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Introduction

» Under certain conditions, acontinuous-time signal can be
represented by and recovered from itssamples at points equally

spacedintime
EE) Sampling Theorem

» The sampling theorem forms a bridge between continuoustime and
discretetime signals and systems

« Whenthe conditions of the sampling theorem arefulfilled
continuous-time signal's can be processed using discrete-time
systems, i.e., using digital signal processing (DSP) methods
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Advantages of DSP

« DSPsystems have several advantageswhen compared to the CT
systems:
« Flexibility due to (re)programmability
« Computational accuracy and stability
« Easy reproducibility
« Efficient implementation: DSP processors and application specifc
integrated circuits (ASICs) on VLS
« DSP systems can be used to implement functionsthat are not
possiblein analog signa processing (nonlinear DSP agorithms)
 Digitalization...
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Representation of Continuous-Time Signals
by Its Samples: The Sampling Theorem
* Ingeneral, in the absence of any additional information, wewoud not

expect that asignal could beuniquely specified by asequenceo f
equally spaced samples

Xa(t) x(t) Xolt)

73|T 72‘1‘ -3T 0 T 2T 2T t
¢ Aninfinitenumber of signalscan generate agiven set of samples
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The Sampling Theorem

If a signal is bandlimited - i.e., if its Fourier
transform is zero outside a finite band of frequencies
- and if the samples are taken sufficiently close
together in relation to the highest frequency present
in the signal, then the samples uniquely specify the
signal, and it can be perfectly reconstructed
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Impulse-Train Sampling
« The periodic impulsetrainp(t) isreferred to asthesampling function
* The period Tisthe sampling period
« Thefundamental frequency of p(t), w=2p/T isthe sampling
frequencyor samplingrate

« Intime-domain: %O =xOpe), where ph= Fdt- M)
n=-¥
« Multiplying x(t) by aunitimpulse, samplesthevalue of thesignal at
thepoint at whichtheimpulseislocated, i.e.,
xt)d(t- to)=x(to)d ¢t - to)

* Thus, x,(t) isanimpulsetrain with the amplitudes of theimpulses
equal tothesamplesof x(t) at intervals spaced by T, i.e,,
¥

XM= & x(nT)d(t-nT)
n=-¥
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Impulse-Train Sampling

» From the multiplication property of the convolution theorem, we
know that

X% =xOpO) 0 Xp(jw) =%[X(JW)* P(jw)]

» TheFourier transform of aperiodic impulsetrainp() isalso a
periodicimpulsetraininthefrequency domain, i.e.,

P(Jw):z?”ké dw - lov)
=¥

P(w)

a

T
-w 0 w, W, 3wy w
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Impulse-Train Sampling

« The convolution of asignal with animpulse shiftsthesignal, i.e.,
X(jw)*d(w-we) = X(jW- wo))

Thus, the convolution of asignal with animpulse copiesthesignal to
thelocation of theimpulse

* Now, intheconvolution X(jwy*P(jw), P(jw) isaperiodicimpulse
train;

¢ Then, it followsthat the Fourier transform of thesampled signd is
periodic, i.e.,

1§
X p(iw) =;ka X(jw - kwg))
=¥
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Spectrum of Sampled Signal with wg > 2w,

’\XGW)

Wy 0 Wiy w
2p | P(w)
I Il R
-2 -Wy 0 Wy vy w
LA %)
/\ T /\ /\
- wg Wm0 Wy w w, ow
(W)
G0l smia Tik-61.140 / Chapter 7 10

Spectrum of Sampled Signal with wg < 2w,
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Sampling Theorem

* Let Xt) beabandlimited signal withX(jw) =0 for [w|>wy.
Then x(t) isuniquely determined by itssamplesx(nT),n =0, #1, +2....,
if
Ws >2Wy, where wg =%

Given these samples, we can reconstruct x(t) by generating aperiodic
impulse train in which successive impulses have amplitudes thatare
successive samplevalues.

Thisimpulsetrainisthen processed through an ideall owpass filter
with gain T and cutoff frequency greater thanwy, and lessthanw- w,.

Theresulting output signal will be exactly equal tox(t)
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Sampling Process

‘:’¥
p)= qd(t-nT)
n=¥

X0 X0

« Sampling process is modeled by multiplying the continuous-
time signal x(t) with aperiodic impulsetrain p(t)

* Therecovered signd x(t) is obtained by lowpassfiltering
the sampled signal x(t)
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* Spectrum for x(t) XGw)
Wy 0 Wy w
i
« Corresponding £ »()
spectrum for x (t)
w Wy 0 Wy W, w

s

H( )WM <wg <(Ws- Wm )

« |deal lowpess filter to

recover X(jw) from '

Xp(jW) We 0 We w
! X(Gw)
w
* Spectrumof x(t)
Wy 0 Y w
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Sampling Theorem

« If thesampling frequency at | east twice ashigh asthe highest
frequency component of the bandlimitedsignal,i.e., wg> 2wy, ,
then theoriginal signal can berecovered fromitssamples

« If the above conditionisnot fulfilled, i.e., the frequency conponents
above w{2 will bealiased into the band of interest [w| < wy,

« Thefrequency 2w, which must be exceeded by the sampling
frequency iscommonly referred to asthe Nyquist frequencyor
Nyquist rate (andw,, asone-half the Nyquist rate)

« The frequency wy2 isreferred to asthe folding frequency
« Critical sampling correspondsto ws = 2w,

« Undersampling corresponds to wg < 2wy,

« Oversampling corresponds to wg>> 2wy,
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Sampling with a Zero-Order Hold

* Inimpulsetrainsampling, narrow and large-amplitude pulseswhich
approximateimpulsesarein practice difficult to generate and transmit

 Thus, itisoften more convenient to generate the sampled signal ina
form referred to as azero-order hold

* Such a system samplesx(t) at agiven instant and holdsthat value until
thenextinstant

m x(® Zero-order Xo(t)
hold

« Thereconstruction of x(t) from the output of azero-order hold can
again be carried out by lowpass filtering
» However, thelowpass filter has no more aconstant gaininthe
passband
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Sampling with a Zero-Order Hold

« The output X,(t) of the zero-order hold can be be generated by impulse-
train sampling followed by an LTI system with rectangular impulse
response

p(H)

ho(t)
() LS |:|_

0 T t

x(t)

« Thefrequency responseof hq(t) isthesinc function,i.e, ithasa
lowpass characteristicin frequency domain

« In order to reconstructx(t) from x,(t) perfectly, the response of the
reconstruction filter h,(f) must compensate for the performance of hy(t)
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Sampling with a Zero-Order Hold

« For perfect reconstruction, i.e., r(t) = x(t), the cascade combination of
ho(t) and h(t) must be the ideallowpass filter H (jw)

PO H(w) i
ho(t) !
0 xF([? ) |:|_ X1 h,(t) ! '
' HGw) |1
1 0 T t 1
1 1

« Thecascade combinationis: H (jw)= Ho( jw)H(jw),
where Hg(jw) =€ jwr 262800/ 2 o
g w
T 124 (ju)
2sin(wT /2) /w
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 Therecongructionfilteris.  H, (jw) =




Reconstruction of a Signal from Its Samples

« I nterpolation can be used to reconstruct the signa fromits samples
« Zero-order hold isasimpleinterpolation procedure:

1 = | [ L

0 t

« The zero-order-hold interpolation isavery rough approximation of the
desired transfer function of the exact interpolating filter

« Linear interpolation isanother useful interpolation procedure:

I I

0 t
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Reconstruction of a Signal from Its Samples

* Theinterpretation of the reconstruction of x(t) as aprocessof
interpol ation can beinvestigated inthetime domain

% (t)=Xp ©)* h(t)
or

+¥
%)= & x(rMh(- nT)
¥

n=-

* For theideallowpassfilter H(jw), the impulse responseis:

h(t) = w.T sin(w.T)
pv T
sothat
b4 WcT sin(wg(t- nT))
()= a x(nT)———L 2
O A e
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Reconstruction of a Signal from Its Samples

+¥ i
0= 3 T WT sin(wg(t- nT))
f i X0 *® ng¥ Xm p - we(t-nT)

@

t

« The reconstruction according to
the above equation with
W=W2, i.e,

x,(t) isformed as a superposition
of shifted sinc functions

“” weighted by thevaluesof x(nT)
" => pand-imited
(€
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Reconstruction of a Signal from Its Samples
* Transfer function for the zero-order-hold and for the ideal
interpolating filter:

1Hy(jo)!
.

< Ideal interpolating
filter

Zero-order
hold

—wy _ 0 Y ws W

s
2

 The zero-order-hold interpolation isavery rough approximation of the
desired transfer function of the exact interpolating filter
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Example:
Image sampling
a) Impulsesamplingof |

theimages

b) Zero-order hold applied
topicturesina)

¢) Impulse sampling and
zero-order hold with .

onethird

the horizontal and
vertical spacingusedin
a) andb),i.e, the
sample spacing is
reduced
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Linear Interpolation (First-Order Hold)

p(t)

X « Linear interpolation (first-order
. U T o \
" ® “ hold) represented asimpulse-
@ train sampling followed by
x5l convolution with atriangular

impulse response
LA IT, o
T et t reconstruction
:: (b) Impulsetrainof samples
' (c) Impulse response of
afirst-order hold

()
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Linear Interpolation (First-Order Hold)

(d) First-order hold
applied to the sampled
signal

(e) Comparison of the

Hijw)

. transfer function of

ideal interpolationg
filter and first-order

' hold
Frstorder
ot

|._ Ideal interpotating
filter

_9s 0 s oy @

oy ~2
oy H(jw) = LESWT /20

TE& w2 H
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Linear Interpolation (First-Order Hold)

* Result of applying afirst-order hold after impulse sampling with
one-third the horizontal and vertical spacing usedin Fig. 7.12
(a) and (b)

« Theresultingimageis smoothed at the edges
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The Effect of Undersampling: Aliasing

« Ifthe requirement of thesamplingtheorem isnot met, i.e., ws< 2wy,
thespectrum X(w), of the original continuoustime signal, x(), can
no more berecovered from the periodic spectrum X(jw) using a
lowpass filter

1 X, (w),
T
T —(— — T
- -ws'WM O/wM Wy W, w
Wawy)
) ALIASING
0l Smda Tik-61.140 / Chapter 7 27

Example: Signal Frequency w, < wy/2
=> No Aliasing

X(jw)

(a) Spectrumof the Iy t"
origina CT signa g

X (t) =cosw,t = X(t)
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Example: Signal Frequency w, > wy/2
=> Aliasing

4N5 .
5
X (t) = cosw,t * x(t)

Aliasing

(d) wo=

il

“w,

© w,= 521 s Aliasing

4 t 4
X (1) =coswt * x(t) — '
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Effect of Aliasing on a Sinusoidal Signal w, < wy2

Noaliasng

Noaliasng
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Effect of Aliasing on a Sinusoidal Signal w,> w2

Example : Critical Samplig

» Critical samplingof asinusoidal signal Wygy = %2 W

ety MW W WY
L L TR N AN N NN
AR VVVVV VYV
v w. 2w w. » As can beseen, thesignal cannot berecovered from the samples
6 26 6
=> Aliasing
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Example: Undersampling Summary

« The effect of undersampling is
illustrated by the strobe effect:
* Wyrope™> Wgg => the speed of
» rotation is perceived correctly
|Rotating disc .
* Wgrgpe < ¥2Wgg => therotation
appears to beat lower frequency
« Furthermore, because of phase
!y reversal , the direction of rotation
appears to bewrong

* Wgrone= Wy theradial lineonthe
disc gppears stationary , i.e., the

Strobe rotational frequency of the disc and
its harmonics have been aliased to
zero frequency
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Thesampling theorem explicitly requiresthat the sampling rateis
greater than twicethe highest frequency inthesignal

In practice, anantiaiasing filter isrequired before sampling in order to
guarantee the elimination of high frequency componentsfrom the
signal

Indigital processing of signal samples, the computations required for
generationof oneoutput sample must be completed withinthe
samplingperiod T

The sampling frequency determinesthe computational requirementsof
the DSPimplementation

Thus, oversampling, i.e., increasing the sampling rate considerably
abovetherequired minimum, resultsin higher computational

requirements
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