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T. Kohonen

Emergence of invariant-feature detectors in the

adaptive-subspace self-organizing map

Biological Cybernetics

1996

INTRODUCTION

ASSOM = adaptive-subspace SOM

· A new self-organizing map (SOM) architecture

· a synthesis from SOM and LSM

· Creates sets of invariant-feature filters in unsupervised manner

· No mathematical forms of the detectors are presupposed (no parametric fitting)

· Learns only such input signal sequences that satisfy certain linear constraints – other components smoothed out

( learning results (basis vectors of neural subspaces) do not look like input patterns, but represent the kernels of the transformation (invariance) groups
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PATTERN RECOGNITION APPROACH

Objective: to make a pattern recognition system that works the same way as biological sensor systems

( invariance wrt. transformation groups needed

Traditional ANN compares signal patterns with synaptic weight patterns directly

( needs preprocessing to obtain ’invariant’ feature vectors

( heuristical feature extraction stages needed for transformation invariance
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In biological systems invariances handled even without preprocessing stages

SUBSPACES AS CLASSES

· Approach: data in pattern classes are put to correspond to linear suspaces

· Class-affiliation of {x} expressed in terms of the distance of {x}from the subspace

[image: image15.wmf]'neural subspace'  (i)

b

Q

(i)

h

WTA for learning

x

Q

Q


· Basis vectors can be samples or principal components of the class; orthonormalized to ease computations (Gram-Schmidt method)

· Subspace methods: pca, lsm (related to lvq)
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PROJECTION
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CLASSIFICATION

Consider N classes of patterns:  ((1), ((2), …, ((N)  each of which 

represented by its own subspace ℒ(i)  and basis vectors 
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x is assigned into class c
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Class boundaries defined by

xT(P(i) – P(j))x = 0

which are quadratic equations of x
NETWORK ARCHITECTURE

[image: image18.wmf]^

x

~

ASSOM is an array of neural units: each unit describes a subspace

Neural network consisting of linear-subspace modules. Q = quadratic neuron, WTA = winner-take-all network

· A basis vector  
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 associated with each of the linear input ’neurons’, h = number of neuron in unit i
· basis vectors 
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 normalized and mutually as orthogonal as possible

· output of unit i: 
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 , squared projection of x on ℒ(i)
· WTA used in competitive learning process that forms the filter functions, not for input pattern classification

THE LEARNING SUBSPACE METHOD

Basic idea: classification accuracy can be improved by rotating the ℒ(i) in a decision-directed or supervised way  (  a competitive learning process  
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Projection changed by rotating the subspace ℒ(i) or its basis vectors.

Orthogonal projection operator:
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for arbitrary vector b, P1b ( x
( fastes direction to increase projection of x on ℒ(i) is the opposite 

( 
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in unsupervised learning ( > 0
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If there exist several ’neural’ subspaces, they can be made to competitively partition the signal space into a number of subspaces, each one describing its own transformation group.
LEARNING RATE
[image: image21.wmf]x

x

x

ˆ

~

-

=


THEORY OF ASSOM

· The basic SOM is not invariant to transformation groups of input signals (as traditional neuron models are not)

· To generate invariant filters, one must select a matching criterion that tolerates such transformations in the input data

· If the basis vectors of the subspaces can be defined so that their linear combinations represent some transformation groups ( invariant matching

· Restrictions:

Possible only for certain elementary features and for one transformation group at a time

· An arbitrary signal pattern can be decomposed into a finite number of different kinds of elementary features

· The neural subspaces will be tuned to match the various input features in the sense of least errors

· Wavelets - elementary waveforms that satisfy linear constraints

EPISODE AND ’REPRESENTATIVE WINNER’

Episode ℰ = a set of successive sampling instants {tp}

A set of linearly dependent input vectors {x(tp)} are collected during ℰ
( {x(tp)} spans a signal subspace ℒx (finite ℰ) of lower dimensionality than n

Problem when matching signal subspaces ℒx with ’neural’ subspaces ℒ(i):

Number of  samples in the episodes ℰ is arbitrary 

( the dimensionality of the subspaces spanned by the x(tp) is arbitrarily defined, too   
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In natural signals data dimensionality high ( the filters in ASSOMs input layer tend to become tuned to several frequencies. A experimentally found solution is to set the 
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 components with small absolute value to zero (dissipation).

SIMULATIONS

Three examples with different transformation groups: translation, rotation & zoom-invariant filters formed

· circular sampling lattice (316 pixels)

· image: colored noise

· mean of the samples subtracted from pattern vector
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I Translation-invariant filters:

· ASSOM: 
hexagonal, 9 x 10 units, 2 basis vectors at each unit

· Episodes: receptive field shifted randomly in five nearby locations (avg shift  ( 2 pix ((). Different episodes taken from another location

· Weighted with a Gaussian to symmetrize the filters

· Radius of 
[image: image10.wmf])

(

r

c

N

 decreased linearly from 5 to 1 ASSOM unit spacings

· Learning rate ((t) = T/(T+99t), t  = index of learning episode, T = total number of episodes = 30 000

· Basis vectors initialized randomly, but normalized
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II Rotation filters

· ASSOM lattice linear, 24 units

· Receptive fields same as previous, 

· Episodes: receptive fields rotated randomly in the range 0( – 60( (five samples), rotation center at reception field center

· Different episodes taken from another location

· No Gaussian weighting
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III Zoom-filters:

· Zooming range: 1:2

· Episode: five samples 

· Different episodes taken from another location

· Zooming center coincides with receptive field center

· No Gaussian weighting
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CONCLUSIONS

· ASSOM produces different type of filters, depending on input data transformation group, although the algorithm is the same

· The network is selectively sensitized to signal components that satisfy linear constraints

· Alternative ASSOM structures with three or more basis vectors

· ASSOM may be used as  an adaptive feature-extraction stage e.g. in pattern classifiers

· Decision directed version, FASSOM

· ASSOM input layer acts in a way similar to mammalian visual cortex simple cells




Subspace L ( (n: a general linear combination of the basis vectors � EMBED Equation.3  ���
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New aspect: the subspaces formed in the learning process can be made to represent the input data transformation groups, i.e. they are spanned by the kernels of the transforms








Linear subspace





spanned by a linearly dependent set of observation vectors





Invariance group





a set (manifold) of dependent observations, that satisfy some 


mathematical constraints (translation, rotation, size etc.)























The projection of  x ( (n  on  ℒ (  (n  is the closest point in  ℒ to x; 


denoted � EMBED Equation.3  ��� ( ℒ;   x can be decomposed in





� EMBED Equation.3  ���		where � EMBED Equation.3  ���ℒ,  � EMBED Equation.3  ��� is the distance of  of x from ℒ





If  (u1, u2, …, uK) is an orthonormal basis of ℒ, then
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Projection operator
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LSM: 





If classification of x was correct, 





	increase the projection of x on ℒ(c)  (=winner)





If classification of x was wrong, and ℒ(r) (=next-closest)  is the correct subspace, then


	decrease the projection of x on ℒ(c) , and


	increase the projection of x on ℒ(r) 		(cf. LVQ2)








Adaptive-Subspace (AS) theorem:





Using P2, a single ’neural’ subspace can be made to converge to the signal subspace, with an arbitrarily good accuracy. 











Problem in projective methods: 





if learning rate proportional to the dot product of x & b  ( goes to zero if x ( b or close





Corrections to be made on neural units shall be monotonically increasing function of the error (� EMBED Equation.3  ���)





( learning rate divided by � EMBED Equation.3  ���





( � EMBED Equation.3  ���
































			< Fig. 5 >


























One-dimensional ASSOM: a) cosine-type ’radial wavelets’ (bi1); b) sine type ’radial wavelets’ (bi2)











Simple and robust solution:





compute the sum of squared projections over the episode on each ℒ(i)      


(’energy’ of the projections)





( ’representative winner’





� EMBED Equation.3  ���








THE ASSOM ALGORITHM








Locate the unit on which the projection energy is maximum





Rotate the basis vectors � EMBED Equation.3  ��� of the winner and its neighbors with � EMBED Equation.3  ���





The basis vectors are rotated for each sample vector x(tp) of the episode ℰ as:








 


� EMBED Equation.3  ���		� EMBED Equation.3  ���








� EMBED Equation.3  ��� = neighborhood of the ’representative winner’





























			< Fig. 4 >























One-dimensional ASSOM: a) cosine-type ’azimuthal wavelets’ (bi1);  b) sine type ’azimuthal wavelets’ (bi2)



































			< Fig. 3 >


























The ASSOM that has formed Gabor-type filters. Basis vectors bi1 (a) & bi2 (b) (phase difference 90() 



































			< Fig. 2 >



































Colored noise (second order Butterworth-filtered white noise with cut-off freq. of 0.6 times the Nyquist freq. of the lattice) as input data














[image: image11.wmf]

[image: image28.wmf]þ

ý

ü

î

í

ì

=

å

=

k

p

p

i

i

r

t

x

x

a

m

c

1

2

)

(

)

(

ˆ

arg

[image: image29.wmf])

(

i

h

b

[image: image30.wmf])

ˆ

(

)

(

x

x

xx

I

R

i

T

×

+

=

a

[image: image31.wmf]Õ

Î

ú

ú

û

ù

ê

ê

ë

é

×

+

=

e

a

p

t

p

i

h

p

p

i

p

T

p

p

i

h

t

b

t

x

t

x

t

x

t

x

t

I

b

)

(

)

(

)

(

ˆ

)

(

)

(

)

(

)

(

)

(

)

(

'

[image: image32.wmf])

(

r

c

N

i

Î

[image: image33.wmf])

(

r

c

N

[image: image34.wmf]pre

processing

decision

making

'invariant' feature

vectors

input pattern

vector

x

class

_1034168410.unknown

_1034171116.unknown

_1034173360.unknown

_1034609222.unknown

_1034611469.doc
PAGE  






_1034173850.unknown

_1034607504.vsd
b    �

Q�

'neural subspace'  (i)�

�

Q�

�

Q�

WTA for learning�

x�

(i)
h�


_1034171212.unknown

_1034169464.unknown

_1034170564.unknown

_1034170610.unknown

_1034170270.unknown

_1034169527.unknown

_1034169232.unknown

_1034169463.unknown

_1034169231.unknown

_1034164400.unknown

_1034168130.unknown

_1034168189.unknown

_1034167976.unknown

_1021217921.unknown

_1021220143.unknown

_1034159694.vsd
pre
processing�

decision making�

'invariant' feature vectors�

input pattern vector
x�

class�


_1021219803.unknown

_1021218798.unknown

_1021218826.unknown

_1021218292.unknown

_1021208758.unknown

_1021208877.unknown

_1021208656.unknown

