Tik-61.140 Signal Processing Systems

2nd midterm, Mon 3.5.1999 16-19, hall ABC

- 1. Determine whether the propositions are true.
 - (a) Signal multiplication in time domain corresponds convolution of Fourier transforms in frequency domain.
 - (b) Discrete Fourier transform is linear.
 - (c) Discrete lowpass filter (cutoff frequency $\pi/4$) and high pass filter (cutoff frequency $3\pi/4$) parallelly connected form a bandpass filter.
 - (d) The convolution of an odd Fourier-transform $X_1(j\omega)$ with an even Fourier-transform $X_2(j\omega)$ is always odd.
 - (e) The Fourier series coefficients of $sin(\omega_0 t)$ are $a_1 = -1/2$, $a_1 = 1/2$ and $a_k = 0$ for other k.
 - (f) Ideal discrete lowpass filter is causal.
- 2. Consider a causal discrete-time LTI system determined by the difference equation

$$y[n] - ay[n-1] = bx[n] + x[n-1]$$

where |a| < 1 and a is real.

- (a) Determine b, so that the amplitude response $|H(e^{j\omega})| = 1$ for all ω . Note that the constant b must not depend on ω .
- (b) Compute the response y[n] for the input $x[n] = (\frac{1}{3})^n u[n]$, when $a = -\frac{1}{3}$ and b as in (a). Note that it is not enough to list values of y[n], the solution must be given in a closed form expression for y[n].
- 3. Let us consider a discrete system with input x[n] and output y[n] in the figure below. LTI-systems $H_{lp}(e^{j\omega})$ are ideal lowpass filters with cutoff frequency $\pi/6$ and unity gain in the passband. Find the frequency response of the total system using signals w and properties of discrete Fourier transform. What frequency properties does the system have? Hint: $(-1)^n = e^{j\pi n}$.

4. Let us consider sampling from a continuous-time signal x(t). The samples are obtained by multiplying the signal with a sampling function which has a Fourier-series representation of

$$p(t) = \frac{1}{T} \sum_{n = -\infty}^{\infty} e^{j(2\pi nt/T)},$$

that is, $x_p(t) = x(t)p(t)$. Here T is the period of the sampling function. Calculate the Fourier transform $X_p(j\omega)$ of $x_p(t)$, assuming that $X(j\omega)$ is known.

Consider a situation where $X(j\omega)$ is as shown in the figure below

Plot the magnitude of the Fourier transform $X_p(j\omega)$ if the sampling frequency $\omega_s = 2\pi/T$ is

- (a) $\omega_s = 2$
- (b) $\omega_s = 3/2$.