
Helsinki University of Technology (HUT)

Espoo, Finland.

Tik-61.181 Bioinformatics
Fall 2000

EXERCISES

Raúl Lozano Mendoza, 55811K

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 2 of 12

EXERCISES 1
a)

To align these two sequences with non-probabilistic methods, we’ll use the basic
algorithm of dynamic programming. We have two sequences to align, s = AAAG and
t = ACG, |s| = 4 and |t| = 3, so we can build an 5×4 array where entry (i, j) contains the
similarity between s[1..i] and t[1..j]. The first row and column are initialized with
multiple of the space penalty (-2 in our case). This is because there is only one
alignment possible if one of the sequences is empty: Just add as many spaces as there
are characters in the other sequence. The score of this alignment is –2k, where k is the
length of the nonempty sequence.

We can compute the value for entry (i, j) looking at just three previous entries: those
for (i-1, j), (i-1, j-1) and (i, j-1). The formula used is:

[]
[]

[]
[]

[] []
[] []�

�
�

≠−
=

=
�
�

�
�

�

−−
+−−
−−

=
jtis

jtis
jipwhere

jia

jipjia

jia

jia
1

1
),(

21,

),(1,1

21,

max,

The resulting array is in the appendix of this document.

Looking at the resulting array, we have three possible alignments:

 AAAG AAAG AAAG
 A--CG AC--G --ACG

The optimal alignment is, with the optimal alignment algorithm, the second one.

To align these two sequences with pair HMMs we must do the following: first, we
must define a model like this:

M

pxiyi

Y

qyi

X

qxi

1-2δ

1-ε

δ

δ

1-ε

ε

ε

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 3 of 12

Where we have three states: M corresponding to a match, and two states
corresponding to inserts, which we have named X and Y. We must also define the
probabilities both for emissions of symbols from the states, and for transitions
between states. For example, state M has emission probability distribution pab for
emitting an aligned pair a:b, and states X and Y will have distributions qa for emitting
symbol a against a gap.

Second, we must use the Viterbi algorithm for pair HMMs to find the most probable
path through the pair HMM, which is also the optimal alignment. The algorithm is:

Initialization: vM(0,0) = 1; all other v•(i,0), v•(0,j) are set to 0.

Recurrence: i = 1..n, j = 1..m;

�
�
�

−
−

=

�
�
�

−
−

=

�
�

�
�

�

−−−
−−−
−−−

=

);1,(

),1,(
max),(

);,1(

),,1(
max),(

);1,1()1(

),1,1()1(

),1,1()21(

max),(

jiv

jiv
qjiv

jiv

jiv
qjiv

jiv

jiv

jiv

pjiv

Y

M

y
Y

X

M

x
X

Y

X

M

yx
M

j

i

ji

ε
δ

ε
δ

ε
ε
δ

Termination:

)),(),,(),,(max(mnvmnvmnvv YXME =

To find the best alignment, we keep pointers and trace back. To get the alignment
itself we keep track of which residues are emitted at each step in the path during the
trace back.

b)

The non-probabilistic approach for sequence alignment is the dynamic programming,
in its simplest mode with the basic algorithm viewed above, or with more complex
dynamic programming algorithms, that arises in the finite state automata (FSA) with
multiple states. The FSA are the basis for a probabilistic interpretation of the gapped
alignment process, by converting them into HMMs. One advantage of this approach is
that we will be able to use the resulting probabilistic model to explore questions about
the reliability of the alignment obtained by dynamic programming, and to explore
alternative (suboptimal) alignments. We can also build more specialized probabilistic
models out of simple pieces, to model more complex versions of sequence alignment.

For doing this conversion from FSA to pair HMM, we must give probabilities both
for emissions of symbols from the states, and for transitions between states, which
must satisfy the requirement that the probabilities for all the transitions leaving each
state sum to one.

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 4 of 12

Another relation between FSA and HMM is that the algorithms for HMM are all
based in dynamic programming also.

c)

Possible uses of MC-models and HMMs are:

• Given a sequence, we would know if it belongs to a particular family, e.g.,
CpG islands, prokaryotic genes…

• Assuming the sequence does come from some family, we can say something
about its internal structure, e.g., to identify α-helix or β-sheet regions in a
protein sequence.

• Pair alignment.
• Multiple alignment.
• Database mining and classification of sequences and fragments, e.g., for

protein families.
• Structural analysis and pattern discovery, e.g., features of secondary structure

in proteins: hydrophobicity in α-helix.

The essential difference between a Markov chain and a hidden Markov model is that
for a hidden Markov model there is not a one-to-one correspondence between the
states and the symbols. It is impossible to tell what state the model is when xi was
generated just by looking at xi. In opposite, with a Markov chain, we can know the
state from which the symbol xi is generated only looking at the symbol xi.

d)

The state model would be like this:

The full probability of the sequence {cola, lemonade} must be calculated with the
Forward algorithm or with the Backward algorithm. Using the Forward algorithm:

Initialization:

006.0)()(

1.011.0)()(

=×=×=
=×=×=

CPCPCP

WPWPWP

colaecolaf

colaecolaf

π
π

cola: 0.6

mineral water: 0.1

lemonade: 0.3

cola: 0.1

mineral water: 0.7

lemonade: 0.2

0.3

0.5

0.7 0.5

CP state WP state

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 5 of 12

Recursion:

[]

[]
015.0)7.005.01.0(3.0

)()()()(

01.0)3.005.01.0(2.0

)()()()(

,,

,,

=×+××=
=×+××=

=×+××=
=×+××=

CPCPCPCPWPWPCPCP

WPCPCPWPWPWPWPWP

acolafacolaflemonadeelemonadef

acolafacolaflemonadeelemonadef

Termination:

025.0015.001.0)()(),(=+=+= lemonadeflemonadeflemonadecolaP CPWP

There are several possibilities for making this HMM to a (visible) Markov model. The
first one would be to fix this crazy machine, then we would have a one state Markov
model, and, of course, it would be visible. The second one would be to have a three
states Markov model, with one state per each drink, in this case, we would know the
states sequence just looking at the observations sequence, so it would be visible again.

f)

One advantage of probabilistic models is that, if data D correspond to samples from a
model M, then, in the limit of an infinitely large amount of data, the likelihood takes
its maximum value for M, i.e. P(D/M) > P(D/N), where N is any other model.

If the parameters of a pair HMM describe the statistics of pairs of related sequences
well, then we should use this model with those parameter values for searching.

If we also have a model, R, that gives a good description of the generation of random
sequence, then Bayesian model comparison with M and R is an appropriate
procedure.

According to this philosophy, we should be using probabilistic models for searching.

But the probabilistic models have some problems that standard methods don’t have:

• They don’t compute the full probability of the pairs of sequences, summing
over all alignments, but instead find the best match, or Viterbi path.

• Regarded as FSAs, their parameters may not be readily translated into

probabilities.

This lead us to suggest that probabilistic models may underperform standard
alignment methods if Viterbi is used for database searching, but if forward algorithm
is used to provide a complete score independent of specific alignment, then the
probabilistic models like pair HMM may improve upon the standard methods.

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 6 of 12

g)

A profile HMM is a certain type of HMM with a structure that in a natural way allows
position-dependant gap penalties. A profile HMM can be obtained from a multiple
alignment and can be used for searching a database for other members of the family in
the alignment very much like standard profiles. We can use the same Viterbi
algorithm to find the most probable path to our profile HMM.

A particular feature of protein family multiple alignments is that gaps used to line up
with each other leaving solid groups without any gap. A first model for making
comparisons with these solid blocks is to specify probabilities to the observation of
amino acid a in position i (ei(a)) comparing it to the probability under a random
model. These probabilities behave like elements in a score matrix, that’s why this
method is called Position Specific Score Matrix (PSSM). This method is used for
searching a match of the sequence x in a longer sequence. PSSMs are also useful to
find conservation information in protein families, but they don’t take care of gaps.
The best approach to do this is to build a HMM with a repetitive structure of states,
but with different probabilities in each position. A PSSM can be seen like a trivial
HMM to which we can add features to take into account insertions and deletions.

h)

We have the following equation to calculate the computing time of an alignment of N
sequences of length L:

2)2(−= NLt

Now, we are using sequences of length 50, therefore, the equation is:

42)10(−= Nt

What we want to calculate is how many sequences we can align in five billion years,
we’ll assume that 5 billion years are 5.000.000.000.000 years, and those are
15768*1016 seconds. Then, the resulting equation is:

4216)10(1015768 −=× N

Now, we can take decimal logarithms in both sides and calculate N:

121,12
2

4)1015768log(

42)10log()42()1015768log(
16

16

≈=+×=

−=×−=×

N

NN

Resulting that in five billion years we are able to align 12 sequences of 50 bases each
one.

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 7 of 12

i)

We are going to analyze two progressive alignment methods, one iterative refinement
method and the multiple alignment with profile HMM method.

• Feng-Doolittle progressive alignment:

Pros:

o Fast, thanks to the Fitch & Margoliash clustering algorithm, one of the fast
clustering algorithms that build evolutionary trees from distance matrices.

o Encouraging gaps to occur in the same columns in subsequent pairwise
alignments.

Cons:
o All the alignment is determined by pairwise alignment.
o Once an aligned group has been built up, it uses position-specific

information from the group’s multiple alignment to align a new sequence
in it.

o Subalignments are ‘frozen’: once a group of sequences has been aligned,
their alignment to each other cannot be changed at a later stage as more
data arrive.

o Align the whole sequences, regardless of what parts of the sequence are
meaningfully aligneable or not.

• Profile alignment (CLUSTALW):

Pros:

o More flexible than Feng-Doolittle.
o Simple for linear gap scoring.
o High accuracy.

Cons:
o Subalignments are ‘frozen’: once a group of sequences has been aligned,

their alignment to each other cannot be changed at a later stage as more
data arrive.

o Align the whole sequences, regardless of what parts of the sequence are
meaningfully alignable or not.

• Iterative refinement (Barton-Sternberg):

Pros:

o More flexible than progressive alignment.
Cons:

o More complex than progressive alignment.

• Multiple alignment with profile HMM:

Pros:

o Biologically realistic view of multiple alignment.
o Taking into account which parts of the sequence are meaningfully

alignable.

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 8 of 12

Cons:
o To estimate both a model and a multiple alignment from initially unaligned

sequences is a hard task.

j)

When the continuous stretches of DNA are over a few hundred bases, the problem of
sequencing it becomes unfeasible. However there are some methods for splitting a
long DNA chain into random pieces and to produce enough copies of the pieces to
sequence. Therefore, we can sequence fragments of them, but these methods leave us
the problem of assembling the fragments, and that’s the reason for the existence of
methods for fragment assembly.

However, even using these methods to sequence DNA, we are restricted to a few tens
of thousands of DNA base pairs whereas a chromosome is a DNA molecule with
around 108 base pairs. This means that these methods only enable us to analyze a very
small fraction of the chromosome, not allowing us to analyze bigger structures in the
DNA molecule. In order to do this there are methods to create maps of entire
chromosomes or of significant fractions of them, and they are called techniques for
physical mapping of DNA.

l)

The restriction site mapping technique uses these kind of “fingerprints” that describes
uniquely the information in a given fragment of the DNA molecule (restriction
enzyme). These fingerprints are used to compare the fragments mainly by overlapping
to accomplish the DNA mapping.

One restriction enzyme could recognize one or more restriction sites, however two
different restriction enzymes cannot recognize the same restriction site. A restriction
site is obtained from information on the length of the fragments; a fragment length is
thus its fingerprint. Therefore the restriction site represents uniquely a particular
restriction enzyme.

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 9 of 12

EXERCISES 2

a)

Obvious, with a reversal, we can put one number in any desired position, so if we
have N numbers, we can choose the first and put it on the first position, and so on,
therefore we are sorting the permutation one by one, but the last two numbers will be
sorted only with one reversal, i.e., for sorting a permutation of N numbers, we need at
most N-1 reversals.

We can see it with an example. Imagine a permutation of 7 numbers, the permutation
could be like this:

2467531

We can do the following reversals for sorting it:

2467531
1357642
1246753
1235764
1234675
1234576
1234567

As we can see, for 7 numbers, we need 6 reversals, but it would be done with fewer
reversals if the permutation was different.

b)

We consider an RNA molecule as a string of n characters R = r1r2…rn such that ri
belongs to the set {A, C, G, U}. The secondary structure of a RNA molecule is a
collection S of pairs (ri, rj) of bases such that 1 ≤ i < j ≤ n.

A knot exists when (ri, rj) ∈ S and (rk, rl) ∈ S, and i < k < j < l.

A knot may appear in any RNA sequence with the above property, for example:

If we have the RNA sequence: R = r1…r11 = CCCAGGGGUUU, we could have that
(r3, r8) and (r4, r9) ∈ S, in this case we would have a knot in the structure:

C C

U U U G
G

A

G

G
C

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 10 of 12

c)

The model for this problem would be like this:

A expected length of a run of state 1s of 1000 means that for each 1000 iterations we
leave the state 1 only once, so the probability of transit from state 1 to state 2 would
be a12 = 1/1000, and the probability of remain in the state 1 is a11 = 1-(1/1000),
because these two probabilities must sum to one. The same reasoning would be
applied to the state 2, so the transition probabilities for the state 2 are: a21 = 1/100 and
a22 = 1-(1/100).

We can write a stochastic regular grammar G = { T , N , P } that represents the same
model, where:

T (terminal symbols) = {A, C, G, T}. These are the 4 bases of DNA.

N (non-terminal symbols) = {1, 2}. These are the 2 possible states.

P (production rules):

1 � A1 (0.1*(1-1/1000)
1 � C1 (0.4*(1-1/1000)
1 � G1 (0.4*(1-1/1000)
1 � T1 (0.1*(1-1/1000)

1 � A2 (0.3*1/1000)
1 � C2 (0.2*1/1000)
1 � G2 (0.2*1/1000)
1 � T2 (0.3*1/1000)

2 � A2 (0.3*(1-1/100)
2 � C2 (0.2*(1-1/100)
2 � G2 (0.2*(1-1/100)
2 � T2 (0.3*(1-1/100)

2 � A1 (0.1*1/100)
2 � C1 (0.4*1/100)
2 � G1 (0.4*1/100)
2 � T1 (0.1*1/100)

pa: 0.3
pc: 0.2
pg: 0.2
pt: 0.3

pa: 0.1
pc: 0.4
pg: 0.4
pt: 0.1

state 1 state 2

a12

a11

a21

a22

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 11 of 12

d)

The Nussinov folding algorithm, given a sequence x of length L with symbols x1,..,xL
is the following:

notif

pairbasearexandxif
ji ji

�
�
�

=
0

1
),(δ

Now, we can modify it to find a maximally scoring structure where a base pair
between residues a and b gets a score s(a,b):

notif

pairbasearexandxifjis
ji ji

�
�
�

=
0

),(
),(δ

And apply the algorithm in the same way, and then at the end of the algorithm the
score at the upper right corner of the matrix is the value for the maximum scored valid
secondary RNA structure for the given sequence.

After that we can make the backtrace in the same way that with the Nussinov folding
algorithm and we will obtain the structure with the highest score.

e)

The author proposes to build a substitution matrix based in statistical descriptions of
amino acid environments (WAC matrix), taking a measure of the tolerance of a
microenvironment for one new amino acid based on the properties of the environment
surrounding the lost amino acid.

The main difference with PAM matrices is that this is obtained by empirical methods
from measures of the frequency of substitution of alternative residues in each position
in some experiments. These substitution matrices are mostly used for general protein
searching and homology measuring by pairwise alignment, but they have
demonstrated also a good performance in detecting related protein sequences to a
certain family.

Raúl Lozano Mendoza, 55811K Bioinformatics

30.1.2001 Page 12 of 12

0 -2 -4 -6

-1
 -3

-1
 -1

1
1-2

-4
1

-1
-1

0
-1

-2

-6
1

-3
-1

-2
-1

-1

-8
-1

-5
-1

-4
1

-1

G
3

C
2

A
1

0

G 4

A 3

A 2

A 1

 0

APPENDIX

Exercises 1. a)

The resulting array of the dynamic programming algorithm is:

The marked paths are the possible alignments, the bigger arrow the more optimal
path.

