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Analysis of gene expression data using self-organizing maps
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Abstract DNA microarray technologies together with rapidly
increasing genomic sequence information is leading to an
explosion in available gene expression data. Currently there is
a great need for efficient methods to analyze and visualize these
massive data sets. A self-organizing map (SOM) is an
unsupervised neural network learning algorithm which has been
successfully used for the analysis and organization of large data
files. We have here applied the SOM algorithm to analyze
published data of yeast gene expression and show that SOM is
an excellent tool for the analysis and visualization of gene
expression profiles.
© 1999 Federation of European Biochemical Societies.
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1. Introduction

The rapid development of DNA microarray technology has
led to an explosion of gene expression data and much of this
information is available in public databases [1]. The yeast
genome has been sequenced completely and a draft version
of the human genome is predicted to be completed by the
spring of 2000. DNA chips containing nearly the entire rep-
ertoire of yeast genes have been used to investigate changes in
gene expression during a diauxic shift [2], sporulation [3] and
the cell cycle [4]. Similar DNA chips with thousands of mam-
malian genes have been produced and are being used to char-
acterize changes in gene expression patterns in a variety of cell
lines and experimental conditions [1,5].

Currently, the major obstacle is the lack of efficient meth-
ods to catalogue these data into useful and functionally mean-
ingful groups. Initially, a mainly visual analysis was used to
find genes with similar expression patterns. Although visual
search has proven successful in grouping genes into function-
ally relevant classes [2,3], this method is labor intensive, prone
to errors and is not well suited for the analysis of very large
data sets. Cluster analysis methods have been used to more
systematically group related gene expression patterns together
[6]. Although these methods can effectively cluster together
genes with closely related expression profiles, there is no direct
relationship between different branches.

A self-organizing map (SOM, Kohonen’s map) is an unsu-
pervised neural network algorithm [7] which has successfully
been used to analyze very large data files in various fields,
such as process monitoring and visualization [§], exploratory
data analysis [9] and simulation of brain-like feature maps

*Corresponding author. Fax: (358) (17) 163 030.
E-mail: eero.castren@uku.fi

[10]. SOM allows easy visualization of complex data and is
robust to minor experimental variation.

We have here investigated whether SOM and Sammon’s
[11] mapping algorithms can be applied to the analysis of
gene expression data. We have analyzed a publicly available
database on the changes in gene expression during a diauxic
shift (shift from anaerobic to aerobic metabolism [2]) in yeast
using prototype software (GenePoint)' running in a Windows
environment. Our results show that SOM rapidly and reliably
clusters this gene expression data set into groups that not only
show similar gene expression profiles but also contain func-
tionally related genes. Moreover, the algorithm places genes
with similar, but not identical profiles in neighboring groups
creating a smooth transition of related profiles over the whole
matrix.

2. Materials and methods

The SOM is one of the best known unsupervised neural learning
algorithms [7]. The goal of the SOM algorithm is to find prototype
vectors that represent the input data set and at the same time realize a
continuous mapping from input space to a lattice. This lattice consists
of a defined number of ‘neurons’ and may, for example, be a two-
dimensional map (Fig. 1a) that is easily visualized. The basic principle
behind the SOM algorithm is that the weight vectors of neurons
which are first initialized randomly (Fig. 1b), come to represent a
number of original measurement vectors during an iterative data input
process, as illustrated in Fig. lc and d.

A variation of the SOM, called tree-structured SOM, was used in
this work [12]. The software implementation consists of several SOMs
that are organized hierarchically in a pyramid-like fashion in several
layers. The number of neurons at a higher level is four times the
number of the previous level. However, the visual inspection of the
measurement data is directed to one level at the time and the results
are comparable to those achieved by ‘standard” SOM. We have here
used a prototype version of GenePoint software, which is based on
tree-structured SOM and runs in a Windows 95/NT/98 environment.

The data that SOM was applied to consist of gene expression pro-
files of 6400 yeast genes during a diauxic shift (http://cmgm.stanford.
edu/pbrown/explore/diauxsearch.html). Ratios between the expression
level at the starting point and at seven time points at 2-h intervals
were calculated and log-base2 of these seven values were used as the
training pattern. At the beginning, each neuron of the SOM was
randomly assigned a weight vector with seven variables corresponding
to an expression profile of random values within a specified range.
During the learning phase, the expression profile of each yeast gene is
repeatedly compared with the random profiles in neurons. The weight
vectors of the best matching neuron and its four neighbors are moved
towards the values of the input vectors such that neurons come to
represent a group of similar expression profiles (Fig. 1). While the
learning proceeds, the adjustment of weight vectors is diminished.
Finally, each gene is placed into a neuron which best describes its
expression profile and the average expression profile is displayed on
each neuron as a bar graph.

Sammon’s mapping is an iterative method based on a gradient

I For more information about the GenePoint software,
see http://www.visipoint.fi
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search [11]. The aim of the algorithm is to represent points in a n-
dimensional space, usually in two dimensions. The algorithm finds the
locations in the target space so that as much as possible of the original
structure of the measurement vectors in the n-dimensional space is
conserved. The numerical calculation is more time consuming than
the SOM algorithm, however, which can be a problem with a massive
data set. On the other hand, it is able to represent the relative dis-
tances of vectors in a measurement space and is thus useful in deter-
mining the shape of clusters and the relative distances between them.
It is therefore of benefit to combine Sammon with SOM algorithm.
Sammon’s mapping can be applied to the stage where the SOM algo-
rithm has already achieved a substantial data reduction by replacing
the original data vectors with fewer representative prototype vectors.

3. Results

We have analyzed the published expression data of 6400
yeast genes at seven different time points during a diauxic
shift using a tree-structured SOM algorithm [12], a modifica-
tion of the classical Kohonen SOM [7]. The algorithm organ-
izes the data into a two-dimensional matrix by an iterative
process based on the relative similarity of the expression pat-
tern of genes. Initial test learning trials using various two-
dimensional matrices showed that a 16X 16 matrix consisting
of 256 neurons produced good separation of different patterns

a) Self-Organizing Map
2-dimensional lattice of neurons
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(Fig. 2a). Using this level of separation, the number of genes
in individual neurons varied between 10 and 49. The bar
graph displayed on each neuron represents the average gene
expression profile of genes grouped in this neuron (Fig. 2b). In
Fig. 2c, SOM is further modified using Sammon’s mapping
algorithm [11], where spatial distance correlates with the dif-
ference in average expression profile and the circle size with
the number of genes within the neuron. The principal direc-
tion of change within the data set is represented as an axis in
the Sammon map. In the particular example shown in Fig. 2c,
the main axis reflects the general increase or decrease in the
expression pattern. Neurons with increasing expression pro-
files are separated on the left side and genes which are sup-
pressed during diauxic shift are located on the right side.
Genes not regulated by diauxic shift tend to cluster in the
center of the field.

We selected four neurons with different expression patterns
for the analysis of their gene content (Table 1), two of which
show an increasing pattern (Cl and C2), one a decreasing
pattern (C3) and one no change (C4). The first three resemble
in their expression profile the groups of genes that were visu-
ally selected in the original analysis of the same data [2],
which allows comparison between these two categorizing

b)

Fig. 1. Principle of Self-Organizing Map. a) Example of a SOM consisting of a 4 X4 matrix of neurons. b) The weight vectors (+) of neurons
are first initialized with random profiles. c¢) Intermediate configuration during the learning process where weight vectors are moving towards the
data profiles (O). d) Finally, weight vectors come to represent groups of data profiles.
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Fig. 2. SOM analysis of data of yeast gene expression during diauxic shift [2]. Data were analyzed by a prototype of GenePoint software. a:
Genes with a similar expression profile are clustered in the same neuron of a 16X 16 matrix SOM and genes with closely related profiles are in
neighboring neurons. Neurons contain between 10 and 49 genes. b: Magnification of four neurons similarly colored in a. The bar graph in
each neuron displays the average expression of genes within the neuron at 2-h intervals during the diauxic shift. c: SOM modified with Sam-
mon’s mapping algorithm. The distance between two neurons corresponds to the difference in gene expression pattern between two neurons
and the circle size to the number of genes included in the neuron. Neurons marked in green, yellow (upper left corner), red and blue are simi-
larly colored in a and b and had their gene content further analyzed in Table 1.
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methods. The first cluster (C1, marked green in Fig. 2) con-
tains genes that are strongly activated towards the end of the
diauxic shift (note that the scale in bar graphs is logarithmic).
This cluster contained 18 genes, 10 of these had a known
function. Out of these 10 genes, nine encode enzymes in the
glucose metabolism pathways. All the seven genes which were
visually grouped into a late activated expression group by
DeRisi et al. [2] are found in this green cluster.

C2 (yellow cluster) contains genes which are strongly acti-
vated during the diauxic shift but level off at the last time
point. This cluster contains two kinds of genes. Five of the
10 genes with a known function are involved in glucose me-
tabolism, as the majority of genes in C1 were. This highlights
the ability of SOM to organize not only genes with related
expression pattern, but also functionally related genes into
neighboring neurons. The remaining five genes encode
stress-activated proteins, four of which belong to the heat
shock protein family. All these heat shock proteins as well
as cytoplasmic catalase T and glycogen synthase 2 share the
stress response element (STRE) in their promoter region [2],
suggesting that this element predominantly regulates the ex-
pression of these genes during diauxic shift. All the five known
genes visually placed to a same group by DeRisi et al. [2] are
found in this cluster.

C3 (red cluster) contains genes that are suppressed towards
the end of the diauxic shift. Out of 21 genes in this cluster, all
but one encode proteins involved in protein synthesis and 19
of these are ribosomal proteins. In addition, many protein
synthesis related genes are found in neighboring neurons
(data not shown) and all the genes grouped into a late sup-
pressed group in the previous analysis of these data [2] are
found in this or neighboring clusters. Only six out of a total of
27 genes had an unknown function, and it is to be expected
that many of these are involved in protein synthesis.

Genes that are not regulated by diauxic shift are clustered
in a more random manner and showed less functional simi-
larity. Thus, genes in the blue cluster (C4) have little obvious
functional similarity to each other. In addition, the functions
of these genes are often less clearly delineated and the major-
ity of the genes (23 out of a total of 33) in this cluster do not
have a known function.

4. Discussion

Our results demonstrate that SOM is a fast and convenient
method to organize and interpret gene expression data. Ex-
pression profiles of a group of genes are represented by a
common weight vector and the data are easily visualized as
a two-dimensional matrix. Application of Sammon’s algo-
rithm transforms the data into a format where the relation-
ship between individual neurons is even more clearly visual-
ized.

Examination of the gene contents of individual neurons
demonstrates that in many cases, the clustering achieved by
SOM reliably predicts functional similarity. This is particu-
larly the case for those genes which are clearly regulated by
the applied treatment. Similarity reflects participation in a
common pathway or regulation by a common regulatory ele-
ment in a promoter region, or both. In contrast, genes which
were not regulated at the transcriptional level during diauxic
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shift are grouped together in more random basis and the
clustering of non-regulated genes into a same neuron does
not appear to predict functional similarity.

The yeast genome still contains thousands of genes with
unknown function. Elucidation of the functional role of these
genes is currently being attempted by examining the pheno-
type of yeast with a null mutation of these genes. Problems
arise when null mutants do not show any clear phenotype.
Our results suggest an alternative approach to find a func-
tional role for an unknown gene. Gene expression profiles
from yeast exposed to a variety of different environmental
conditions are becoming publicly available. Applying SOM
to these different data sets may reveal conditions under which
this particular gene is regulated and because clustering of
regulated genes appears to predict functional similarity, com-
parison with other genes in the same neurons gives valuable
hints about the possible functional role of the unknown gene.

Many mammalian genes with an unknown function have a
homologue in the yeast genome. Localization of this homo-
logue in yeast SOMs may also suggest a possible functional
role. Furthermore, the entire genomic sequences of Caeno-
rhabditis elegans, Drosophila melanogaster and Homo sapiens
are being finalized. As the genomes of these species are far
more complex than that of yeast, the need for efficient meth-
ods to analyze and categorize gene expression data in these
species is obvious. Since SOMs typically work better when
more data are provided, this method may become a valuable
tool in the organization and interpretation of mammalian
gene expression data.

While this article was being finalized, another paper ap-
peared which had used SOM to analyze yeast cell cycle data
using software running under Unix and requiring a Web
browser [13]. The conclusions of that paper generally agree
with ours.

References

[1] Brown, P.O. and Botstein, D. (1999) Nature Genet. 21, 33-37.

[2] DeRisi, J.L., Iyer, V.R. and Brown, P.O. (1997) Science 278,
680-686.

[3] Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D.,
Brown, P.O. and Herskowitz, 1. (1998) Science 282, 699-705.

[4] Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders,
K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher, B.
(1998) Mol. Biol. Cell 9, 3273-9327.

[5] Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee,
J.C.F., Trent, J.M., Staudt, L.M., Hudson Jr., J., Boguski, M.S.,
Lashkari, D., Shalon, D., Botstein, D. and Brown, P.O. (1999)
Science 283, 83-87.

[6] Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998)
Proc. Natl. Acad. Sci. USA 95, 14863-14868.

[7] Kohonen, T. (1995) Self-Organizing Maps, Springer, Berlin.

[8] Simula, O. and Kangas, J. (1995) in: Neural Networks for Chem-
ical Engineers (Bulsari, A.B., Ed.), pp. 371-384, Elsevier Science,
Amsterdam.

[9] Ultsch, A. and Siemon, H.P. (1990) in: Proc. INNC’90, Int.
Neural Network Conf., Dordrecht, Netherlands, pp. 305-308.

[10] Kohonen, T. and Hari, R. (1999) Trends Neurosci. 22, 135-139.

[11] Sammon Jr., J.W. (1969) IEEE Trans. Computers C-18, 401-409.

[12] Koikkalainen, P. (1994) in: Proceedings of the 11th European
Conference on Artificial Intelligence (Cohn, A., Ed.), pp. 211-
215, Wiley and Sons, New York.

[13] Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S.,
Dmitrovsky, E., Lander, E.S. and Golub, T.R. (1999) Proc. Natl.
Acad. Sci. USA 96, 2907-2912.



