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EXERCISES 1 
a) 

To align these two sequences with non-probabilistic methods, we’ll use the basic 
algorithm of dynamic programming. We have two sequences to align, s = AAAG and 
t = ACG, |s| = 4 and |t| = 3, so we can build an 5×4 array where entry (i, j) contains the 
similarity between s[1..i] and t[1..j]. The first row and column are initialized with 
multiple of the space penalty (-2 in our case). This is because there is only one 
alignment possible if one of the sequences is empty: Just add as many spaces as there 
are characters in the other sequence. The score of this alignment is –2k, where k is the 
length of the nonempty sequence. 

 
We can compute the value for entry (i, j) looking at just three previous entries: those 
for (i-1, j), (i-1, j-1) and (i, j-1). The formula used is: 
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The resulting array is in the appendix of this document. 
 
Looking at the resulting array, we have three possible alignments: 
 

 AAAG  AAAG  AAAG 
 A--CG  AC--G  --ACG 

 
The optimal alignment is, with the optimal alignment algorithm, the second one. 
 
To align these two sequences with pair HMMs we must do the following: first, we 
must define a model like this: 
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Where we have three states: M corresponding to a match, and two states 
corresponding to inserts, which we have named X and Y. We must also define the 
probabilities both for emissions of symbols from the states, and for transitions 
between states. For example, state M has emission probability distribution pab for 
emitting an aligned pair a:b, and states X and Y will have distributions qa for emitting 
symbol a against a gap. 
 
Second, we must use the Viterbi algorithm for pair HMMs to find the most probable 
path through the pair HMM, which is also the optimal alignment. The algorithm is: 
 
Initialization: vM(0,0) = 1; all other v•(i,0), v•(0,j) are set to 0. 
 
Recurrence: i = 1..n, j = 1..m; 
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Termination: 

)),(),,(),,(max( mnvmnvmnvv YXME =  
 
To find the best alignment, we keep pointers and trace back. To get the alignment 
itself we keep track of which residues are emitted at each step in the path during the 
trace back. 
 

b) 
 
The non-probabilistic approach for sequence alignment is the dynamic programming, 
in its simplest mode with the basic algorithm viewed above, or with more complex 
dynamic programming algorithms, that arises in the finite state automata (FSA) with 
multiple states. The FSA are the basis for a probabilistic interpretation of the gapped 
alignment process, by converting them into HMMs. One advantage of this approach is 
that we will be able to use the resulting probabilistic model to explore questions about 
the reliability of the alignment obtained by dynamic programming, and to explore 
alternative (suboptimal) alignments. We can also build more specialized probabilistic 
models out of simple pieces, to model more complex versions of sequence alignment. 
 
For doing this conversion from FSA to pair HMM, we must give probabilities both 
for emissions of symbols from the states, and for transitions between states, which 
must satisfy the requirement that the probabilities for all the transitions leaving each 
state sum to one.  
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Another relation between FSA and HMM is that the algorithms for HMM are all 
based in dynamic programming also. 
 

c)  

Possible uses of MC-models and HMMs are: 

• Given a sequence, we would know if it belongs to a particular family, e.g., 
CpG islands, prokaryotic genes… 

• Assuming the sequence does come from some family, we can say something 
about its internal structure, e.g., to identify α-helix or β-sheet regions in a 
protein sequence. 

• Pair alignment. 
• Multiple alignment. 
• Database mining and classification of sequences and fragments, e.g., for 

protein families. 
• Structural analysis and pattern discovery, e.g., features of secondary structure 

in proteins: hydrophobicity in α-helix. 
 
The essential difference between a Markov chain and a hidden Markov model is that 
for a hidden Markov model there is not a one-to-one correspondence between the 
states and the symbols. It is impossible to tell what state the model is when xi was 
generated just by looking at xi. In opposite, with a Markov chain, we can know the 
state from which the symbol xi is generated only looking at the symbol xi. 
 
 
d)  
 
The state model would be like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The full probability of the sequence {cola, lemonade} must be calculated with the 
Forward algorithm or with the Backward algorithm. Using the Forward algorithm: 
 
Initialization:  
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Recursion: 
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Termination: 
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There are several possibilities for making this HMM to a (visible) Markov model. The 
first one would be to fix this crazy machine, then we would have a one state Markov 
model, and, of course, it would be visible. The second one would be to have a three 
states Markov model, with one state per each drink, in this case, we would know the 
states sequence just looking at the observations sequence, so it would be visible again. 
 

f) 
 
One advantage of probabilistic models is that, if data D correspond to samples from a 
model M, then, in the limit of an infinitely large amount of data, the likelihood takes 
its maximum value for M, i.e. P(D/M) > P(D/N), where N is any other model.  
 
If the parameters of a pair HMM describe the statistics of pairs of related sequences 
well, then we should use this model with those parameter values for searching. 
 
If we also have a model, R, that gives a good description of the generation of random 
sequence, then Bayesian model comparison with M and R is an appropriate 
procedure. 
 
According to this philosophy, we should be using probabilistic models for searching. 
 
But the probabilistic models have some problems that standard methods don’t have: 
 

• They don’t compute the full probability of the pairs of sequences, summing 
over all alignments, but instead find the best match, or Viterbi path.  

 
• Regarded as FSAs, their parameters may not be readily translated into 

probabilities. 
 
This lead us to suggest that probabilistic models may underperform standard 
alignment methods if Viterbi is used for database searching, but if forward algorithm 
is used to provide a complete score independent of specific alignment, then the 
probabilistic models like pair HMM may improve upon the standard methods. 
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g) 
 
A profile HMM is a certain type of HMM with a structure that in a natural way allows 
position-dependant gap penalties. A profile HMM can be obtained from a multiple 
alignment and can be used for searching a database for other members of the family in 
the alignment very much like standard profiles. We can use the same Viterbi 
algorithm to find the most probable path to our profile HMM. 
 
A particular feature of protein family multiple alignments is that gaps used to line up 
with each other leaving solid groups without any gap. A first model for making 
comparisons with these solid blocks is to specify probabilities to the observation of 
amino acid a in position i (ei(a)) comparing it to the probability under a random 
model. These probabilities behave like elements in a score matrix, that’s why this 
method is called Position Specific Score Matrix (PSSM). This method is used for 
searching a match of the sequence x in a longer sequence. PSSMs are also useful to 
find conservation information in protein families, but they don’t take care of gaps. 
The best approach to do this is to build a HMM with a repetitive structure of states, 
but with different probabilities in each position. A PSSM can be seen like a trivial 
HMM to which we can add features to take into account insertions and deletions. 
 

h) 
 
We have the following equation to calculate the computing time of an alignment of N 
sequences of length L: 

2)2( −= NLt  
 
Now, we are using sequences of length 50, therefore, the equation is:  
 

42)10( −= Nt  
 
What we want to calculate is how many sequences we can align in five billion years, 
we’ll assume that 5 billion years are 5.000.000.000.000 years, and those are 
15768*1016 seconds. Then, the resulting equation is: 
 

4216 )10(1015768 −=× N  
 
Now, we can take decimal logarithms in both sides and calculate N: 
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Resulting that in five billion years we are able to align 12 sequences of 50 bases each 
one. 
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i) 
 
We are going to analyze two progressive alignment methods, one iterative refinement 
method and the multiple alignment with profile HMM method. 
 
• Feng-Doolittle progressive alignment: 
 
Pros:  

o Fast, thanks to the Fitch & Margoliash clustering algorithm, one of the fast 
clustering algorithms that build evolutionary trees from distance matrices. 

o Encouraging gaps to occur in the same columns in subsequent pairwise 
alignments. 

Cons: 
o All the alignment is determined by pairwise alignment. 
o Once an aligned group has been built up, it uses position-specific 

information from the group’s multiple alignment to align a new sequence 
in it. 

o Subalignments are ‘frozen’: once a group of sequences has been aligned, 
their alignment to each other cannot be changed at a later stage as more 
data arrive. 

o Align the whole sequences, regardless of what parts of the sequence are 
meaningfully aligneable or not. 

 
• Profile alignment (CLUSTALW): 
 
Pros: 

o More flexible than Feng-Doolittle. 
o Simple for linear gap scoring. 
o High accuracy. 

Cons: 
o Subalignments are ‘frozen’: once a group of sequences has been aligned, 

their alignment to each other cannot be changed at a later stage as more 
data arrive. 

o Align the whole sequences, regardless of what parts of the sequence are 
meaningfully alignable or not. 

 
• Iterative refinement (Barton-Sternberg): 
 
Pros: 

o More flexible than progressive alignment. 
Cons: 

o More complex than progressive alignment. 
 
• Multiple alignment with profile HMM: 
 
Pros: 

o Biologically realistic view of multiple alignment. 
o Taking into account which parts of the sequence are meaningfully 

alignable. 
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Cons: 
o To estimate both a model and a multiple alignment from initially unaligned 

sequences is a hard task. 
 

j) 
 
When the continuous stretches of DNA are over a few hundred bases, the problem of 
sequencing it becomes unfeasible. However there are some methods for splitting a 
long DNA chain into random pieces and to produce enough copies of the pieces to 
sequence. Therefore, we can sequence fragments of them, but these methods leave us 
the problem of assembling the fragments, and that’s the reason for the existence of 
methods for fragment assembly. 
 
However, even using these methods to sequence DNA, we are restricted to a few tens 
of thousands of DNA base pairs whereas a chromosome is a DNA molecule with 
around 108 base pairs. This means that these methods only enable us to analyze a very 
small fraction of the chromosome, not allowing us to analyze bigger structures in the 
DNA molecule. In order to do this there are methods to create maps of entire 
chromosomes or of significant fractions of them, and they are called techniques for 
physical mapping of DNA. 
 

l) 
 
The restriction site mapping technique uses these kind of  “fingerprints” that describes 
uniquely the information in a given fragment of the DNA molecule (restriction 
enzyme). These fingerprints are used to compare the fragments mainly by overlapping 
to accomplish the DNA mapping.  
 
One restriction enzyme could recognize one or more restriction sites, however two 
different restriction enzymes cannot recognize the same restriction site. A restriction 
site is obtained from information on the length of the fragments; a fragment length is 
thus its fingerprint. Therefore the restriction site represents uniquely a particular 
restriction enzyme. 
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EXERCISES 2 
 
a) 
 
Obvious, with a reversal, we can put one number in any desired position, so if we 
have N numbers, we can choose the first and put it on the first position, and so on, 
therefore we are sorting the permutation one by one, but the last two numbers will be 
sorted only with one reversal, i.e., for sorting a permutation of N numbers, we need at 
most N-1 reversals. 
 
We can see it with an example. Imagine a permutation of 7 numbers, the permutation 
could be like this: 

2467531 
 
We can do the following reversals for sorting it: 
 

2467531 
1357642 
1246753 
1235764 
1234675 
1234576 
1234567 

 
As we can see, for 7 numbers, we need 6 reversals, but it would be done with fewer 
reversals if the permutation was different. 
 
 

b) 
 
We consider an RNA molecule as a string of n characters R = r1r2…rn such that ri 
belongs to the set {A, C, G, U}. The secondary structure of a RNA molecule is a 
collection S of pairs (ri, rj) of bases such that 1 ≤ i < j ≤ n.   
 
A knot exists when (ri, rj) ∈ S and (rk, rl) ∈ S, and i < k < j < l. 
 
A knot may appear in any RNA sequence with the above property, for example: 
 
If we have the RNA sequence: R = r1…r11 = CCCAGGGGUUU, we could have that 
(r3, r8) and (r4, r9) ∈ S, in this case we would have a knot in the structure: 
 
 
 
 

C C

U U U G
G

A

G

G
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c) 
 
The model for this problem would be like this: 
 
 
 
 
 
 
 
 
 
 
 
 
A expected length of a run of state 1s of 1000 means that for each 1000 iterations we 
leave the state 1 only once, so the probability of transit from state 1 to state 2 would 
be a12 = 1/1000, and the probability of remain in the state 1 is a11 = 1-(1/1000), 
because these two probabilities must sum to one. The same reasoning would be 
applied to the state 2, so the transition probabilities for the state 2 are: a21 = 1/100 and 
a22 = 1-(1/100). 
 
We can write a stochastic regular grammar G = { T , N , P } that represents the same 
model, where: 
 
T (terminal symbols) = {A, C, G, T}. These are the 4 bases of DNA. 
 
N (non-terminal symbols) = {1, 2}. These are the 2 possible states. 
 
P (production rules): 
 

1 � A1 (0.1*(1-1/1000)   
1 � C1 (0.4*(1-1/1000)   
1 � G1 (0.4*(1-1/1000)  
1 � T1 (0.1*(1-1/1000)  
 
1 � A2 (0.3*1/1000) 
1 � C2 (0.2*1/1000) 
1 � G2 (0.2*1/1000) 
1 � T2 (0.3*1/1000) 
 
2 � A2 (0.3*(1-1/100)  
2 � C2 (0.2*(1-1/100)   
2 � G2 (0.2*(1-1/100)  
2 � T2 (0.3*(1-1/100)   
 
2 � A1 (0.1*1/100) 
2 � C1 (0.4*1/100) 
2 � G1 (0.4*1/100) 
2 � T1 (0.1*1/100) 

pa: 0.3 
pc: 0.2 
pg: 0.2 
pt:  0.3 

pa: 0.1 
pc: 0.4 
pg: 0.4 
pt:  0.1 

state 1 state 2 

a12 

a11 

a21 

a22 
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d) 
 
The Nussinov folding algorithm, given a sequence x of length L with symbols x1,..,xL 
is the following: 
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Now, we can modify it to find a maximally scoring structure where a base pair 
between residues a and b gets a score s(a,b): 
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And apply the algorithm in the same way, and then at the end of the algorithm the 
score at the upper right corner of the matrix is the value for the maximum scored valid 
secondary RNA structure for the given sequence. 
  
After that we can make the backtrace in the same way that with the Nussinov folding 
algorithm and we will obtain the structure with the highest score. 
 

e) 
 
The author proposes to build a substitution matrix based in statistical descriptions of 
amino acid environments (WAC matrix), taking a measure of the tolerance of a 
microenvironment for one new amino acid based on the properties of the environment 
surrounding the lost amino acid. 
 
The main difference with PAM matrices is that this is obtained by empirical methods 
from measures of the frequency of substitution of alternative residues in each position 
in some experiments. These substitution matrices are mostly used for general protein 
searching and homology measuring by pairwise alignment, but they have 
demonstrated also a good performance in detecting related protein sequences to a 
certain family. 
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APPENDIX 
 

Exercises 1. a)  
 
The resulting array of the dynamic programming algorithm is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The marked paths are the possible alignments, the bigger arrow the more optimal 
path. 


