt−−=

• Trade-offs in filter design:

– Narrow passband requirement: Large RC

– Fast step response: Small RC
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First-Order RC Highpass Filter

+
- C

R

+ v r(t) -

vs(t) vc(t)
+
-

)()()( tvtvtv RsC −=

• The output is now the voltage 
across the resistor

( ))()(
)(

)( tvtv
dt
d

C
dt

tdv
Cti Rs

C −==







−==
dt

tdv
dt

tdv
RCtRitv Rs

R
)()(

)()(

dt
tdv

RCtv
dt

tdv
RC s

R
R )(

)(
)(

=+
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First-Order RC Highpass Filter

RCj
RCj

jG
ω

ω
ω

+
=

1
)(

dt
tdv

RCtv
dt

tdv
RC s

R
R )(

)(
)(

=+

;)(: tj
s etvvoltageInput ω= tj

R ejGtvvoltageOutput ωω)()(: =

+
- C

R

+ v r(t) -

vs(t) vc(t)
+
-

[ ] tjtjtj e
dt
d

RCejGejG
dt
d

RC ωωω ωω =+ )()(

tjtjtj eRCjejGejGRCj ωωω ωωωω =+ )()(

ωωωω RCjjGjGRCj =+ )()(
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Discrete-Time Filters Described by 
Constant Coefficient Difference Equations

• Discrete-time LTI systems described by difference 
equations can be either

Recursive and have an infinite impulse response 
(IIR systems) 

or
Nonrecursive and have a finite impulse response 
(FIR systems)

• IIR systems are direct counterparts of continuous-time 
systems described by differential equations
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First-Order Recursive Discrete-Time Filters

ω
ω

j
j

ae
eH −−

=
1

1
)(

][]1[][ nxnayny =−−

++

DD
a

][nx ][ny

]1[ −ny

;][: njenxInput ω=
njj eeHnyOutput

ωω )(][: =

njnjjnjj eeeaHeeH ωωωωω =− − )1()()(

[ ] njnjjj eeeHae ωωωω =− − )(1

Difference equation:
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Transfer Function of the First-Order Recursive 
Discrete-Time Filter

• Parameter a controls the behavior of the filter

• For a positive  =>   Lowpass filter

a controls the rate of attenuation at low frequencies, ω=0

• For a negative   => Highpass filter

a controls the rate of attenuation at high frequencies, ω=π

ω
ω

j
j

ae
eH −−

=
1

1
)(
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Transfer Function of the First-Order Recursive 
Discrete-Time Filter

• Impulse response: ][][ nuanh n=

• Step response:

• |a| controls the speed with which the impulse and 
step responses approach their long-term values,

With faster responses for smaller values of |a| , and
hence for broader passbands

• For |a|<1 the system is stable, i.e., h[n] is absolutely 
summable

][][][ nhnuns ∗= ][
1

1 1
nu

a
an

−
−=

+
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Nonrecursive Discrete-Time Filters

• General form of an FIR nonrecursive difference equation

∑
−=

−=
M

Nk
k knxbny ][][

• The output is the weighted average of the (N+M+1) values 
of x[n] from x[n-M] through x[n+N] with the weights given 
by coefficients bk.

• Such a filter is often called a moving-average filter, where 
the output y[n] for any n , e.g. for n0 , is an average of 
values of x[n] in the vicinity of n0
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Three-Point Moving-Average Filter

• Difference equation

( )]1[][]1[
3
1

][ +++−= nxnxnxny

• The impulse response

( )]1[][]1[
3
1

][ +++−= nnnnh δδδ

• The frequency response

( )ωωω jjj eeeH ++= − 1
3
1

)( ( )ωcos21
3
1

+=
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Causal Three-Point Moving-Average Filter

• Difference equation

( )]2[]1[][
3
1

][ −+−+= nxnxnxny

• The impulse response

( )]2[]1[][
3
1

][ −+−+= nnnnh δδδ

• The frequency response

( )ωωω 21
3
1)( jjj eeeH −− ++=

( )ωω cos21
3
1

+= − je

( )ωωω jjj eee −− ++= 1
3
1
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Three-Point Moving-Average Filter

 Olli Simula
Tik-61.140 / Chapter 3 72

General Moving-Average Filter

• Difference equation

• The impulse response is a rectangular pulse, i.e.,
h[n]=1/(N+M+1) for -N<n<M and h[n]=0 otherwise

• The frequency response

[ ] [ ]
)2/sin(

2/)1(sin
1

1
)( 2/)(

ω
ωωω ++

++
= − MN

e
MN

eH MNjj

∑
−=

−
++

=
M

Nk
knx

MN
ny ][

1
1

][
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Moving-Average Filter with N+M+1=25
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Moving-Average Filter with N+M+1=50
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Differentiating Nonrecursive Filter

• Consider the difference equation

( )
2

]1[][
][

−−
=

nxnx
ny

• For input signals that vary greatly from sample to sample, 
the value of y[n] is large

• The impulse response

• The frequency response

( )ωω jj eeH −−= 1
2
1

)( )2/sin(2/ ωωjje −=

( )]1[][
2
1

][ −−= nnnh δδ
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First-Order Nonrecursive Highpass Filter
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Nonrecursive Discrete-Time Filters

• The impulse response of a nonrecursive FIR filter is 
of finite length

• The impulse response is, thus, always absolutely 
summable for any h[n]=bn

=>   FIR filters are always stable
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