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T-61.3010 Digital Signal Processing and Filtering

T-61.3010 Digitaalinen signaalinkäsittely ja suodatus

Exercise material for spring 2009 by professor Olli Simula and assistant Jukka Parviainen. Cor-
rections and comments to t613010@cis.hut.fi, thank you!

This material is intended for “paper sessions” on Tuesdays 12-14 L, on Wednesdays 10-12 G,
and on Thursdays 14-16 D, six times in spring 2009. Each problem [Pxx] refers to Problem xx
in this material. Bring your own copy when coming to the session.

The course follows the book “Digital Signal Processing” by Sanjit K. Mitra. There are three
different editions available, 3rd being the newest. Notation (Mitra 2Ed Sec. 5.2 / 3Ed Sec. 4.2 )
refers to the section 5.2 in the 2nd Edition (yellow cover) of Mitra’s Book and to the section 4.2
in the 3rd Edition (blue, antenna). There is a brief correspondence table of three editions and
errata lists in the course web pages http://www.cis.hut.fi/Opinnot/T-61.3010/. Course
lecture slides by Olli Simula follow the third edition of Mitra’s book.

Other books mentioned in these problems are Heikki Huttunen’s book “Signaalinkäsittelyn
menetelmät” (in Finnish) which is available from http://www.cs.tut.fi/~hehu/, “The Scien-
tist and Engineer’s Guide to Digital Signal Processing, Second Edition” by Steven W. Smith,
available from http://www.dspguide.com/, and “Introduction to Digital Filters” by Julius O.
Smith III in http://ccrma.stanford.edu/~jos/filters/. Other DSP and related courses
in WWW can be found, e.g., Connexions portal http://cnx.org/ and MIT OpenCourseWare
http://ocw.mit.edu/.

Index list in the end contains some (problems not fully indexed) terms both in Finnish and En-
glish. Terminology lists related to DSP can be found in the web, e.g., “Audiosignaalinkäsittelyn
sanasto”by professor Vesa Välimäki http://www.acoustics.hut.fi/~vpv/ask-sanasto.htm,
an index list by J. Smith in http://ccrma.stanford.edu/~jos/filters/Index.html, and a
glossary by S. Smith in his book at pages 631–642.
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T-61.3010 Digital Signal Processing and Filtering

Description of Problems

# Subject

A: Math Background 1-13
1 complex numbers, Carthesian and polar coordinate systems, Euler’s formula
2 Euler’s formula, cosine and sine, odd and even functions
3 complex numbers, graphical notation
4 complex-valued function
5 phasors
6 cosine function, amplitude, frequency, phase
7 logarithm, decibels, sinc, modulo, binary number representation
8 roots of a polynomial
9 complex-valued function, roots of polynomial

10 partial fraction expansion / decomposition
11 sum of geometric series
12 integral transforms
13 matrix product
B: Preliminary DSP 14-18
14 analog, discrete-time and digital signal
15 magnitude/amplitude response of filters LP, HP, BP, BS
16 digital signals and spectra, spectogram
17 Fourier series, Fourier transforms: CTFT, DTFT, DFT
18 time-frequency-domain analysis and filtering
C: Discrete-time Signals and Systems in Time-domain 19-35
19 signals and sequences, unit impulse and unit step functions (δ[n], µ[n])
20 periodic signals
21 moving average (MA) filter, a simple FIR filter
22 a simple IIR filter
23 flow / block diagram of a discrete-time system
24 recognition of LTI systems, causal LTI systems, filter order, FIR, IIR
25 properties of LTI systems: linear, time-invariant, causal, stable
26 shifted and scaled sequences in LTI system
27 impulse response h[n], FIR, IIR
28 step response s[n]
29 linear convolution y(t) = x1(t) ⊛ x2(t) of continuous-time signals
30 linear convolution y[n] = h[n] ⊛ x[n] of discrete-time signals
31 convolution as products of polynomials
32 deconvolution
33 parallel and cascade (series) LTI systems
34 matched filter
35 auto- and cross-correlation
D: Discrete-time Signals in Frequency-domain 36-42

continued on next page
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continued from previous page
# Subject

36 continuous-time Fourier transform (CTFT)
37 spectrum, CTFT, discrete-time Fourier transform (DTFT), discrete Fourier trans-

form (DFT)
38 DTFT, computation from definition
39 DTFT, using a transform table
40 2π-periodic spectrum, DTFT
41 magnitude/amplitude response, periodicity of DTFT
42 analysis of LTI FIR system: frequency, amplitude, phase response, group delay
E: Digital Processing of Continuous-Time Signals 43-49
43 sampling, Shannon’s theorem
44 impulse train and Fourier-series
45 impulse train and sampling in frequency-domain
46 sampling in frequency-domain
47 aliasing
48 sampling, aliasing, anti-aliasing
49 anti-aliasing filter
F: Finite-Length Discrete Transforms 50-52
50 DFT, matrix product
51 circular shift, DFT
52 circular convolution
G: Discrete-Time Systems in Frequency-domain 53-57
53 analysis of LTI IIR system, transfer function, convolution theorem, partial fraction

expansion
54 amplitude response grafically from pole-zero-plot
55 analysis of LTI IIR system, pole-zero plot
56 transfer function, region of convergence (ROC)
57 scaling factor
H: Filter Types 58-61
58 linear-phase FIR filters
59 filter types: allpass, zero-phase, linear-phase, minimum-phase, maximum-phase
60 minimum-phase FIR filter, inverse filter
61 parallel system
I: Digital Filter Structures 62-65
62 LTI subsystems
63 direct form (DF) structures
64 allpass filter
65 polyphase structure
J: IIR Digital Filter Design 66-68
66 filter specifications
67 analog filter approximations
68 bilinear transform and impulse-invariant method in digital filter design
K: FIR Digital Filter Design 69-71
69 optimal finite-length approximation of ideal infinite-length impulse response
70 FIR-window method in digital filter design
71 computational comparisons between IIR and FIR filters

continued on next page
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continued from previous page
# Subject

L: DSP Algorithm Implementation 72-76
72 computational set of equations, presedence graph
73 FFT computational complexity
74 radix-2 DIT FFT algorithm
75 binary addition and substraction, two’s complement
76 fixed-point binary number representations
M: Analysis of Finite Wordlength Effects 77-80
77 quantization, error densities
78 roundoff noise in FIR filters
79 signal-to-noise ration (SNR)
80 error-feedback structure
N: Multirate Digital Signal Processing 81-86
81 up- and downsampling in time- and frequency domain
82 multirate system analysis
83 linearity of up- and downsampling systems
84 filter bank
85 interpolated FIR filter (IFIR), FIR window method design
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T-61.3010 Digital Signal Processing and Filtering

Notations

Notation Explanation suomeksi

x[n] input sequence syötesekvenssi
y[n] output sequence vastesekvenssi
h[n] impulse response impulssivaste
s[n] step response askelvaste
δ[n] unit impulse function yksikköimpulssifunktio
µ[n] unit step function yksikköaskelfunktio

j, i imaginary unit
√
−1, j is preferred in DSP imaginaariyksikkö

z, z∗ complex number z and its complex conjugate kompleksiluku ja sen liit-
toluku

X(ejω) input spectrum syötteen spektri
Y (ejω) output spectrum vasteen spektri
H(ejω) frequency response of a digital filter taajuusvaste
|H(ejω)| magnitude (or amplitude response) of a digital

filter
magnitudivaste (tai ampli-
tudivaste)

A(ejω) amplitude response of a digital filter amplitudivaste
∠H(ejω) phase response of a digital filter vaihevaste
τ(ω) group delay function ryhmäviive
H(z) transfer function of a filter siirfofunktio
H(jΩ) frequency response of an analog filter taajuusvaste
f frequency, [f ] = Hz = 1/s taajuus
Ω angular frequency for continuous-time signals,

Ω = 2πf , [Ω] = rad/s
kulmataajuus

ω normalized angular frequency for discrete-
time sequences, ω = 2πΩ/ΩT = 2πf/fT ,
[ω] = rad/sample

normalisoitu kulmataajuus

fs, fT sampling frequency näytteenottotaajuus
fstop, fs cut-off frequency for stopband estokaistan rajataajuus
fpass, fp cut-off frequency for passband päästökaistan rajataajuus
fMATLAB normalized frequency in Matlab, fMATLAB =

2f/fT

Matlabissa normalisoitu
taajuus

WN WN = ej2π/N , a frequency component in DFTs DFT:ssä käytetty kompo-
nentti
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T-61.3010 Digital Signal Processing and Filtering
Example problems for spring 2009. Corrections and comments to t613010@ics.tkk.fi!

Problems and Solutions

1. Problem: Complex numbers and trigonometric functions.

a) Express z = 2e−jπ in Cartesian coordinates.

b) Express z = −1 + 2j in polar coordinates.

c) Which angles satisfy sin(ω) = 0.5?

d) What are z + z∗, |z + z∗|? and ∠(z + z∗)? What are zz∗, |zz∗|? and ∠zz∗?

[L0130] Solution: Complex numbers in the Cartesian coordinate system (or rectangular
coordinate system) are given with z = x+yj, where j or i is the imaginary unit j ≡

√
−1.

The same in the polar coordinate system is z = r · ejθ, where r is distance to origin
(radius) and θ angle, see the formula table on page 166. The complex conjugate z∗ (or
z) is z∗ = x− yj = r · e−jθ Euler’s formula decomposes complex exponential function to
cosine and sine, ejω = cos(ω) + j sin(ω). Remember also that 360 degrees (whole circle)
corresponds 2π in radians.

a) “Brute force” using Euler’s formula and cos(−x) = cos(x) and sin(−x) = − sin(x),

z = 2e−jπ = 2(cos(−π) + j sin(−π)) = 2(cos(π)− j sin(π)) = −2

or using directly the unit circle and seeing that when the angle is −π in radians
(−180 degrees) then e−jπ = −1.

b) The radius r =
√

(−1)2 + 22 =
√

5 ≈ 2.2 and the angle in radians θ = π −
arctan(2/1) ≈ 2.03 ≈ 0.65π. So, z = −1 + 2j =

√
5 ej(π−arctan(2)) ≈ 2.2 e2.03j .

Note! Always check the right quarter in the figure.

c) In Figure 1(b) a dashed line y = 0.5 gives ω1 = arcsin(0.5) = π/6 and ω2 =
π − arcsin(0.5) = 5π/6, or any 2π-multiple.

d) Summing is concatenation of vectors. z + z∗ = r(ejω + e−jω) = 2r cos(ω) ∈ R. From
previous, |z + z∗| = |2r cos(ω)| and ∠(z + z∗) = 0. Using Cartesians, z + z∗ = 2x.

Product of complex number and its complex conjugate: zz∗ = (rejω)(re−jω) =
r2ej(ω−ω) = r2, and |zz∗| = r2 and ∠zz∗ = 0.
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z = x + yj

  = r ejθ
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z in Carthesian and polar coordinate systems
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Figure 1: Problem 1, unit circle in complex plane (left), and points for (a), (b), and (c) (right).
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2. Problem: Examine the connection between exponential functions and cosines and sines.

a) Express with cosines and sines: ejθ + ej(−θ).

b) Express with cosines and sines: ejθ − ej(−θ).

c) Express with cosines and sines: ejπ/8 · ejθ − ej(−π/8) · ej(−θ).

[L0140] Solution: Euler’s formula ejθ = cos(θ) + j · sin(θ) can be thought as a phasor
going around on the unit circle, see Problem 5. It is an unit circle because |ejθ| =√

cos2 + sin2 = 1 always. Cosine is an even function f(x) = f(−x), whereas sine is odd
function f(x) = −f(−x). Real part of ejθ is cosine, and imaginary part is sine.

a) Sum of exponentials at positive frequency θ and negative frequency −θ gives a real
cosine at frequency θ:

ejθ = cos(θ) + j · sin(θ)

ej(−θ) = cos(−θ) + j · sin(−θ) = cos(θ)− j · sin(θ)

ejθ + ej(−θ) = 2 cos(θ) ∈ R

cos(θ) = 0.5 · ejθ + 0.5 · ej(−θ)

b) In the same way as in (a) but substracting the last from the first gives

ejθ = cos(θ) + j · sin(θ)

ej(−θ) = cos(−θ) + j · sin(−θ) = cos(θ)− j · sin(θ)

ejθ − ej(−θ) = 2j sin(θ) ∈ C

sin(θ) =
1

2j
· ejθ − 1

2j
· ej(−θ) = −0.5j · ejθ + 0.5j · ej(−θ)

where 1
2j

= − j
2

as shown in Problem 3(e).

c) This can be thought as phase shift. First, use the rule ex · ey = ex+y,

ejθ · ejπ/8 = ej(θ+π/8)

e−jθ · e−jπ/8 = e−j(θ+π/8)

Now, we see using (b)

ejπ/8 · ejθ − ej(−π/8) · ej(−θ) = 2j sin(θ + π/8)

Notice that each sinusoidal (cos, sin) can be replaced by two complex exponentials with
a positive and a corresponding negative angle. When considering Fourier analysis, a real
cosine signal with frequency fc can be represented in the spectrum with a peak at fc (in
one-sided spectrum) or with peaks at fc and −fc (in two-sided spectrum). If the two-sided
spectrum is not symmetric, then the signal is surely not real but complex. More about
this later in Fourier analysis, see Problem 37 and 41.
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3. Problem: Consider the following three complex numbers z1 = 3 + 2j, z2 = −2 +4j, and
z3 = −1− 5j.

a) Draw the vectors z1, z2, and z3 separately in the complex plane.

b) Draw and compute the sum z1 + z2 + z3.

c) Draw and compute the weighted sum z1 − 2z2 + 3z3.

d) Draw and compute the product z1 · z2 · z3.

e) Compute and reduce the division z1/z2.

[L0138] Solution:

a) Each complex number can be thought as a vector starting from origin and the other
end at point z. See Figure 2(a).

b) Real parts and imaginary parts can be summed separately z = (3−2−1)+ (2+4−
5)j = j. This can be expressed in the polar coordinates z = ej(π/2), i.e. on the unit
circle (radius 1) and the angle one fourth a circle (90 degrees, π/2) counterclockwise.

c) If you are computing without computer, be attentive and check twice that all coef-
ficients are correctly reduced. z = (3 + 2j) − 2(−2 + 4j) + 3(−1 − 5j) = 4 − 21j.
Again, in the polar coordinates r =

√

(4)2 + (−21)2 ≈ 21.38. The angle θ =
arctan((−21)/(4)) ≈ −1.38 ≈ −0.44π (−79◦).

If z = −4 − 21j, then the calculator gives θ = arctan((−21)/(−4)) ≈ 1.38 ≈ 0.44π
(+79◦), which is incorrect (atan(-21/-4)). Notice that now z is in the third quarter
and±π has to be added. The correct angle is θ = arctan((−21)/(−4))−π ≈ −1.76 ≈
−0.56π (−101◦), in Matlab either atan2(-21,-4) or angle(-4-21j).

d) When using Cartesian coordinates, multiply terms normally and apply j2 = −1, e.g.,
(3 + 2j) · (−2 + 4j) = −6 + 12j − 4j + 8j2 = −14 + 8j. The product in the polar
coordinates means multipling the lengths of vectors and summing the angles.

z = (3 + 2j) · (−2 + 4j) · (−1− 5j) = 54 + 62j ≈ 82.2 · ej(0.27π)

=
√

9 + 4 ·
√

4 + 16 ·
√

1 + 25 · ej(arctan(2/3)+arctan(4/(−2))+arctan((−5)/(−1)))

e) The denominator is now complex. If both sides are multiplied by the complex con-
jugate of the denominator then the denominator becomes real. Just as in Problem 1
z · z∗ = |z|2 = r2 ∈ R. Notice also that 1/j is −j because (1/j) · (j/j) = j/j2 = −j.

z = (3 + 2j)/(−2 + 4j) | · (−2− 4j)/(−2− 4j)

= (2− 12j)/20
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Figure 2: The vectors in Problem 3(a) and (b).
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4. Problem: Examine a complex-valued function

H(ω) = 2− e−jω

where ω ∈ [0 . . . π] ∈ R.

a) Compute values of Table 1 with a calculator. Euler: ejω = cos(ω) + j sin(ω).

b) Draw the values at ω = {0, π/4, . . . , π} into complex plane (x, y). Interpolate
smoothly between the points.

c) Sketch |H(ω)| as a function of ω. Interpolate smoothly.

d) Skecth ∠H(ω) as a function of ω. Interpolate smoothly.

ω x = Real(H(ω)) y = Imag(H(ω)) r = |H(ω)| θ = ∠H(ω)

0
π/4
π/2

3π/4
π

Table 1: Problem 4: values of a complex-valued function in rectangular (x, y) and polar (r, θ)
coordinates.

[L0131] Solution: In this course complex-valued functions are widely used, e.g. as fre-
quency responses of the systems or in Fourier transforms. The argument of the function
is real-valued ω ∈ R, but the value of the function is generally complex H(ω) ∈ C due to
complex factor ejω. In case of the transfer function H(z) both the argument z and the
function H(z) are complex-valued.

a) Sometimes it is possible to simplify H(ω). However, normally it is useful to write
down a suitable format for the use of the calculator. In this case, Cartesian coordi-
nate system with x and y is used:

H(ω) = 2− e−jω = 2− (cos(−ω) + j sin(−ω))

= 2− cos(ω)
︸ ︷︷ ︸

x

+j sin(ω)
︸ ︷︷ ︸

y

The variables r and θ of the polar coordinate system are received from the right-
angled triangle: r =

√

x2 + y2 and θ = arctan(y/x).

On the other hand, in this case it is easily seen that there is only a circle (e−jω)
whose origin is shifted to z = 2.

b) Take the columns x and y of Table 2 and sketch the curve like in Figure 3(a). There
is a line drawn in the plot, from the origin to a point related to ω = 3π/4, i.e. (x, y).
The length of the line is r and the angle between the line and x-axis is θ, so it can
be written in polar coordinates r ejθ.

c) Take the column r of Table 2 and sketch the curve like in Figure 3(b). The plot
shows the distance r from the origin to a point at given value of ω.

d) Take the column θ of Table 2 and sketch the curve like in Figure 3(c). The plot
shows the angle θ between the origin and a point at given value of ω.
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ω x = Real(H(ω)) y = Imag(H(ω)) r = |H(ω)| θ = ∠H(ω)

0 1.0000 0 1.0000 0
π/4 1.2929 0.7071 1.4736 0.1593π
π/2 2.0000 1.0000 2.2361 0.1476π

3π/4 2.7071 0.7071 2.7979 0.0813π
π 3.0000 0 3.0000 0

Table 2: Problem 4: values of a complex-valued function in rectangular (x, y) and polar (r, θ)
coordinates. The row 3π/4 is highlighted for Figure 3.
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0π
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ω 0.5π π

0.1π

0.2π

ω

Figure 3: Problem 4: Plots of a complex-valued function, (a) H(ω) in complex plane, (b)
absolute values |H(ω)|, and (c) angle ∠H(ω). The case when ω = 3π/4 is highlighted.

5. Problem: Compute values of a complex-valued function H(ω)

H(ω) = 3e−jω + 2e−2jω − e−3jω

at ω = {0, π/2, π} considering each complex exponential function as a phasor – not
explicitly applying Euler’s formula (decomposition to cosines and sines).

[L0165] Solution: The exponential function f(ω) = A ejω+θ, where A is radius and θ
phase shift, can be considered as a phasor , which draws counterclockwise a circle with
radius A when ω = 0 . . . 2π. The starting and ending point is A ejθ.

There is a very nice Java applet demo “Harmonic phasors and Fourier series” in http://

www.jhu.edu/~signals/phasorlecture2/indexphasorlect2.htm. Choose “Harmonic
Phasor Sums” and click positions (3, 0), (5, 0), and (4, 0) in the complex plane for the
starting point and press Play button. This phasor rotates counterclockwise (ejω instead
of e−jω). A similar Matlab program phasor.m can be found in the course web site. This
problem requires a command phasor([3 2 -1], -1);

Consider each exponential as a phasor with radius 3, 2, and 1, starting points (3, 0), (2, 0),
and (−1, 0), angular frequencies −ω, −2ω, and −3ω, and figure out / compute the values
H(ω) = {4, −2− 4j, 0} at ω = {0, π/2, π}:

3e−jω 2e−2jω −e−3jω H(ω)

ω = 0 3 2 −1 4
ω = π/2 −3j −2 −j −2− 4j

ω = π −3 2 1 0

These values are illustrated in Figure 4, where first three columns are individual phasors
and the last column the phasor sum H(ω). The first row is the initial case at ω = 0.
The second row shows that the first phasor has moved one quarter clockwise (−ω), second
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phasor two quarters (−2ω), and third phasor three quarters (−3ω), i.e., moving three times
“faster” than the first phasor.
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Figure 4: Problem 5: Columns: Phasors and their sum. Rows: ω = 0, ω = 0.5π, and ω = π.
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6. Problem: A cosine signal can be represented using its angular frequency Ω or frequency
f , amplitude A and phase θ:

x(t) = A cos(Ωt + θ) = A cos(2πft + θ)

a) Estimate A, f, θ for the cosine x1(t) in Figure 5(a).

b) Sketch a cosine x2(t), with A = 2, angular frequency 47 rad/s and angle −π/2.

c) Express x2(t) in (b) using exponential functions.
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Figure 5: Cosine x1(t) (left) and x2(t) (right) in Problem 6.

[L0132] Solution: There is a lot of variation in symbols in different signal processing
books and texts. There is probably also variation in these exercises, however, we try to
use the following symbols listed on page 5 and in Table 3 below.

symbol units meaning
f Hz frequency
Ω rad/s angular frequency, Ω = 2πf
ω rad normalized angular frequency, ω = 2π(Ω/Ωs)
fMATLAB 1 normalized Matlab frequency, fMATLAB = 2f/fs

Table 3: Problem 6, symbols of frequencies. fs refers to sampling frequency, and Ωs = 2πfs.

A cosine signal can be represented using its angular frequency Ω or frequency f , amplitude
A and phase θ:

x(t) = A cos(Ωt + θ) = A cos(2πft + θ)

For a discrete sequence of numbers

x[n] = x(t)|t=nTs = x(t)|t=n/fs = A cos(2π(f/fs)n + θ) = A cos(ωn + θ)

where Ts is sampling interval (period), fs sampling frequency, and ω normalized angular
frequency .

a) Cosine oscillates between −0.8 and 0.8, so A = 0.8. There is no phase shift, θ = 0.
There is one oscillation in 0.2 seconds, so there are 5 periods in one second, f = 5
Hz, or Ω = 2πf = 10π rad/s.

Hence, x1(t) = 0.8 cos(10πt).
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b) x2(t) can be written directly x2(t) = 2 cos(47t− π/2).

Now Ω = 47 rad/s, hence f ≈ 7.5 Hz and the period T = 1/f ≈ 0.13 s. At
t = 0, x2(0) = 2 cos(−π/2) = 0, and increasing. Note that cos(Ωt− π/2) ≡ sin(Ωt).
Amplitude A = 2, so the curve oscillates between −2 and 2. The curve is plotted in
Figure 6(b).

c) Using Euler’s formula, and properties of cosine (even function f(−x) = f(x)) and
sine (odd function f(−x) = −f(x)),

ejω = cos(ω) + j sin(ω)

+ e−jω = cos(ω)− j sin(ω)

ejω + e−jω = 2 cos(ω)

ejω = cos(ω) + j sin(ω)

+ − e−jω = − cos(ω) + j sin(ω)

ejω − e−jω = 2j sin(ω)

Now, it can be seen that

x2(t) = 2 cos(47t− π/2)

= ej(47t−π/2) + e−j(47t−π/2)

which can be even “simplified” (?!) to x2(t) = j[e−j47t − ej47t].

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−1

−0.5

0

0.5

1

0 0.02 0.04 0.06 0.08 0.1 0.12

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 6: Cosine x1(t) (left) and x2(t) (right) in Problem 6.
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7. Problem: Some elementary functions and notations.

a) Compute with a calculator: log8 7.

b) The power of signal is attenuated from 10 to 0.01. How much is the attenuation in
decibels?

c) Sketch the curve p(x) =
∑+N

k=−N kx for various N .

d) Sinc-function is useful in the signal processing. It is defined sinc(x) = sin(πx)/(πx).
Also it is known that sin(x)/x→ 1, when x→ 0, and with sinc-function sinc(0) = 1.

Consider h(n) = sin(0.75πn)/(πn). What is h(0)?

e) What is the binary number (1001011)2 as a decimal number?

f) What is the hexadecimal number 0x01EF3A as a decimal number?

g) Modulo-N operation for number x is written here as < x >N . What is < −5 >3?

[L0133] Solution:

a) logarithm: log8 7 = loge 7/ loge 8 ≈ 1.9459/2.0794 ≈ 0.936.

Sometimes it is useful to convert, e.g., 22008 to decimal base: 22008 = 10x, taking log10

on both sides: x = 2008 log10 2 ≈ 604.4682. Now 100.4682 ≈ 2.9392, which finally
gives 22008 ≈ 2.9 · 10604. Remember also 210 = 1024 ≈ 1000 (k), 220 = 1048576 ≈ 106

(M), etc. For instance, 232 = 22 · 230 ≈ 4G.

b) Decibel scales are widely used to compare two quantities. The decibel difference
between two power levels, ∆L, is defined in terms of their power ratio W2/W1 (p.
99, Rossing et al., The Science of Sound, 3rd Edition, Addison Wesley)

∆L = L2 − L1 = 10 log10 W2/W1

Now the power (square) of signal is attenuated from 10 to 0.01, so the signal is
attenuated by 30 dB:

10 log10(0.01/10) = 10 log10 10−3 = −30

In case of computing amplitude response |H(ejω)|, e.g. in Matlab directly from the
equation or with the command freqz, the values are squared for decibels

10 log10 |(H/H0)|2 = 20 log10 |(H/H0)|

c) If Σ confuses, open the expression! There is hardly anything to draw!

p(x) =

+N∑

k=−N

kx = (−N)x+ . . .+(−2)x+(−1)x+0x+x+2x+ . . . +Nx ≡ 0, ∀N, x

d) sinc-function is very useful in the signal processing, and it is defined sinc(x) =
sin(πx)/(πx). Also it is known that sin(x)/x → 1, when x → 0, and with sinc-
function sinc(0) = 1. Fourier-transform of a rectangle (box) signal produces a spec-
trum with shape of sinc-function, and vice versa, a signal like sinc-function has a
spectrum of rectangular shape.

Note that the result of the problem is not 1 nor 0,

h(n) = sin(0.75πn)/(πn) = 0.75 sin(0.75πn)/(0.75πn) = 0.75 sinc(0.75n)

h(0) → 0.75
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e) The result depends on which number representation is chosen. In case of multi-byte
data types numbers can be saved in big-endian or little-endian manner. DSPs are
divided to fixed-point and floating-point processors (IEEE 754 , sign bit, exponent
and mantissa fields). Least significant bit (LSB) is normally the last bit, most
significant bit (MSB) leftmost. Negative numbers and fractions has to be considered,
too. (Mitra 2Ed Sec. 8.4 / 3Ed Sec. 11.8 ) deals with all aspects of the number
representation.

When both negative and positive b-bit fraction values are needed, 1001011 is con-
sidered to have a sign bit first, and then fraction bits, like s∆a−1a−2 . . . a−b. Table 4
contains some possible results with values b = 6 and s = 1, see also (Mitra 2Ed Table
8.1, p. 557 / 3Ed Table 11.1, p. 638 ).

non-negative fixed-point 1001011 1 · 64 + 1 · 8 + 1 · 2 + 1 · 1 = 75

sign-magnitude 1∆001011 (−2s + 1)
∑b

i=1 a−i2
−i = −11/64 ≈ −0.1719

ones’ complement 1∆001011 −s · (1− 2−b) +
∑b

i=1 a−i2
−i = −52/64 ≈ −0.8125

two’s complement 1∆001011 −s +
∑b

i=1 a−i2
−i = −53/64 ≈ −0.8281

offset binary 1∆001011 +11/64 ≈ +0.1719

Table 4: Problem 7: Examples on binary number representations with values b = 6 and s = 1.

f) In some programming languages a prefix 0x is reserved for hexadecimals , 16-base
numbers, where {A, B, C, D, E, F} = {(10)10, (11)10, . . . , (15)10}. Now, 0x01EF3A
is 0 ·165 +1 ·164 +14 ·163 +15 ·162 +3 ·16+10 = 126778. If considering RGB colors,
then each component has two hexas, 01.EF.3A, meaning values red = 1 (1/255),
green 239, and blue 58. A similar approach for IP addresses (four 2-hexas).

g) See also “circular shift of a sequence” (Mitra 2Ed Sec. 3.4.1, p. 140 / 3Ed Sec.
5.4.1, p. 244 ). In the modulo operation, (m mod N), or, < m >N , we want to
compute the remainder (or residue) r when m is divided by N , that is, m = r+kN ,
so that the remainder is always in the range 0 . . . N − 1. Now for < −5 >3 we have
the equation with m = −5 and N = 3 as −5 = r + k · 3. With k = −2 r becomes in
the range 0 . . . 2 and it is r = 1. Hence, < −5 >3= 1. In case of a periodic sequence
(N = 3) this yields . . . = x[−5] = x[−2] = x[1] = x[4] = x[7] = . . .

A circular buffer is implemented in the instruction sets of many DSPs. Assume that
there is a buffer of size 1024 bytes, with addresses 0x0000 to 0x03FF in hexadecimals.
New 8-bit (byte) samples are read into a buffer where an address counter (pointer)
is increased by one each time. When the counter has the value 0x03FF , the next
value is < 0x0400 >0x0400= 0x0000. In other words, the oldest sample is replaced by
the newest. See Figure 7 for figures of linear and circular buffers.

0x0001

0x0002

0x03FD

0x03FE

0x03FF

0x0000

0x0000

0x03FD
0x03FE

0x03FF
0x0001

0x0002

Figure 7: Problem 7: linear and circular buffer with addresses from 0x0000 to 0x03FF.
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8. Problem: Roots of a polynomial.

a) Compute roots of H(z) = z2 + 2z + 2.

b) Compute roots of H(z) = 1 + 16z−4.

c) Compute long division (4z4 − 8z3 + 3z2 − 4z + 6)/(2z − 3).

[L0134] Solution: Roots of a polynomial p(x) can be found from p(x) = 0. Nth order
p(x) has N roots, see Problem 8(b).

Roots of a complex z = r ej(θ+2πk) are N
√

z = | N
√

r| · ej(2π k/N+θ/N), where k = 0 . . . N − 1.

In this course roots of transfer function H(z) provide information on the behaviour of the
filter. The order of the rational polynomial H(z) = B(z)/A(z) is the maximum of the
orders of B(z) and A(z).

a) The order of H(z) is 2. Using the equation for solving the second-order polynomials
z = (−b±

√
b2 − 4ac)/(2a), the roots are z1 = −1 + j and z2 = −1− j. This can be

assured by multiplication (z − z1)(z − z2) = z2 − (z1 + z2)z + z1z2 = z2 + 2z + 2.

b) The order of H(z) is 4, and we have 4 roots. Now, when setting H(z) = 1+16z−4 = 0,
the equation can be multiplied by z4 on both sides. Hence, z4+16 = 0 and z = 4

√
−16.

Because −16 = 24 · ej(π+2πk), we get four roots using N
√

z = | N
√

r| · ej(2π k/N+θ/N).

Roots: zk = 2 ej(2πk/4+π/4), with k = 0 . . . 3. Again, z4
0 = (2ejπ/4)4 = 24ej4π/4 =

16ejπ = −16, and similarly other zk result to −16. In Figure 8 all four roots are
plotted with circles.

−2 0 2
−2

−1

0

1

2 z
1
 = 1.41 + 1.41j

r
1
 = 2, θ

1
 = π/4

Figure 8: Problem 8(b): four roots of fourth order H(z) = 1 + 16z−4.

c) Division operation can be applied to polynomials just as for normal numbers. Polyno-
mial product and division have a very close connection to the convolution operation.
For example, in Matlab there is the same function conv for the both operations.

2z3 − z2 − 2

2z − 3
)

4z4 − 8z3 + 3z2 − 4z + 6
− 4z4 + 6z3

− 2z3 + 3z2

2z3 − 3z2

− 4z + 6
4z − 6

0
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9. Problem: Examine a complex-valued function (z ∈ C)

H(z) =
1 + 0.5z−1 + 0.06z−2

1− 1.4z−1 + 0.48z−2

a) Multiply both sides by z2.

b) Solve z2 + 0.5z + 0.06 = 0.

c) Solve z2 − 1.4z + 0.48 = 0.

d) H(z) can be written with five values complex values K, z1, z2, p1, and p2

H(z) = K · (z − z1) · (z − z2)

(z − p1) · (z − p2)

What are the five values?

e) What are the coefficients of H(z). What are the roots of H(z)? What is the order of
the numerator polynomial of H(z)? What is the order of the denominator polynomial
of H(z)?

[L0139] Solution: In this course complex-valued functions are widely used. In case of the
transfer function H(z) both z and H(z) are complex-valued. A typical form of a transfer
function of a FIR filter is

H(z) = b0 + b1z
−1 + b2z

−2 + . . . + bMz−M

and that of an IIR filter is

H(z) =
b0 + b1z

−1 + b2z
−2 + . . . + bMz−M

1 + a1z−1 + a2z−2 + . . . + aNz−N

a) Multiplication H(z) · (z2/z2) does not change the values of H(z), but it is more
convenient to work with positive exponentials:

H(z) =
z2 + 0.5z + 0.06

z2 − 1.4z + 0.48

b) Using the formula for second order polynomials az2 + bz + c = 0

z =
−b±

√
b2 − 4ac

2a
we get easily the roots z1 = −0.3, z2 = −0.2. In Matlab you can write P = [1 0.5

0.06]; roots(P).

c) Similarly, the roots p1 = 0.8, p2 = 0.6.

d) Using the notation from (b) and (c),

H(z) = K · (z + 0.3) · (z + 0.2)

(z − 0.8) · (z − 0.6)

= K · z
2 + 0.5z + 0.06

z2 − 1.4z + 0.48

we can scale H(z) correctly by choosing K = 1.

e) In this case the coefficients were {1, 0.5, 0.06} in numerator polynomial (upper part),
and {1, −1.4, 0.48} in denominator polynomial (bottom part).

Roots were computed in (b) and (c). In DSP we call the roots of numerator poly-
nomial as “zeros”. The roots of denominator polynomial (bottom part) are “poles”.

As seen in (d) the same function H(z) can be expressed either using coefficients
or roots (and scaling factor). In the filter analysis the positions of roots give some
information on the nature of the filter. More about this in Problem 54.
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10. Problem: Partial fraction decomposition is used to divide a high-order rational ex-
pression into a sum of low-order rational expressions. For example, 1/(x2 + 3x + 2) =
1/(x + 1)− 1/(x + 2).

a) Decompose f(x) = 1/(x2 + 1) into sum of first-order expressions.

b) Decompose H(z) = (0.4 − 0.2z−1)/(1 − 0.1z−1 − 0.06z−2) into sum of first-order
expressions.

[L0135] Solution: Partial fraction decomposition (or expansion) is used to divide a
high-order rational expression into a sum of low-order rational expressions.

Decomposition is quite trivial if there are not multiple roots neither is the order of nu-
merator polynomial as big or bigger as the order of the denominator polynomial. Decom-
position requires taking roots of a polynomial, so it is possible to derive by hands only in
some trivial cases, e.g., 1/(x2 + 3x + 2) = 1/(x + 1) − 1/(x + 2). For more complicated
cases, see (Mitra 2Ed Sec. 3.9 / 3Ed Sec. 6.4.3 ), or any other math reference. The
command in Matlab is residuez.

In this course partial fractions are used when finding an explicit form of the impulse
response h[n] from the transfer function H(z). In the list of Fourier-transform pairs there
are only inverse transforms for the first order expressions. So, if the transfer function is
of second-order or higher, it has to be converted to a sum of first-order expressions by
partial fraction decomposition (expansion).

Rules of thumb, (1) compute roots of the denominator polynomial, (2) write down the sum
of first-order rational polynomials, (3) compute the unknown constants (equation pairs).
Note that the decomposition in not unique, but there are several different expressions
which lead to the same result.

a) Find the roots of the denominator: x2 + 1 = 0 ⇒ x1 = −j, x2 = j. Roots can be
complex, too! Hence,

f(x) =
A

x− x1

+
B

x− x2

=
A

x + j
+

B

x− j

=
A(x− j) + B(x + j)

x2 + jx− jx + 1
=

x(A + B) + j(−A + B)

x2 + 1

⇒
{

A + B = 0

−A + B = −j
⇒
{

A = 0.5j

B = −0.5j

Finally,

f(x) =
0.5j

x + j
− 0.5j

x− j

b) In this course z−1 corresponds a unit delay in time-domain. The numerator poly-
nomial can divided and z−1 terms can be taken to front, and the partial fraction is
done only once for P (z), whose numerator polynomial is plain 1,

H(z) =
0.4− 0.2z−1

1− 0.1z−1 − 0.06z−2

= 0.4 · 1

1− 0.1z−1 − 0.06z−2
︸ ︷︷ ︸

P (z)

−0.2z−1 · 1

1− 0.1z−1 − 0.06z−2
︸ ︷︷ ︸

P (z)
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The denominator of P (z) is set to zero and multiplied by z2: z2 − 0.1z − 0.06 = 0.
The roots are z1 = 0.3 and z2 = −0.2.

P (z) =
A

1− 0.3z−1
+

B

1 + 0.2z−1

=
A + 0.2Az−1 + B − 0.3Bz−1

1− 0.1z−1 − 0.06z−2

=
1

1− 0.1z−1 − 0.06z−2
| as stated above

Now we get a pair of equations from comparing numerator polynomials
{

A + B = 1

0.2A− 0.3B = 0
⇒
{

A = 0.6

B = 0.4

and finally,

H(z) = 0.4 ·
( 0.6

1− 0.3z−1
+

0.4

1 + 0.2z−1

)

− 0.2z−1 ·
( 0.6

1− 0.3z−1
+

0.4

1 + 0.2z−1

)

From this expression of H(z) we can easily (inverse) transform H(z) → h[n], see,
e.g., Problem 55(f).
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11. Problem: Sum of geometric series.

a) What is sum of series S =
∑∞

k=0(0.5)k.

b) S =
∑∞

k=10(−0.6)k−2.

c) S =
∑∞

k=2(0.8
k−2 · e−jωk).

[L0136] Solution: Sum of geometric series is applied in Fourier and z-transforms. When
the ratio q in geometric series is |q| < 1, the sum of series converges to

∑∞
k=0 qk = 1/(1−q),

and correspondingly
∑N

k=0 qk = (1− qN+1)/(1− q).

Other known series are {1/n} and {1/n2}. Notice that the sum of the former does not
converge, while the latter does.

a) Directly from the formula with q = 0.5, S = 1/(1− 0.5) = 2.

b) Open Σ expression if it seems to be difficult.

S =
∞∑

k=10

(−0.6)k−2 = (−0.6)8 + (−0.6)9 + (−0.6)10 + . . .

=

∞∑

k=8

(−0.6)k

=

∞∑

k=0

(−0.6)k −
7∑

k=0

(−0.6)k

= 1/(1 + 0.6)− (1− (−0.6)8)/(1 + 0.6) = (−0.6)8/1.6 ≈ 0.0105

c) Discrete-time Fourier transform is defined as

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

S =
∞∑

k=2

(0.8k−2 · e−jωk) |k = m + 2

=
∞∑

m=0

(0.8m · e−jωm · e−j2ω)

= e−j2ω ·
∞∑

m=0

(0.8e−jω)m

= e−j2ω · 1

1− 0.8e−jω

The term e−j2ω can be seen as a time shift (delay in this case) of two units.
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12. Problem: Integral transforms, like Fourier transforms, play an important role in signal
processing. Compute integrals

a) X(Ω) =
∫ 4

0
e−jΩt dt

b) x[n] = 1
2π

∫

2π
X(ejω) ejωn dω, where

X(ejω) = 2πδ(ω + 0.2π)− jπδ(ω + 0.1π) + jπδ(ω − 0.1π) + 2πδ(ω − 0.2π)

[L0137] Solution: A general integral transform is defined by

F (ω) =

∫ b

a

f(t)K(ω, t)dt

where K(ω, t) is an integral kernel of the transform, see e.g. (Mitra 2Ed Sec. - / 3Ed Sec.
5.1 ) or http://mathworld.wolfram.com/IntegralTransform.html. See Problem 17
for discussion on transforms used in DSP.

a) Now x(t) can be considered as a rectangular signal, and its Fourier transform is a
sinc-function.

X(Ω) =

∫ 4

0

e−jΩtdt =

4/

0

(1/(−jΩ))e−jΩt = (1/(−jΩ))(e−j4Ω − 1)

= (1/(−jΩ))(−e−j2Ω)(ej2Ω − e−j2Ω) = (1/(−jΩ))(−e−j2Ω)(2j sin(2Ω))

= 4e−j2Ω(sin(2Ω)/(2Ω)) = 4e−j2Ω sinc(2Ω/π)

Now we have computed continuous-time Fourier transform (CTFT). It is often writ-
ten as X(jΩ) instead of X(Ω) in DSP.

b) Now we are computing inverse discrete-time Fourier transform (IDTFT), (Mitra 2Ed
Eq. 3.7 / 3Ed Eq. 3.16 ). The spectrum X(ejω) consists of four peaks (only!) at
ω0 = {−0.2π, −0.1π, 0.1π, 0.2π}, which are written with Dirac’s delta function
δ(ω − ω0) and computed as

∫

2π

k · δ(ω − ω0) · f(ω) dω = k · f(ω0)

when ω = ω0, and zero elsewhere. Integral is taken from any period of 2π, and here
we choose −π . . . π. Euler’s formula ( ejθ +e−jθ = 2 cos(θ) and ejθ−e−jθ = 2j sin(θ)),
see Problem 2, is applied and the result is a discrete sequence x[n] of numbers. Note
that each peak pair at −ω0 and ω make up a sinusoidal, if the phases are correctly
chosen.

x[n] =
1

2π

∫

2π

X(ejω) ejωn dω, where

X(ejω) = 2πδ(ω + 0.2π)− jπδ(ω + 0.1π) + jπδ(ω − 0.1π) + 2πδ(ω − 0.2π)

=
1

2
·
(∫ π

−π

2δ(ω − 0.2π) · ejωn dω +

∫ π

−π

jδ(ω − 0.1π) · ejωn dω −
∫ π

−π

jδ(ω + 0.1π) · ejωn dω +

∫ π

−π

2δ(ω + 0.2π) · ejωn dω
)

=
1

2
·
(
2ej0.2πn + jej0.1πn − je−j0.1πn + 2e−j0.2π

)

=
1

2
·
(
2[ej0.2πn + e−j0.2π] + j[ej0.1πn − e−j0.1πn]

)

= 2 cos(0.2πn)− sin(0.1πn) ∈ R
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13. Problem: Using notation WN = e−j2π/N and matrix

D4 =







W 0
4 W 0

4 W 0
4 W 0

4

W 0
4 W 1

4 W 2
4 W 3

4

W 0
4 W 2

4 W 4
4 W 6

4

W 0
4 W 3

4 W 6
4 W 9

4







=







1 1 1 1
1 W 1

4 W 2
4 W 3

4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4







compute X = D4x, when x =
[
2 3 5 −1

]T

[L0163] Solution: A common notation WN is defined as WN = e−j2π/N . We see that

|WN | = |e−j2π/N | = | cos(2π/N)− j sin(2π/N)| =
√

cos(2π/N)2 + sin(2π/N)2 = 1

That is, the points W k
N are lying uniformly spaced clockwise on the unit circle. WN is

periodic with every N , e.g., W
(2N+3)
N = e−j2π·(2N+3)/N = e−j4π · e−j6π/N = e−j6π/N = W 3

N .
Note that W 0

N = 1. An example with N = 16 is given in Figure 9.

W
16
15

W
16
14

W
16
13W

16
12

W
16
11

W
16
10

W
16
9

W
16
8

W
16
7

W
16
6

W
16
5

W
16
4 W

16
3

W
16
2

W
16
1

W
16
0

Figure 9: Problem 13: Uniformly spaced {WN} = {W 0
N , W 1

N , . . . , W 15
N } with N = 16.

When N = 4, the angle between each point is 2π/4 = π/2 (equivalent to 90◦). We can
compute values W 0

4 = 1, W 1
4 = e−j2π/4 = e−jπ/2 = −j, W 2

4 = −1, and W 3
4 = j. Using the

periodic properties of W k
N the square matrix D4 is

D4 =







1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j







Size of matrix D4 is 4 rows and 4 columns (4× 4), and that of column vector x is (4× 1).
In the matrix product X = D4x dimensions must agree: (4× 4)(4× 1), and the final size
of X is (4× 1).

X = D4x =







1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j













2
3
5
−1







=







1 · 2 + 1 · 3 + 1 · 5 + 1 · (−1)
1 · 2− j · 3− 1 · 5 + j · (−1)
1 · 2− 1 · 3 + 1 · 5− 1 · (−1)
1 · 2 + j · 3− 1 · 5− j · (−1)







=







9
−3− 4j

5
−3 + 4j







We have computed here discrete Fourier transform (DFT) for a real sequence {2, 3, 5, −1}.
The result, here {9, −3− 4j, 5, −3 + 4j}, is generally complex-valued. There are several
symmetric properties of DFT that are discussed later.

The matrix D∗
4 (DH

4 , Hermitian) is transpose of D4 with complex-conjugate values:

D∗
4 =







1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j






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14. Problem: Consider an analog signal x(t) = π · cos(4πt). Plot the analog signal, the
discrete-time signal sampled with 10 Hz, and the digital signal with accuracy to integer
numbers.

[L0280] Solution: Analog signal : both t and x(t) ∈ R. For example, you can measure
the outside temperature at any time with continuous scale.

Discrete-time signal (sequence): signal x[n] may get any values at certain time moments,
x[n] ∈ R, n ∈ Z. Often explained as a sampled version of analog signal.

Digital signal (sequence): signal x[n] is discrete also with amplitude values, n, x[n] ∈ Z.

A pure sinusoidal is x(t) = A · cos(Ωt + θ) and now we have x(t) = π · cos(4πt). The
angular frequency is Ω = 4π rad/s and the frequency f = 2 Hz while Ω = 2πf . The
period of the sinusoidal signal is T = 1/f = 0.5 second.

The sampling frequency is fs = 10 Hz, i.e., samples are taken every Ts = 0.1 seconds:
t← nTs = n/fs. This gives a discrete-time sequence

x[n] = π · cos(0.4πn)

where the normalized angular frequency is ω = 0.4π rad/sample.

Some numeric values are given below in a table, and the plots in Figure 10, where in (a)
t runs from 0 to 1.25 seconds, and in (b) and (c) n correspondingly from 0 to 12.

t n (a) x(t) (b) x[n] (c) x[n]

0 0 π · cos(0) = π π Int{π} = 3
0 < t < 0.1 ∄ cos(4πt) ∄ ∄
0.1 1 π · cos(0.4π) ≈ 0.9708 ≈ 0.9708 Int{0.9708} = 1
0.5 5 π · cos(2π) = π π Int{π} = 3
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x[3]=−3
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Figure 10: Problem 14: (a) analog signal, (b) discrete-time signal, (c) digital signal.

Discrete-time or digital signal is often called a sequence instead of signal. For instance, in
(b) we have a sequence {π, π · cos(0.4π), π · cos(0.8π), π · cos(0.8π), π · cos(0.4π), π, . . .}
and in (c) a sequence {3, 1, −3, −3, 1, 3, . . .}. Note that π is an irrational number
which cannot be expressed accurately with finite number of bits.

In practice, A/D (analog to digital) converter discretizes the analog signal into digital
signal with a certain accuracy. For instance, in audio recordings (CD quality) the sampling
frequency is 44100 Hz (44100 samples each second) and the each data sample is expressed
with 16 bits, i.e., having 216 = 65536 discrete levels between (appr.) −1 . . . + 1.

Definitions of signal types (analog, digital, etc.) may vary from book to book.
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15. Problem: There is a sketch of the magnitude response of a typical lowpass filter in
Figure 11. Sketch some other examples of the magnitude (amplitude) responses of the
following filters in the frequency domain: (a) highpass filter, (b) bandpass filter, (c)
bandstop filter, (d) notch filter, (e) multiband filter, and (f) comb filter.

|H(e   )|jω

0

1

0 π
ω

Figure 11: Problem 15: Magnitude (amplitude) response of a typical lowpass filter.

[L0288] Solution: In this course we are dealing with digital LTI filters which are frequency-
sensitive filters, in other words, you can amplify or attenuate sinusoidal components of the
input signal. Furthermore, LTI constructions are key elements in, e.g., adaptive filters.

Typical LTI filters are lowpass, highpass, bandpass, and bandstop. A word lowpass means
that low frequency components of the input signal are left or even amplified (boosted) by
the filter whereas high frequencies are attenuated (suppressed). Sketches for these basic
filter types are given in Figure 12.
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Figure 12: Problem 15: Plots of some magnitude (amplitude) responses of filters. (a) lowpass
(LP), (b) highpass (HP), (c) bandpass (BP), and (d) bandstop (BS) filter.

There are a few things to notice here. The magnitude response |H(ejω)| ∈ R, or often
also amplitude response, is the absolute value of the frequency response H(ejω) ∈ C
(generally), which is a function of (normalized angular) frequency ω ∈ R.

Both the x- and y-axis can be either in linear or logarithmic (decibel) scale depending
on the application. The x-axis of a magnitude response of a digital LTI filter is normally
scaled to the range 0 . . . π which is equivalent to 0 . . . fT /2 where fT is the sampling
frequency. The maximum of the magnitude response is often scaled to unity, that is,
the maximum in y-axis is either 1 (linear) or 0 decibels (logarithmic). See more spectra
examples from Matlab in Problem 16.

An example of an ideal filter (bandstop in this case) is given in Figure 12(d)

H(ejω) =

{

1, 0 ≤ ω < ω1, ω2 ≤ ω < π

0, ω1 ≤ ω < ω2

where ω1 and ω2 are cut-off frequencies. Ideal filters are important in theorical derivations
but they may give poor results in practice (ringing effect with audio or images). In practice
we allow some ripple (deviation) both in the stopband and passband, see Figure 12(a,b,c).
Smooth transitions from stopband to passband make the filter order lower which is often
desirable.
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There are some other LTI filters, too. The spectrum of a notch filter is one (or almost)
for all frequencies expect ω0, which is filtered out, see Figure 13(a). It can be achieved
with a simple IIR filter by setting a pole-zero pair at a cut-off frequency, see Problem 54.

A comb filter is periodic and therefore it is often used to remove harmonic components,
see Figure 13(b). For example, distortion of multiples of 50 Hz (AC supply) is common.

A multiband filter , see Figure 13(c), can be utilized in an equalizer to boost treble (discant)
or bass tones. An example of a 10-channel software equalizer can be seen in Figure 14.
The user can adjust ten different sliders from which the amplitude response curve is
formed. In the right-most figure all high frequencies are attenuated.
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Figure 13: Problem 15: Plots of some magnitude (amplitude) response of filters. (a) notch
filter, (b) comb filter, and (c) multiband filter.

Figure 14: Problem 15: Example of an equalizer in a software (WinAmp).

Remark. All magnitude responses in Figure 12 and 13 are sketched by hand. They
y-axis is linear and scaled in range 0 . . . 1. In Figure 15 there are figures of a lowpass
filter plotted in Matlab. Figure 15(a) is from command freqz(B, A). The top subfigure
is the magnitude response, where x-axis linear [0 . . . 1] × π, and y-axis logarithmic. The
bottom subfigure contains the phase response. Figure 15(b) is from commands [H, w]

= freqz(B, A); plot(w, abs(H)). Both x-axis and y-axis are linear, x-axis is scaled
to 0 . . . π. Figure 15(c) is from commands [H, f] = freqz(B, A, [], f_s); plot(f,

20*log10(abs(H))). Now x-axis is linear but y-axis are logarithmic, and x-axis is scaled
to 0 . . . 22050, that is, half of the sampling frequency when fs = 44100 Hz (CD quality).

Note that magnitude response curves look like the same in (a) top subfigure and (c), while
in (b) the same curve is in linear scale. The ripple of 1 decibel (dB) in passband corre-
sponds oscillation between 0.891 . . . 1 in linear y-axis. Similarly, the stopband attenuation
of 40 dB corresponds 0.01.
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Figure 15: Problem 15: Magnitude responses of a LP filter.
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16. Problem: Explain the spectra in Figure 16(a) and (b). What does a spectrum of a signal
in Figure 16(c) look like? How about its spectrogram?

|X|

−f_h f_h

f

f_s/2 30 6

f

kHz

|X|

0 0.01 0.02 0.03 0.04
−1

−0.5

0

0.5

time

x[
n]

Figure 16: Problem 16: (a) two-sided triangular spectrum, frequency in x-axis, (b) one-sided
line spectrum, frequency in x-axis, (c) signal waveform, time in x-axis.

[L0290] Solution: In Problem 15 we saw several types of filters depicted in frequency-
domain. Now we are considering signals and their spectra.

The triangular spectrum in Figure 16(a) typically depicts a spectrum X of any kind of
signal, or, we are not interested how the signal looks like in time-domain. However, one
should find out from the context, if we are talking about spectrum X(jΩ) of an analog
signal after continuous-time Fourier transform (CTFT), X(ejω) of a discrete sequence
after discrete-time Fourier transform (DTFT), or X[k] of a discrete sequence after discrete
Fourier transform (DFT). X[k] can be thought as a sampled version of X(ejω).

In Figure 16(a) we have a two-sided spectrum which is band limited between −fh and
fh. It is symmetric around y-axis, that is, the corresponding signal in time-domain is
real-valued (like all signals found in nature), see Problem 41. The highest frequency
component is fh which is less than half of the sampling frequency fs/2.

The line spectrum in Figure 16(b) contains two peaks at 2 kHz and 4 kHz. If the signal is
real-valued, as it is often by default, the one-sided spectrum is enough because its left side
is a mirror image of the right side. One could draw the left side of the spectrum by adding
2 units high peak at -2 kHz and 1 unit high peak at -4 kHz. The signal x[n] or x(t) can be
quite easily plotted from the spectrum, e.g., x(t) = 2 cos(2π · 2000 · t) + cos(2π · 4000 · t).
In Figure 16(c) there is a signal which contains one slowly variating signal, a quickly
changing part at 0.03 . . . 0.04 seconds, and small amount of other noise. We can imagine
that we will have a line spectrum with two peaks: one strong peak at very low frequency
and the other, smaller peak at a frequency that can be estimated from the figure. We
can read that there are 11 oscillations in 0.03 . . . 0.04 seconds, that is, 1100 oscillations a
second (1100 Hz).

Figure 16(c) is plotted from Matlab. In this case we have a discrete sequence x[n] of 1000
numbers in a computer, from which we can compute another discrete sequence X[k] by
DFT (fft). Using all 1000 samples we get the absolute value of discrete Fourier transform
in Figure 17(a). Two peaks close to 0 and 1100 Hz can be found.

There is a large number of spectrum estimation methods. Figure 17(b) shows the result
of Welch approximation using only 256 samples (pwelch). It also detects a peak at 1 kHz.
See discussion on spectrum spreading in DFT in Remark of Problem 37.

In both figures we clearly see that there is energy at zero frequency (or low frequency)
and at about 1 kHz which reflects the high-frequency component starting at 0.03 seconds.
However, the time information, when the high-frequency component occurs, cannot be
seen from the spectrum. Therefore we can analyze the signal in time-frequency-domain.
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The spectrogram is a short-time Fourier transform (STFT) method, (Mitra 2Ed Sec.
11.3.1 / 3Ed Sec. 15.3.1 ). It is nothing but computing spectra in small time windows.
In a spectrogram, see Figure 17(c), time is in x-axis and frequency in y-axis, and the
gray level in z-axis shows how strong a certain frequency (sinusoidal) is at a certain time
moment. It can be seen that the component at 1 kHz is present only in the end.

0 1 2 3 4 5 6 7 8 9 1011
−80

−60

−40

−20

0
Fourier−transform |X(ej ω)|, N=1000

Frequency (kHz)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

0 1 2 3 4 5 6 7 8 9 1011
−80

−60

−40

−20

0

Frequency (kHz)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Power Spectral Density Estimate via Welch

0.01 0.02 0.03 0.04
0

2000

4000

6000

8000

10000
 

Time

Spectrogram

 

F
re

qu
en

cy
 (

H
z)

−100

−80

−60

−40

−20

0

Figure 17: Problem 16: (a) |X|, Fourier transform with full length, (b) |X|, spectrum estimation
(Welch) using DFT-256, both plotting a peak at about 1100 Hz, (c) spectrogram of the signal,
time in x-axis and frequency in y-axis. See the high-frequency (1100 Hz) component with white
color starting at 0.03 seconds.

Remark. In Fourier analysis we assume that the signal examined is stationary. In
Figure 16(c) we see a signal which is not stationary in this time window. The standard
way is to examine the signal in small consecutive (or/and overlapping) time windows or
frames, just like in the spectrogram above. The window size and other parameters are
application-dependent. In speech analysis it is around 10-40 ms.

When taking Fourier transform of the signal in Figure 16(c) we get the spectrum in
Figure 17(a). However, if we see first the spectrum, we cannot exactly say, how the signal
looks like. For example, even if the spectrum estimation in Figure 18(a) is very similar
to that in Figure 17(a), the original signal is very different, see Figure 18(b).

Note that the conversion x[n] ↔ X(ejω) via Fourier transform is unique (Fourier is bi-
jection function), but we normally examine only absolute value |X(ejω)|, which can be
achieved by several (infinite number) x[n].
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Figure 18: Problem 16: (a) |X|, spectrum estimation (Welch) using DFT-256, very similar to
a spectrum above, (b) the original signal for (a), the occurance of the high-frequency signal
component is different from above.
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17. Problem: Categorize Fourier-transforms for aperiodic/periodic analog/digital signals.

[L0291] Solution: Integral transforms are important and essential tools in signal pro-
cessing. With Fourier-transforms you can change between time-domain and frequency-
domain, see Problem 18. In a high level several Fourier transforms can be catego-
rized into four classes according to signal type (analog/digital) and periodicity (peri-
odic/aperiodic), see Table 5 from (Huttunen: Signaalinkäsittelyn menetelmät, p. 33 ) and
(Smith: DSPguide, Ch. 8, p. 145 ). In addition, more general z-transform for digital,
and Laplace transform (with variable s) for analog signals are applied. There exist lots
of other transforms, too, e.g., cosine and Hadamard transforms used in image processing.

All transforms have exact mathematical definitions from which transforms can be com-
puted. However, there are several parametrized formula tables which offer ready-calculated
transform pairs and computation rules, see Page 166. Examples from Problem 36 on.

Next we introduce the Fourier transforms in Table 5. Small symbol, e.g. x, refers to
a time-domain signal which is then analyzed (decomposed) to a frequency-domain sig-
nal (spectrum) X, written with a corresponding capital letter. The inverse operation,
synthesis, forms an unique signal x from spectral components X.

continuous-time signal discrete-time signal

aperiodic signal Fourier transform
(cont. → cont.)

Discrete-time Fourier transform
(discrete → cont.)

periodic signal Fourier series
(cont. → discrete)

Discrete Fourier transform
(discrete → discrete)

Table 5: Problem 17: Classification of Fourier transforms.

Fourier transform. Continuous-time and aperiodic signal x(t) is transformed. The re-
sult X(jΩ) is continuous-frequency and aperiodic. Mitra’s book uses the term continuous-
time Fourier transform (CTFT), (Mitra 2Ed p. – / 3Ed p. 118 ). The analysis and syn-
thesis equations are X(jΩ) =

∫∞
−∞ x(t)e−jΩt dt, and x(t) = 1

2π

∫∞
−∞ X(jΩ)ejΩt dΩ. Note

that t and Ω ∈ R.

Discrete-time Fourier transform. Discrete-time and aperiodic signal x[n] is trans-
formed. The result X(ejω) is continuous-frequency and periodic with 2π. See more about
discrete-time Fourier transform (DTFT) in (Mitra 2Ed p. 117 / 3Ed p. 122 ). The analy-
sis and synthesis equations are X(ejω) =

∑∞
n=−∞ x[n]e−jωn, and x[n] = 1

2π

∫ π

−π
X(ejω)ejωn dω.

Note that n ∈ Z and Ω ∈ R.

Fourier series. Continuous-time and periodic signal x(t) is transformed. The result
are the Fourier series coefficients ak with a fundamental frequency Ω0. Coefficients are
therefore discrete-frequency and aperiodic. The analysis and synthesis equations are ak =
1
T

∫

T
x(t) e−jkΩ0t dt, and x(t) =

∑∞
k=−∞ ak ejkΩ0t. Note that t ∈ R and k ∈ Z.

Discrete Fourier transform. Discrete-time and periodic signal x[n] is transformed.
The result X[k] is discrete-frequency and periodic. This is what billions of chips do
right now all over the world! When Matlab plots you a nice, smooth frequency response
(DTFT) curve of a digital filter, it actually computes DFT so densely in frequency-domain
that the result seems to be continuous. (Just like when Matlab plots you an audio signal
waveform, it is actually only a series of points, sequence, connected with lines!) See more
about discrete Fourier transform (DFT) in (Mitra 2Ed p. 131 / 3Ed p. 234 ). In DFT
equations we use a shorthand WN = e−j2π/N , and the analysis and synthesis equations
are X[k] =

∑N−1
n=0 x[n]W kn

N , where 0 ≤ k ≤ N − 1, and x[n] = 1
N

∑N−1
k=0 X[k]W−kn

N , where
0 ≤ n ≤ N − 1. Note that n and k ∈ Z.
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18. Problem: Consider a signal x[n] shown in Figure 19. Assume that there exists a lowpass
and a highpass filter with a cut-off at 1 kHz. Sketch the outputs of the both filters.
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Figure 19: Problem 18: Input signal x[n].

[L0289] Solution: First, some sketches in frequency domain are given as results to this
problem. Second, figures from Matlab with some real (but here ungiven) signals and
filter constructions are plotted. Third, the overall picture of the time-frequency-domain
analysis is given in the end of this problem (Remark).

The signal in Figure 19 was already analyzed in Problem 16. It contains slowly changing
part (low frequency) and quickly changing part (high frequency, approx. 1100 Hz, only
present at 0.03 . . . 0.04 s). Therefore we can sketch a spectrum X(ejω) of the signal in left
in Figure 20.

Filtering in frequency-domain is purely a product of the input spectrum X(ejω) and the
filter H(ejω). Now the cut-off is at 1 kHz and the magnitude response is sketched in
middle in Figure 20.

The output spectrum Y (ejω) of a lowpass filter (LP) is sketched in right in Figure 20.
There is a peak at very low frequency meaning that only the slowly changing part of
the signal is left. Filtering with a highpass filter (HP) gives a peak at 1.1 kHz, which in
time-domain corresponds quickly changing part of signal at 0.03 seconds.
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Figure 20: Problem 18: Sketch of lowpass filtering. From left to right: input spectrum X(ejω),
transfer function H(ejω) of LP filter, output spectrum Y (ejω).

In reality, we should, of course, know an exact form of H(ejω) to filter the signal. Next,
the problem is illustrated with some real sequence values and Matlab figures.

The magnitude response of the LP filter using the cut-off frequency 1 kHz is given in
frequency-domain in middle-bottom in Figure 21, and that of HP filter in middle-bottom
in Figure 22.

Filtering in frequency-domain is a product of the input spectrum X(ejω) and the filter
H(ejω). Hence, the output spectrum of LP filter is given in right-bottom in Figure 21
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from which the sequence y[n] is plotted in right-top. The output spectrum of HP filter is
in Figure 22, respectively.
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Figure 21: Problem 18: Lowpass filtering. Top row: input signal x[n], impulse response h[n] of
LP filter, output signal y[n]. Bottom row: input spectrum X(ejω), transfer function H(ejω) of
LP filter, output spectrum Y (ejω).
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Figure 22: Problem 18: Highpass filtering. Top row: input signal x[n], impulse response h[n]
of HP filter, output signal y[n]. Bottom row: input spectrum X(ejω), transfer function H(ejω)
of HP filter, output spectrum Y (ejω).
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Remark. This course deals with SISO systems, that is, a system with a single input and
a single output. The systems are mainly linear and time-invariant (LTI) digital ones. The
analysis of signals and systems requires Fourier transform (or equivalent) to change from
time-domain to frequency-domain and back.

The big picture of the analysis can be seen in Figure 23. There is an input x[n], a system
h[n] and an output y[n] in time-domain, or X(z), H(z), and Y (z) in frequency-domain,
respectively. The system is called a filter.

FOURIER FOURIER FOURIER
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Figure 23: Problem 18: Filtering in time-domain and frequency-domain. Time-domain: Input
signal x[n], impulse response h[n], output y[n] = h[n]⊛x[n] by convolution. Frequency-domain:
Input spectrum X(z), transfer function H(z), output Y (z) = H(z) · X(z) by multiplication.
Fourier or z-transform (etc.) are needed in the analysis.

Signal is a function of independent variables such as time (speech) or position (images)
(Mitra 2Ed Sec. 1.0, p. 1 / 3Ed Sec. 1.0, p. 1 ). It nature signals carry information,
e.g., a speech signal is a longitudinal waveform transporting energy from speaker’s speech
organ to listener’s hearing. Signals have certain properties: they can be analog (x(t)) or
digital (x[n]), periodic or aperiodic. In this course digital signals (sequences) are plain
sequences of numbers which can be processed and saved in a computer. There exist
analog/digital (AD) and digital/analog (DA) hardware to make conversion x(t)↔ x[n].

System takes an input, processes it and returns an output. It has also some properties.
In case of digital systems, realized either software or hardware, system can be, e.g., linear,
time-invariant (or shift-invariant), causal or stable. See more in Problem 25.

In time-domain we speak about input and output signals x[n] and y[n]. All symbol letters
are typically written with lower case. A LTI system is identified uniquely with its impulse
response h[n], and the output y[n] is computed as a convolution of sequences h[n] and
x[n].

In frequency-domain (or transform-domain) signals are transformed and the correspond-
ing symbol letters are capitalized. X(ejω) and Y (ejω) are input and output spectra,
whereas H(ejω) is the frequency response of the system (H(z) is called transfer function).
Here the output Y (ejω) is computed as a product of spectrum X(ejω) and frequency
response H(ejω).

Altering between time-domain and frequency-domain is achieved by applying Fourier
transform and inverse Fourier transform (or other integral transforms, like z-transform
and Laplace transform). For example, if we want to compute the convolution in frequency-
domain, we first apply discrete Fourier transform (DFT) to x[n] and h[n] in order to get
X[k] and H [k], then we compute Y [k] = H [k] · X[k], and finally apply inverse discrete
Fourier transform (IDFT) to get y[n]. More about transforms in Problem 17.
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19. Problem: Sketch the following sequences around the origin

a) x1[n] = sin(0.1πn)

b) x2[n] = sin(2πn)

c) x3[n] = δ[n− 1] + δ[n] + 2δ[n + 1]

d) x4[n] = δ[−1] + δ[0] + 2δ[1]

e) x5[n] = µ[n]− µ[n− 4]

f) x6[n] = x3[−n + 1]

[L0297] Solution: The unit impulse function δ[n] and the unit step function µ[n] (or
u[n]) are defined

δ[n] =

{

1, when n = 0

0, when n 6= 0
µ[n] =

{

1, when n ≥ 0

0, when n < 0

A sequence or a discrete-time signal x[n] can be shown with individual values x[k] and
impulse function as

x[n] =
∞∑

k=−∞

x[k] · δ[n− k]

For example, if xe[0] = 2, xe[3] = −4, and xe[n] = 0 elsewhere, we get

xe[n] = xe[0] · δ[n− 0] + xe[3] · δ[n− 3] = 2δ[n]− 4δ[n− 3]

The discrete-time signal is purely a sequence of numbers. There are equivalent ways to
write a sequence, e.g. in (c), x3[n] = 2δ[n+1]+ δ[n] + δ[n− 1], or x3[n] = {2, 1, 1}, where
non-zero values are listed and the underlined position is at n = 0. Non-zero values can
be also written explicitly, e.g., x3[−1] = 2, x3[0] = 1, x3[1] = 1, and x3[k] = 0 elsewhere.

There are different ways to draw discrete-time signals. Here we use “pins” or “stems”,
which emphasizes that the sequence is discrete-time. See examples in Figure 24.

While sin(.), δ[n], and mu[n] are functions of n, we can compute these functions at certain
points of n by using tables, like in (a)

n sin(0.1πn) x1[n]
−2 sin(0.1π(−2)) ≈ −0.588
−1 sin(0.1π(−1)) ≈ −0.309

0 sin(0.1π(−0)) 0
1 sin(0.1π(1)) ≈ 0.309
2 sin(0.1π(2)) ≈ 0.588

Note that in (b) the argument for the sine function is always 2π-multiple and therefore
. . . = sin(0) = sin(2π) = . . . = 0. Shifted sequences can be written in a table, like in (c),

n δ[n− 1] δ[n] 2δ[n + 1] x3[n]
−2 δ[−2− 1] = 0 δ[−2] = 0 2δ[−2 + 1] = 0 0 + 0 + 0 = 0
−1 δ[−1− 1] = 0 δ[−1] = 0 2δ[−1 + 1] = 2 0 + 0 + 2 = 2

0 δ[0− 1] = 0 δ[0] = 1 2δ[0 + 1] = 0 0 + 1 + 0 = 1
1 δ[1− 1] = 1 δ[1] = 0 2δ[1 + 1] = 0 1 + 0 + 0 = 1
2 δ[2− 1] = 0 δ[2] = 0 2δ[2 + 1] = 0 0 + 0 + 0 = 0

In (d) there are only constants δ[−1] = δ[1] = 0 and δ[0] = 1 from the definition,
hence x4[n] = 1 for all n. Sequences can be summed together, like in (e), x5[n] =
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{1, 1, 1, 1, 1, 1, . . .} − {0, 0, 0, 0, 1, 1, 1, . . .} = {1, 1, 1, 1}. If you have troubles to
read time-reversed sequences, e.g., in (f), x6[n] = x3[−n + 1] in (f), you can simply put
values into a table:

n x3[n] x6[n] = x3[−n + 1]
−1 x3[−1] = 2 x6[−1] = x3[−(−1) + 1] = x3[2] = 0

0 x3[0] = 1 x6[0] = x3[−(0) + 1] = x3[1] = 1
1 x3[1] = 1 x6[1] = x3[−(1) + 1] = x3[0] = 1
2 x3[2] = 0 x6[2] = x3[−(2) + 1] = x3[−1] = 2

−10 0 10
−1

0

1

(a)

−5 0 5
−1

0

1

(b)

−2 −1 0 1 2

0

1

2

(c)

−5−4−3−2−1012345

0

0.5

1

(d)

−3−2−1 0 1 2 3 4 5

0

0.5

1

(e)

−2 −1 0 1 2

0

1

2

(f)

Figure 24: Sequences of Problem 19. Top row: (a)-(c), bottom: (d)-(f).

Remark. For real-world physical signals, e.g., speech signal, there exists the sampling
frequency fT (Hz). The inverse 1/fT gives us the time in seconds between each sample.

Assume that there is an audio file kiisseli.wav, which contains a Finnish word“kiisseli”
pronounced by female, see Figure 25. The file can be loaded into Matlab. It can be
seen that the length of the digital sequence x[n] is 29001, each number is coded with
8 bits (28 = 256 quantization levels between −1 and +1), and the sampling frequency
is fT = 22050 Hz (sampling period T = 1/fT ≈ 45.4µs). The sequence x[n] is in the
memory as “double” type meaning double precision floating point, 8 bytes (64 bits) per
sample. The whole sequence requires therefore 232008 bytes linear memory. For instance,
the sample x(1) is −0.094 and x(29001) 0.023.

Matlab commands: [x, fs, nbits] = wavread(’kiisseli.wav’);

length(x), class(x), x(1), x(end).

We can now write our signal using δ notations

x[n] = −0.094δ[n] + . . . + 0.023δ[n− 29000]

The length of x[n] in seconds is Ls = 29001/fT = 1.315 s, which can be derived from the
fact that in one second there are fT samples.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

−1

−0.5

0

0.5

1
kiisseli.wav, f

T
 = 22050 Hz

time (s)

x[
n]

1 22050 29001

Figure 25: Remark of Problem 19. The waveform of a speech signal in the file kiisseli.wav.
While sampling frequency is 22050 Hz, there are 22050 samples in each second. Therefore 29001
samples correspond ≈ 1.3 seconds.

20. Problem: Which of the following signals are periodic? Determine the length of the
fundamental period for periodic signals.

a) x(t) = 3 cos(8π
31

t)

b) x[n] = 3 cos(8π
31

n)

c) x(t) = cos(π
8
t2)

d) x[n] = 2 cos(π
6
n− π/8) + sin(π

8
n)

e) x[n] = {. . . , 2, 0, 1, 2, 0, 1, 2, 0, 1, . . .}
f) x[n] =

∑+∞
k=−∞ δ[n− 4k] + δ[n− 4k − 1]

[L0162] Solution: A continuous-time signal x(t) is periodic if there exists period T ∈ R,
for which x(t) = x(t + T ), ∀t. The fundamental period is the smallest T0 > 0.

A discrete-time signal (sequence) x[n] is periodic, if there exists period N ∈ Z, for which
x[n] = x[n + N ], ∀n ∈ Z. The fundamental period is the smallest N0 > 0.

Examination of periodicity can be restricted to a certain time range.

One way to find the period is to replace t by t + T (n by n + N) and try if the equation
x(t) = x(t + T ) holds.

Another way to find the period of a sinusoidal component (sine, cosine) is to express
the function in form of x(t) = sin(2π · f · t) where f is frequency (Ω = 2πf is angular
frequency). Then T = 1/f .

Typically signals can be synthesized as a sum of sinusoidals. Sines, cosines, and exponen-
tial functions are all 2π-periodic, e.g., A sin(Ωt + θ) ≡ A sin(Ωt + θ + 2πk). Note that the
amplitude A or phase shift θ does not have effect on periodicity.

If there is a sum of cosines, like in (d), one has to find period T0 (N0), to which all periods
of individual cosines are multiples, see Figure 27. Correspondingly, in the frequency
domain one has to find a fundamental frequency f0, with which all individual frequencies
can be represented as multiples.
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Signals (a)..(f) are plotted for a small range in Figure 28. The non-periodicity of the
signal is often easy to see from the signal plot, for instance, the signal (c) is clearly not
periodic.

a) Periodic. Substitute t by (t + T ) and test, if the additional part is multiple of 2π.

x(t) = 3 cos(
8π

31
t) = 3 cos(

8π

31
(t + T )) = 3 cos(

8π

31
t +

8π

31
T )

= 3 cos(
8π

31
t + 2π(

4

31
T )

︸ ︷︷ ︸

=2πk

)

2πk = 2π
4

31
T

T = (31/4)k

When T = (31/4)k, then 2π-multiple is added to the argument of the original cosine,
and x(t) = x(t+T ) holds. The fundamental period is the shortest period T0 = 31/4,
that is, k = 1.

b) Periodic. Substitute n by (n + N) is a similar way as in (a)

x[n] = 3 cos(
8π

31
n) = 3 cos(

8π

31
(n + N)) = 3 cos(

8π

31
n +

8π

31
N)

= 3 cos(
8π

31
n + 2π(

4

31
N)

︸ ︷︷ ︸

2πk

)

2πk = 2π
4

31
N

N = (31/4)k

Again N = (31/4) · k, where the period N has to be integer. The smallest possible
k = 4 gives the length of the fundamental period N0 = 31.

Notice also the difference of the results in (a) and (b), where x(t) = x(t + (31/4)),
but x[n] = x[n + 31]. The signals are plotted in the same axis in Figure 26.

0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3

(a) vs (b): x(t) = 3cos(8π / 31 t) vs x[n] = 3cos(8π / 31 n)

n, t

T=31/4
N=31

x(t)
x[n]

Figure 26: A visualization of the difference of fundamental periods of similar looking analog
and discrete-time signals in Problem 20(a) and (b). T0 = 31/4 but N0 = 31.

c) Not periodic (aperiodic), the latter term depends on t. The result can be also seen
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in Figure 28(c).

x(t) = cos(
π

8
t2) = cos(

π

8
(t + T )2) = cos(

π

8
t2 +

π

8
(2tT + T 2))

= cos(
π

8
t2 + 2π(

tT

8
+

T 2

16
)

︸ ︷︷ ︸

2πk

)

2πk = 2π(
tT

8
+

T 2

16
)

T = −t±
√

t2 − 16k no constant T exists

d) Periodic, N0 = 48. Compute first individual periods of each sinudoidal. The funda-
mental period is the least common multiple (LCM) of periods N1 = 12, N2 = 16⇒
N0 = 4N1 = 3N2 = 48. See Figure 27.

x[n] = 2 cos(
π

6
n− π/8) + sin(

π

8
n) = 2 cos(2π

1

12
n− π/8) + sin(2π

1

16
n)

Correspondingly, the fundamental angular frequency is the greatest common divisor
(GCD) of individual frequencies (ω = 2π/N): ω1 = π/6 = 4π/24, ω2 = π/8 =
3π/24 ⇒ ω0 = π/24,⇒ ω1 = 4ω0, ω2 = 3ω0. More about computing LCM and
GCD can be found, e.g. “Beta, Mathematics Handbook for Science and Engineering”.
There are Matlab commands lcm and gcd, too.

12 48

0 32

0

16

24 36 60

48 64

Figure 27: Problem 20(d): least common multiple (LCM) for N1 = 12 and N2 = 16 is N0 = 48.

e) (Assume that) the period is N0 = 3, i.e. x[0] = x[±3k] = 2, x[1] = x[±3k + 1] = 0,
x[2] = x[±3k + 2] = 1, where the integer k > 0.

f) N0 = 4. “Open” the sequence if you do not see it directly:

x[n] =

+∞∑

k=−∞

δ[n− 4k] + δ[n− 4k − 1]

= . . . + δ[n + 4] + δ[n + 4− 1]
︸ ︷︷ ︸

k=−1

+ δ[n] + δ[n− 1]
︸ ︷︷ ︸

k=0

+ δ[n− 4] + δ[n− 4− 1]
︸ ︷︷ ︸

k=1

+ . . .

= {. . . , 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, . . .}

Remark. Real-life signals are seldom periodic in strict sense; almost periodic signals
are sometimes called quasi-periodic. See Figure 29, where the signal part of a vowel /i/
in 0.02 second range is not exactly periodic x(t) = x(t + 0.02s) but almost.
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Figure 28: Signals and sequences in Problem 20, (a)..(c) in top row, (d)..(f) in bottom row. It
can be seen that (at least) (c) is not periodic in the scene shown.
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Figure 29: Problem 20: example of a quasi-periodic signal.

21. Problem: Compute “a two-point moving average” temperature from daily temperatures
in DSPVillage in early July:

July 1st 2nd 3rd 4th 5th 6th 7th
◦ C 12 16 15 22 20 24 23

[L0279] Solution: A two-point moving average takes two adjacent samples, sum them
together, divide by two, and goes on to the following point. The purpose of averaging is
to suppress quick changes, possibly noise, in the signal.

In order to compute the average temperature on 3rd July, we take temperatures of 3rd
and 2nd, and compute mean of them as shown below. First and last values of the result
are not comparable because the other value is assumed to be zero. This problem is known
as a border effect and it has to be dealt with in appropriate way.

1st 2nd 3rd 4th 5th 6th 7th

x[n] 12 16 15 22 20 24 23
x[n− 1] 12 16 15 22 20 24 23

MA-2 6 14 15.5 18.5 21 22 23.5 11.5
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Formally, the input sequence is x[n] = {12, 16, 15, 22, 20, 24, 23} or

x[n] = 12δ[n] + 16δ[n− 1] + 15δ[n− 2] + 22δ[n− 3] + 20δ[n− 4] + 24δ[n− 5] + 23δ[n− 6]

The averaging process can be thought as a filtering operation:

y[n] =
x[n] + x[n− 1]

2
= {6, 14, 15.5, 18.5, 21, 22, 23.5, 11.5}

This corresponds a LTI system with the finite-length (now N = 2) impulse response

h[n] =
δ[n] + δ[n− 1]

2
= {0.5, 0.5}

and the frequency response (see, e.g., Problem 42 and 55)

H(ω) =
1 + e−jω

2

which in DSP literature is normally written as H(ejω). The corresponding flow (block)
diagram is plotted in Figure 30. In this case computation “flows” into right direction
without any feedback loops – the filter type is now FIR (finite impulse response, FIR),
whereas Problem 22 shows an example of the other type IIR.

Slow changes in the signal (temperature) mean low frequencies and quick changes mean
high frequencies. Averaging smoothens the signal. In DSP, we say that it is a lowpass
filter while it preserves low frequencies in the signal but attenuates high frequencies.
High-frequency variation is often considered as noise.

x[n] y[n]

0.5

z

h[n]

−1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

norm. angular freq. ω (× π)

|H
(e

j ω
)|

MA−2, H(ej ω) = 0.5 ( 1 + e−j ω )

Figure 30: Problem 21: (a) Flow (block) diagram of the filter. Input x[n] is filtered by the
system h[n], which is dashed and includes everything between input and output, and the output
is y[n]. A delay unit (register), here “z−1”, is sometimes named as “D”. There are no loops and
therefore the filter type is FIR. (b) Magnitude response |H(ejω)| of MA-2 filter. It can be seen
that it is a lowpass filter.

Remark. The sliding window can be increased in order to have smoother results. A
weekly average would be MA-7, that is, y[n] = (1/7) ·∑6

k=0 x[n − k]. MA-filter can be
also noncausal (not real-time), e.g., y[n] = (1/2)·(x[n+1]+x[n]), if needed. MA-filter can
even be implemented in a recursive manner, which can make computation much lighter,
see (Smith: DSPguide, Ch. 15, p. 283 ). Border effects occuring in start and end have to
be dealt with in an appropriate way.
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22. Problem: Compute an average temperature by adding half of temperature today and half
of average temperature yesterday. Use the same daily temperature data as in Problem 21:

July 1st 2nd 3rd 4th 5th 6th 7th
◦ C 12 16 15 22 20 24 23

[L0287] Solution: Take a new sample and the last computed output value, sum them
together, divide by two, and go on to the following point. The purpose of averaging is to
suppress quick changes, possibly noise, in the signal.

In order to compute the average temperature on 3rd July, we take temperature of 3rd
and the avarage of 2nd, and compute mean of them as shown below. Borders have to be
dealt with in appropriate way.

1st 2nd 3rd 4th 5th 6th 7th

x[n] 12 16 15 22 20 24 23
y[n− 1] 6 11 13 17.5 18.8 21.4 22.2 11.1

y[n] 6 11 13 17.5 18.8 21.4 22.2 11.1 5.6

Now the averaging process can be thought as a filtering operation:

y[n] =
x[n] + y[n− 1]

2
= {6, 11, 13, 17.5, 18.8, 21.4, 22.2, 11.1, 5.6, . . .}

This corresponds a LTI system with the infinite-length impulse response

h[n] = 0.5 · 0.5nµ[n] = {0.5, 0.25, 0.125, . . .}

and the frequency response (see, e.g., Problem 42 and 55)

H(ejω) =
0.5

1− 0.5e−jω

The corresponding flow (block) diagram is plotted in Figure 31. In this case there exists
a feedback loop – the filter type is now IIR (infinite impulse response, IIR), whereas
Problem 21 shows an example of the other type FIR.

z

x[n] y[n]
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0.5

−1

0 0.2 0.4 0.6 0.8 1
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0.8
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|H
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IIR, H(ej ω) = 0.5 / ( 1 − 0.5 e−j ω )

Figure 31: Problem 21: (a) Flow (block) diagram of the filter. Input x[n] is filtered by the
system h[n], which is dashed and includes everything between input and output, and the output
is y[n]. The system includes a feedback loop which is equivalent that the system is IIR. (b)
Magnitude response |H(ejω)| of an IIR filter. It can be seen that it is a lowpass filter.
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23. Problem: Express the input-output relations of the discrete-time systems in Figure 32.

D

D

y[n]x[n]

−2

(a)

z−1z−1

z−1

x[n]

−2 2

y[n]

(b)

x[n] y[n]

cos(     n)ω

(c)

D

x[n]

y[n]

a b

c
+

+
v[n]

h[n]
system

(d)

Figure 32: Discrete-time systems for Problems 23, 27, and 28.

[L0244] Solution: In this problem there are several types of discrete-time systems. Notice
that the scope of this course is LTI systems (linear and time-invariant). LTI systems are
very easy to detect, they are relatively simple but very useful. In this course the system
input x[n] and output y[n] are 1-dimensional except some examples with pictures (2D).
For LTI-systems the input-output relation can be written with a difference equation or a
set of difference equations.

There are some basic operations on sequences (signals) in discrete-time systems (x refers
to input to the system / operation, y output) shown also in Figure 33:

• sum of signals (sequences) y[n] = x1[n] + x2[n]

• signal multiplication (by constant) y[n] = a x[n]

• delay or advance of signal y[n] = x[n± k]

• product of signals, modulator (non-LTI systems) y[n] = x1[n] · x2[n]

• branch / pick-off node y1[n] = x[n], y2[n] = x[n]

x[n]

x[n]

x[n−1]
D

z
x[n−1]−1

x[n]
a

ax[n]

x  [n]+x  [n]21

x  [n] . x  [n]21

x  [n]

x  [n]1

2 x  [n]

x  [n]1

2

x[n]

x[n]
x[n]

(a) (d)(b) (c) (e)

Figure 33: Problem 23: Basic operations in discrete-time systems.

Now we analyze the systems depicted in Figure 32.
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a) Difference equation: y[n] = x[n] − 2x[n − 1] + x[n − 2]. LTI-filter, type FIR (see
Problem 24).

b) The memory registers / unit delays are often drawn either “D” (delay) or “z−1 (refers
to a delay in z-transform). Note that the output is fed back in the loop. The left
part of the filter is the same as (a). The sequence right after the second summing on
top line is y[n] which goes both to the output and down to feedback loop. Therefore
the terms coming into the last summing unit are x[n]− 2x[n− 1]+x[n− 2] from left
and 2y[n− 1] from the loop. The difference equation is

y[n] = 2y[n− 1] + x[n]− 2x[n− 1] + x[n− 2]

The system is LTI and type IIR (see Problem 24).

c) Input signal x[n] is multiplied by a sequence cos(ωn) (not a constant). This operation
is called modulation and is not LTI. The relation can be written as

y[n] = x[n] · cos(ωn)

d) This is so called lattice structure (Mitra 2Ed Sec. 6 / 3Ed Sec. 8 ). In order to get
relationship between x[n] and y[n] temporary variables are used after each summing
unit. In this case, there is one temporary variable v[n], and the set of difference
equations is

v[n] = x[n] + a v[n− 1]

y[n] = b v[n] + c v[n− 1]

The temporary variable v[n] can be simplified away, but it is easier to determine
the transfer function H(z) in frequency domain and then apply inverse z-transform,
which is discussed later. The system is LTI and IIR (see Problem 24).

Remark. The simplified difference equation for the system in (d) can be received by
eliminating all temporary v[n] sequences:

x[n] = v[n]− a v[n− 1] | x on left side

y[n] = b v[n] + c v[n− 1] | y on left side

−bx[n] = −b v[n] + ab v[n− 1] | y[n]− bx[n] cancels v[n]

−ay[n− 1] = −ab v[n− 1]− ac v[n− 2]

−cx[n − 1] = −c v[n− 1] + ac v[n− 2] | all v[n− 1], v[n− 2] cancelled

which finally gives y[n] = ay[n− 1] + bx[n] + cx[n− 1].

The discrete-time system does some computation for sequencies of numbers. Therefore it
is straightforward to write down a computer program, e.g. in (a),

x1 := 0; x2 := 0;

while TRUE {

x2 := x1;

x1 := x0;

x0 := read_next_input(input_stream);

y := x0 - 2*x1 + x2;

write_output(output_stream, y);

}

or if all samples are known in advance and written in vector x,

for (k = 2; k <= length(x); k++) {

y[k] := x[k] - 2*x[k-1] + x[k-2];

}
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24. Problem: Look at the flow (block) diagrams in Figure 34.

x[n] y[n]

-0.75

0.5

z-1

z-1

i

0.5 -0.75

y[n]x[n]

-1z -1z

ii

0.5

x[n]

0.5

0.75

-0.75

y[n]

z-1

z-1

iii

1

y[n]1/2x[n]

iv

D

x[n]

y[n]

a b

c
+

+
v[n]

h[n]
system

v

Figure 34: Flow diagrams of Problem 24.

a) What does LTI mean? In what ways can the system be proved (Problem 25) or
shown to be LTI?

b) Which systems are linear and time-invariant (LTI) without any computation?

c) Which systems have feedback?

d) Which LTI systems are FIR and which are IIR?

[L0245] Solution: In this problem we try to recognise LTI systems by their layout.

a) LTI = linear AND time-invariant (=shift-invariant) system. These two properties
belong to a system not to a signal. Other system properties can be, e.g. stability,
causality, or if it needs memory or if it can be inverted.

See Problem 25 for mathematical proofs.

Recognition of LTI systems from the flow (block) diagrams: there are only (1) sums
of signals, (2) multiplication by a contant, (3) delays or advances. The components
were introduced in Problem 23, see Figure 33 at page 40.

LTI systems can be represented with a linear constant coefficient difference (or dif-
ferential in case of analog system) equation

∑

k

dk y[n− k] =
∑

k

pk x[n− k]

where {dk} and {pk} are constants. Often in practice, we use causal finite-dimensional
LTI systems

∑N
k=0 dk y[n− k] =

∑M
k=0 pk x[n − k], where the order of the system is

given by max{N, M} (Mitra 2Ed Sec. 2.6.0 / 3Ed Sec. 2.7.0 ). If the system cannot
be written in the format above, it is not a (causal) LTI system.
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b) LTI? Only summing, delays, amplifications by constants. (i) Yes, (ii) Yes, (iii) Yes,
(iv) No, adding a constant, (v) Yes.

c) Feedback means that some of the output (or internal) values are fed back in the
system. Computation can be said to be recursive or iterative. There are loops in (i),
(ii), (iii), and (v).

d) FIR = Finite (length) Impulse Response. IIR = Infinite (length) Impulse Response.

If the system has a feedback loop somewhere in the structure, it is also IIR at the
same time. The output value is computed using older output values, i.e. there is
recursion. This can be seen that there are also terms y[n−k], k 6= 0, in the difference
equation.

If there is no loop and computation flows forward all the time, then the system is
FIR. This can be seen that there is only the term y[n] in the left side of the difference
equation above.

FIR: (iv) has an impulse response of finite length but it is not LTI. IIR: (i), (ii), (iii),
and (v) have infinite (length) impulse response because of feedback loops.
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25. Problem: For each the following discrete-time systems, determine whether or not the
system is (1) linear, (2) causal, (3) stable, and (4) shift-invariant. The sequences x[n] and
y[n] are the input and output sequences of the system.

a) y[n] = x3[n],

b) y[n] = γ +
∑2

l=−2 x[n− l], γ is a nonzero constant,

c) y[n] = αx[−n], α is a nonzero constant.

[L0238] Solution: Properties of the discrete-time system, see (Mitra 2Ed Sec. 2.4.1,
2.5.3, 2.5.4 / 3Ed Sec. 2.4.2, 2.5.3., 2.5.4 ).

Linearity:
If y1[n] and y2[n] are the responses to the input sequences x1[n] and x2[n], respectively,
then for an input

x[n] = αx1[n] + βx2[n],

the response is given by
y[n] = αy1[n] + βy2[n].

x 1

x 2

x

b

*
3

S

a

b

y
3

a
1

y
2

y
3

yx 1

x 2

S

S

Figure 35: Linearity. If the linear combination y∗
3 of outputs of x1 and x2 is the same as the

output y3 of the linear combination of inputs, then the system S is linear.

Linear systems offer possibility to use superposition, that is, a signal can be divided to
small portions, processed individually, and summed back.

Remark. When considering a constant-coefficient difference equation like y[n]+0.5y[n−
1] = x[n] + 0.5x[n− 1] the system is not linear, if the initial conditions are not zero, i.e.,
y[−1] 6= 0. When initial values are zero, the system is said to be in rest. See (Mitra 2Ed
Ex. 2.30, p. 92 / 3Ed Ex. 2.37, p. 92 ).

Causality:
The n0-th output sample y[n0] depends only on previous output values and input samples
x[n] for n ≤ n0, and does not depend on input samples for n > n0. In case of a LTI
system, the system is causal if and only if impulse response h[n] = 0 for all n < 0. In
other words, if the system does not predict anything, it is causal.

Stability:
Bounded input, bounded output (BIBO) stability: If a bounded input (Bx is a finite
constant)

|x[n]| < Bx <∞, ∀n
produces a bounded output (By is a finite constant)

|y[n]| < By <∞, ∀n

as a response then the system is BIBO stable (see (a) and (b) at Page 45 for details). In
case of LTI-system, the system is stable if and only if

∑∞
n=−∞ |h[n]| <∞.
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Time/Shift-invariance:
If y1[n] is the response to an input x1[n], then the response to an input

x[n] = x1[n− n0]

is simply
y[n] = y1[n− n0],

where n0 is any positive or negative integer.

1

D kS
2 y 1
*yx 1 [n-k]= y

2x 1x
D k

x 1 [n-k]
S

y 2= 

Figure 36: Time invariance. If the output y2 of delayed input is the same as delayed output y∗
2,

then the system S is time-invariant.

a) y[n] = x3[n].

Take inputs x1[n] and x2[n], the outputs are then y1[n] = x3
1[n] and y2[n] = x3

2[n].
Now the linear combination of the input signals is x3[n] = αx1[n] + βx2[n] and the
output is

y3[n] = (αx1[n] + βx2[n])3 6= αx3
1[n] + βx3

2[n] = αy1[n] + βy2[n].

Hence the system is not linear.

Since there is no output before the input hence the system is causal.

The system is stable: Assume |x[n]| < Bx, then

|y[n]| = |x3[n]| ≤ |x[n]|3 < B3
x = By <∞.

The system is time-invariant: Assume input x1[n] and output y1[n], then response
of input x[n] = x1[n− n0] is

y[n] = (x[n])3 = (x1[n− n0])
3 = y1[n− n0]

b) y[n] = γ +
∑2

l=−2 x[n− l], γ is a nonzero constant.

Use linear combination αx1[n] + βx2[n] as the input

y3[n] = γ +

2∑

l=−2

(αx1[n− l] + βx2[n− l])

= 0.5γ + α

2∑

l=−2

x1[n− l] + 0.5γ + β

2∑

l=−2

x2[n− l]

6= αγ + α

2∑

l=−2

x1[n− l] + βγ + β

2∑

l=−2

x2[n− l]

= αy1[n] + βy2[n],

where α and β are not fixed. The system is hence nonlinear.
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The system is not causal, because there can be output before input, when l ∈
[−2,−1].

System is stable: Assume bounded input |x[n]| < Bx, then

|y[n]| = |γ +
2∑

l=−2

x[n− l]| ≤ |γ|+
2∑

l=−2

|x[n− l]| < |γ|+ 5Bx = By <∞

The system is also time-invariant: Assume input x1[n] and output y1[n], then
response of input x[n] = x1[n− n0] is

y[n] = γ +
2∑

l=−2

x1[n− n0] = y1[n− n0].

c) y[n] = αx[−n], α is a nonzero constant.

The system is linear, stable and noncausal.

Assume inputs x1[n],x[n] and outputs y1[n], y[n] , respectively, then

y[n] = αx[−n],

y1[n] = αx1[−n].

Let x[n] = x1[n− n0], then

y[n] = αx[−n] = αx1[−n− n0]

6= αx1[n0 − n] = αx1[−(n− n0)] = y1[n− n0]

and the system is not time-invariant.
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26. Problem: A LTI system with an input x1[n] = {1, 1, 1} gives an output y1[n] =
{0, 2, 5, 5, 3}. If a new input is x2[n] = {1, 3, 3, 2}, what is the output y2[n]?

[L0281] Solution: While the LTI system is both linear (L) and time-invariant (TI) we
can apply superposition. Now x2[n] can be synthesized as a sum of original x1[n] and a
shifted and scaled 2x1[n− 1]:

x2[n] = x1[n] + 2x1[n− 1] = {1, 1, 1}+ {0, 2, 2, 2} = {1, 3, 3, 2}

Because of LTI, the output y2[n] is also a sum of original y1[n] and a shifted and scaled
2y1[n− 1], as shown in Figure 37

y2[n] = y1[n] + 2y1[n− 1] = {0, 2, 5, 5, 3}+ {0, 0, 4, 10, 10, 6} = {0, 2, 9, 15, 13, 6}

0 2 4 6

0
1
2
3

n

x 1[n
]

0 2 4 6

0
1
2
3

n

2 
x 1[n

−
1]

0 2 4 6

0
1
2
3

n

x 2[n
]

0 2 4 6
0

5

10

15

n

y 1[n
]

0 2 4 6
0

5

10

15

n

2 
y 1[n

−
1]

0 2 4 6
0

5

10

15

n

y 2[n
]

Figure 37: Problem 26: Left column: sequences x1[n], 2x1[n−1], and x2[n] = x1[n]+2x1[n−1].
Right column: sequences y1[n], 2y1[n− 1], and y2[n] = y1[n] + 2y1[n− 1]. This holds for linear
and time-invariant (LTI) systems.

Remark. A standard way to solve this problem is to compute deconvolution of x1[n] and
y1[n], and then apply the result to the new input x2[n]. See Problem 32.

If we know how the LTI system modifies an impulse δ[n] into an output y[n] = h[n], we
can build an arbitrary synthesis x[n] =

∑

k x[k]δ[n − k] and receive the output y[n] by
convolving x[n] and h[n]. See Problem 27 or (Smith: DSPguide, Ch. 5, p. 98–99 ).

Notice that a synthesis signal x[n] can be decomposed in several ways. For example, the
synthesis of 15+25 is always 40, but 40 can be decomposed to 1+39, −1+41, 20+20, etc.
In case of signals, Fourier analysis (decomposition) or Fourier synthesis (inverse Fourier)
is applied.
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27. Problem: Impulse response h[n] is the response of the system to the input δ[n].

a) What is the impulse response of the system in Figure 32(a)? What is the connection
to the difference equation? Is this LTI system stable/causal?

b) What are the first five values of impulse response of the system in Figure 32(b)?
Hint: Fetch the input δ[n] and read what comes out. Is it possible to say something
about stability or causality of the system?

c) What are the first five values of impulse response of the system in Figure 32(d)?

[L0237] Solution: Impulse response h[n] is the response of the system to the input δ[n].

Impulse δ[n] −→ Any discrete-time
system

−→ Impulse response
hi[n]

Here hi[n] may get different values at different moments. However, a discrete-time LTI
(linear and time-invariant) has only one h[n] which specifies the system completely (Mitra
2Ed Sec. 2.5.1 / 3Ed Sec. 2.5.1 ).

Impulse δ[n] −→ Discrete-time
LTI system h[n]

−→ (unambiguous)
Impulse response h[n]

For a LTI system (see Problems 24 and 25) the stability condition is

∞∑

n=−∞
|h[n]| <∞

and the causality condition
h[n] = 0, ∀n < 0

If the impulse response h[n] is known for a LTI system, then the output y[n] can be
computed for any input x[n] by convolution.

Input sequence x[n] −→ Discrete-time
LTI system h[n]

−→ Output sequence y[n]
y[n] = h[n] ⊛ x[n]

a) Difference equation of the system is y[n] = x[n]− 2x[n− 1]+ x[n− 2]. Let the input
be δ[n] and read what comes out.

n x[n] −2x[n− 1] x[n− 2] y[n] = x[n]− 2x[n− 1] + x[n− 2]
. . . 0 0 0 0
-1 0 0 0 0
0 1 0 0 1
1 0 −2 0 −2
2 0 0 1 1
3 0 0 0 0

. . . 0 0 0 0

︸︷︷︸

δ[n]

︸︷︷︸

h[n]
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The impulse response is

h[n] = δ[n]− 2δ[n− 1] + δ[n− 2]

The length L{.} of the impulse response is finite, L{h[n]} = 3 <∞. So, the filter is
FIR (finite (length) impulse response).

Notice that in case of FIR filter (no feedbacks, flow always going forward), the
impulse response can be easily gotten from the corresponding difference equation
just by replacing y by h and each x by δ (Mitra 2Ed Sec. 2.5.1 / 3Ed Sec. 2.5.1 ).
In case of IIR, this leads to a recursive computation of h[n].

All FIR systems are always stable because the length of impulse response is finite,
and therefore also the sum of absolute values is finite:

∑

n |h[n]| < ∞, in this case
∑

n |h[n]| = 1 + 2 + 1 = 4 <∞.

This FIR system is causal while h[n] = 0 for all n < 0. In the difference equation
there is no future terms (x[n + k], k > 0) in right side of equation.

b) There is a feedback in the filter whose difference equation is

y[n] = 2y[n− 1] + x[n]− 2x[n− 1] + x[n− 2]

The impulse reponse is the response for impulse, so just feed a delta function in
and read what comes out. The initial value y[−1] is by default zero. If y[−1] were
non-zero, the system would not be linear, i.e., not LTI (Mitra 2Ed Sec. 2.4.1 / 3Ed
Sec. 2.4.2 ).

y[n] = 2y[n− 1] + x[n]
n x[n] −2x[n− 1] x[n− 2] 2y[n− 1] −2x[n − 1] + 2y[n− 1]

. . . 0 0 0 0 0
-1 0 0 0 0 0
0 1 0 0 0 1
1 0 -2 0 2 0
2 0 0 1 0 1
3 0 0 0 2 2
4 0 0 0 4 4

. . . 0 0 0 . . . . . .

︸︷︷︸

δ[n]

︸︷︷︸

h[n]

Computing values in the right-most column is equivalent to a recursive (h[n − 1]
needed for h[n]) expression

h[n] = 2h[n− 1] + δ[n]− 2δ[n− 1] + δ[n− 2]

which is found by replacing each y by h and each x by δ. Because of the loop,
L{h[n]} =∞, which corresponds IIR filter (infinite (length) impulse response).

The system is clearly causal because h[n] = 0 for all n < 0. From the difference
equation we see that in order to compute y[n] we need only present and past values
of x and past values of y. Hence, the system does not “predict” anything.

The system does not seem to be stable, while the output starts growing 1, 2, 4, . . .
without bound. The stability of IIR systems has to be checked every time, and there
will be easy tools for that later (poles of H(z) inside the unit circle).

The impulse response can be expressed in a closed form from the transfer func-
tion H(z) by inverse z-transform (discussed later). From the sequence h[n] =
{1, 0, 1, 2, 4, . . .} we can guess that the closed form equation (one possible ex-
pression) is h[n] = δ[n] + 2n−2µ[n− 2].
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c) A set of difference equations can be written,

v[n] = x[n] + a v[n− 1]

y[n] = b v[n] + c v[n− 1]

Just like in (b), the columns for temporary values are computed, and finally the first
values of the impulse response are

h[n] = {b, ba + c, ba2 + ca, ba3 + ca2, ba4 + ca3, . . .}

from which it can be guessed that the closed form representation for the impulse
response is h[n] = banµ[n] + can−1µ[n− 1].

Difference equation between x and y has been computed in Problem 23(d). It can
be derived even easier when utilizing z-transform and removing temporary variable
v in transform domain. See an example in Problem 64.
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28. Problem: Step response s[n] is the response of the system to the input µ[n]. What are
the step responses of systems in Figures 32(a) and (b)?

[L0273] Solution: Unit step response, or shortly step response s[n] is the response of the
system to the input µ[n] (Mitra 2Ed Sec. 2.4.2 / 3Ed Sec. 2.4.3 ). Step response can be
computed easily from the impulse response h[n] by cumulative sum (accumulator)

s[n] =
n∑

k=−∞

h[k]

Now, in (a) the impulse response is h[n] = δ[n]−2δ[n−1]+δ[n−2], and the step response
is

s[n] = {. . . , 0, 0, 1,−1, 0, 0, . . .}
which can be also seen by feeding ones to the input and reading the output. The steady-
state response (Mitra 2Ed Sec. 4.2.3 / 3Ed Sec. 3.8.5 ) converges quickly to zero.

In (b) the impulse response diverges h[n] = δ[n] + δ[n− 2] + 2δ[n− 3] + 4δ[n− 4] + . . .,
as well as the step response

s[n] = {. . . , 0, 0, 1, 1, 2, 4, 8, . . .}
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29. Problem: Compute the linear convolution of two signals x1(t) and x2(t)

y(t) = x1(t) ⊛ x2(t) =

∫ ∞

−∞
x1(τ) · x2(t− τ) dτ

in both cases (a) and (b) in Figure 38. The arrows in (b) are impulses δ(t).
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Figure 38: Problem 29: signals x1(t) and x2(t) to be convolved, left: (a), right: (b).

[L0272] Solution: Continuous-time linear convolution of two signals x1(t) and x2(t) is
defined by

y(t) = x1(t) ⊛ x2(t) =

∫ ∞

−∞
x1(τ) · x2(t− τ) dτ

You can see an example of graphical convolution in Java applet in URL http://www.jhu.

edu/~signals/convolve/index.html. Sketch the signals x1(t) and x2(t) of Figure 38
into the boxes. The other signal is flipped around. When sliding the flipped signal to
right over the other signal, the integral of the product is computed. At certain point t0
the integral gives the convolution output y(t0).

The results of (a) can be seen in Figure 39(a). In (b) the arrows are impulses δ(t) which
are signals having the area of unity and being infinitely narrow, i.e. the height in infinite.
Convolving a signal with an impulse δ(t) can be considered as copying the signal at each
place where impulse lies, see Figure 39(b).

0

y(t)

t42

1
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3

0

y(t)

t42
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2

3

Figure 39: Problem 29: convolution results y(t), left: (a), right: (b).

Remark. The continuous-time convolution contains the product of two signals and taking
integral of the product. In practice, the convolution can seldom be computed in closed
form. However, in (a) the signals are

x1(t) =

{

3, −1 ≤ t < 4

0, elsewhere

x2(t) =

{

2− 2t, 0 ≤ t < 1

0, elsewhere

The flipped signal is x2(t − τ) = 2 − 2t + 2τ , and the convolution integral is y(t) =
∫

τ
x1(τ) · x2(t − τ) dτ . The convolution can be computed in five cases when sliding x2
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from left to right: (1) t < −1, product of signals is zero, (2) −1 < t < 0, x2 “penetrating”,
(3) 0 < t < 4, “stable” case, (4) 4 < t < 5, x2 “leaving”, (5) t > 5, again zero.

y(t)(1) =

∫ −1

−∞
0 · (2− 2t + 2τ) dτ = 0, t < −1

y(t)(2) =

∫ t

−1

3 · (2− 2t + 2τ) dτ = 3− 3t2, −1 ≤ t < 0

y(t)(3) =

∫ t

t−1

3 · (2− 2t + 2τ) dτ = 3, 0 ≤ t < 4

y(t)(4) =

∫ 4

t−1

3 · (2− 2t + 2τ) dτ = 3t2 − 30t + 75, 4 ≤ t < 5

y(t)(5) =

∫ ∞

5

0 · (2− 2t + 2τ) dτ = 0, t ≥ 5
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Figure 40: Remark of Problem 29: Detailed example of continuous convolution. Five figures
represent examples of y(t)(i), i = 1 . . . 5, as given in equations above. The shaded areas depict
the integrand x1(τ) · x2(t − τ) in the corresponding range. Note that they are not in scale in
second and third figure, the peak should be at 6.
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30. Problem: Linear convolution of two sequences is defined as (Mitra 2Ed Eq. 2.64a, p.
72 / 3Ed Eq. 2.73a, p. 79 )

y[n] = h[n] ⊛ x[n] = x[n] ⊛ h[n] =

∞∑

k=−∞

x[k] h[n− k]

a) Compute x[n] ⊛ h[n], when
x[n] = δ[n] + δ[n− 1], and h[n] = δ[n] + δ[n− 1].
What is the length of the convolution result?

b) Compute x1[n] ⊛ x2[n], when
x1[n] = δ[n] + 5δ[n− 1], and x2[n] = −δ[n− 1] + 2δ[n− 2]− δ[n− 3]− 5δ[n− 4].
What is the length of the convolution result? Where does the output sequence start?

c) Compute h[n] ⊛ x[n], when
h[n] = 0.5nµ[n], and x[n] = δ[n] + 2δ[n− 1]− δ[n− 2].
What is the length of the convolution result?

[L0239] Solution: Discrete-time linear convolution of two sequences h[n] and x[n] is

y[n] = h[n] ⊛ x[n] =
∞∑

k=−∞

h[k]x[n − k]

The convolution is an operation for two sequences (Mitra 2Ed Sec. 2.5.1, p. 71 / 3Ed
Sec. 2.5.1, 2.5.2, p. 78 ). There are several ways to get the convolution result. First,
in (a) the convolution is considered as filtering, the other sequence is the input and the
other is the inpulse response of the system, and the convolution result is the output of
the system. Second, in (b) a graphical way of inverting and sliding the sequences over
each other is represented. In (c) the convolution is considered as a sum of shifted and
scaled sequences, “tabular method” in (Mitra 3Ed Sec. 2.5.2 ). However, even if three
ways are introduced separately, they all rely on the same (and simple) definition of the
convolution.

When computing discrete-time convolution y[n] = x[n] ⊛ h[n], it is nice know a couple of
rules. Let L{.} be a length of a sequence, e.g. x[n] = {3, 2, 0, 5,−2}, then L{x[n]} = 5.

Because LTI-system is shift-invariant, the starting point of the convolution result can be
determined as a sum of starting points of the convolved sequencies. Let A{.} be the index
number of the first non-zero element, e.g., A{x[n]} = −1.

It is easily seen that for the convolution result y[n] it holds

L{y[n]} = L{x[n]} + L{h[n]} − 1

A{y[n]} = A{x[n]} + A{h[n]}

There are also some nice convolution demos in Internet, e.g. http://www.jhu.edu/

~signals/discreteconv2/index.html.

a) Consider convolution as filtering with the input sequence x[n] = δ[n] + δ[n − 1] =
{1, 1}, and the impulse response h[n] = δ[n] + δ[n − 1] = {1, 1}, of the system.
The corresponding difference equation is y[n] = x[n] + x[n − 1], that is, the output
is just the sum of the present and previous value in the input. (You can draw the
flow (block) diagram for the system and verify the computation.)
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n x[n] = δ[n] + δ[n− 1] x[n− 1] y[n] = x[n] + x[n− 1]
-1 0 0 0 + 0 = 0
0 1 0 1 + 0 = 1
1 1 1 1 + 1 = 2
2 0 1 0 + 1 = 1
3 0 0 0 + 0 = 0
4 0 0 0 + 0 = 0

So, the result is x[n]⊛h[n] = {1, 2, 1} = δ[n]+2δ[n−1]+δ[n−2], and the length is
L{y[n]} = 3. The starting point can be checked: A{y[n]} = A{x[n]}+ A{h[n]} = 0.

b) Another way (on-line) is computing output values at each time moment n. Graphi-
cally this means inverting (flipping around) the other sequence, sliding it over the
other, and computing the output value as a dot sum. This is also illustrated with
figures in (Mitra 2Ed Ex. 2.24, p. 73-75 / 3Ed Ex. 2.26, p. 80-83 ).

Now when x1[n] = δ[n]+5δ[n−1] and x2[n] = −δ[n−1]+2δ[n−2]−δ[n−3]−5δ[n−4],
then L{x[n]} = 2 + 4− 1 = 5 and A{x[n]} = 0 + 1 = 1. Therefore we know that the
convolution result is of form x[n] = a1δ[n − 1] + a2δ[n − 2] + a3δ[n − 3] + a4δ[n −
4] + a5δ[n− 5].

n = 1 : x[1] =

∞∑

k=−∞

x1[k]x2[1− k]

= 0 + (x1[0]
︸︷︷︸

1

· x2[1− 0]
︸ ︷︷ ︸

−1

) + (x1[1]
︸︷︷︸

5

· x2[1− 1]
︸ ︷︷ ︸

0

) + 0

= −1

n = 2 : x[2] =

∞∑

k=−∞

x1[k]x2[2− k]

= 0 + (x1[0] · x2[2− 0]) + (x1[1] · x2[2− 1]) + 0

= 2 + (−5) = −3

n = 3 : x[3] =

∞∑

k=−∞

x1[k]x2[3− k]

= 0 + (x1[0] · x2[3− 0]) + (x1[1] · x2[3− 1]) + 0

= −1 + 10 = 9

n = 4 : x[4] = −5 + (−5) = −10

n = 5 : x[5] = −25

The procedure is represented stepwise, and step n = 3 is shown also in Figure 41.
In the top line of the figure there is the sequence x1[k] = {. . . , 0, 1, 5, 0, . . .}, in the
second line the shifted and inverted sequence x2[n − k]. It slides from left to right
when n increases, and at n = 3 it is x2[3 − k] = {. . . , 0,−5,−1, 2,−1, 0, . . .}. The
point-wise product of sequences in top rows is shown in the third line:
{x1[k]x2[3− k]} = {. . . , 0, 0 · (−5), 1 · (−1), 5 · 2, 0 · (−1), 0, . . .} = {−1, 10}.
The convolved value x[3] is the sum of values in the third row:
x[3] =

∑∞
k=−∞ x1[k]x2[3− k] = −1 + 10 = 9.

In the bottom line there is the result for n ≤ 3, and n = 3 underlined, and results
for n > 3 are to be computed.

c) The convolution can be computed as a sum of shifted and scaled sequences.
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Figure 41: Problem 30(b): Linear convolution using “invert and slide”. Caption from the step
n = 3, i.e. computing the value x[3] = 9. See the text for more details. There is a demo Matlab
program linconv.m to demonstrate the computation in the course web pages.

Now, h[n] = 0.5nµ[n], and x[n] = δ[n] + 2δ[n− 1]− δ[n− 2], in other words x[0] = 1,
x[1] = 2, x[2] = −1, and x[n] = 0, elsewhere. The division into three parts on
third line emphasizes the fact that a scalar x[k] is zero with all values of k except
k = {0, 1, 2}.

y[n] = x[n] ⊛ h[n]

=

∞∑

k=−∞

x[k]h[n− k]

=
−1∑

k=−∞

x[k]h[n− k] +
2∑

k=0

x[k]h[n − k] +
∞∑

k=3

x[k]h[n − k]

= 0 +
2∑

k=0

x[k]h[n− k] + 0

= x[0]
︸︷︷︸

scaling

· h[n− 0]
︸ ︷︷ ︸

shifted seq.

+x[1]h[n− 1] + x[2]h[n− 2]

= 1 · h[n] + 2 · h[n− 1]− 1 · h[n− 2]

= 0.5nµ[n] + 2 · 0.5n−1µ[n− 1]− 0.5n−2µ[n− 2]

= δ[n] + 2.5δ[n− 1] + 0.5nµ[n− 2] | alternatively

It can be seen that values of x[n] were scaling factors and sequence h[n] was shifted
each time. While convolution is commutative (x1[n]⊛x2[n] = x2[n]⊛x1[n]), one can
compute the same using values of h[n] as scaling factors and shifting x[n]. The pro-
cedure is depicted in Figure 42. While the length of the other sequence is infinitive,
so is also the length of the convolution.
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Figure 42: Problem 30(c): Linear convolution using “scaled and shifted sequences”. Top line:
x[0] · h[n − 0] = 0.5nµ[n], second: x[1] · h[n − 1] = 2 · 0.5n−1µ[n − 1], third: x[2] · h[n − 2] =
−1 · 0.5n−2µ[n− 2], bottom: convolution result, sum of sequences above.

31. Problem: Consider a LTI-system with impulse response h[n] = δ[n− 1]− δ[n− 2] and
input sequence x[n] = 2δ[n] + 3δ[n− 2].

a) What is the length of convolution of h[n] and x[n] (without computing convolution
itself)? Which index n is the first one having a non-zero item?

b) Compute convolution y[n] = h[n] ⊛ x[n]

c) Consider polynomials S(x) = 2 + 3x2 and T (x) = x − x2. Compute the product
U(x) = S(x) · T (x)

d) Check the result by computing the polynomial division T (x) = U(x)/S(x).

[L0246] Solution: An important rule of thumb for finding length L{.} of the linear
convolution (different from circular convolution):

y[n] = h[n] ⊛ x[n] → L{y[n]} = L{h[n]} + L{x[n]} − 1

The index of the first non-zero item A{.} for finite sequences:

y[n] = h[n] ⊛ x[n] → A{y[n]} = A{h[n]}+ A{x[n]}

In this case, h[n] = δ[n− 1]− δ[n− 2], which is drawn as a flow diagram in Figure 43.

a) L{h[n]} = 2, L{x[n]} = 3 → L{y[n]} = 4. Because h[n] is delayed by one
(dh = +1) and x[n] starts from the origo (dx = 0), also their convolution is delayed
by one: A{h[n]} = 1, A{x[n]} = 0 → A{y[n]} = 1.

Now we know that the result is of form:

y[n] = a1δ[n− 1] + a2δ[n− 2] + a3δ[n− 3] + a4δ[n− 4]
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y[n]

1

−1

D

D

x[n]

Figure 43: Problem 31: Flow diagram.

b) Using values of h[n] = δ[n− 1]− δ[n− 2] as scaling factors

y[n] = h[n] ⊛ x[n]

=
∞∑

k=−∞

h[k]x[n − k]

=
2∑

k=1

h[k]x[n − k]

= 1 · (2δ[n− 1] + 3δ[n− 3])− 1 · (2δ[n− 2] + 3δ[n− 4])

= 2δ[n− 1]− 2δ[n− 2] + 3δ[n− 3]− 3δ[n− 4]

c) U(x) = S(x) · T (x) = (2 + 3x2) · (x − x2) = 2x − 2x2 + 3x3 − 3x4. Notice the
correspondence with the result of (b), the delay is the power of x (z−1 in z-transform).

d) Using long division (Mitra 2Ed Ex. 3.35 / 3Ed Ex. 6.19 ). The polynomials are
U(x) = 2x− 2x2 + 3x3 − 3x4 and S(x) = 2 + 3x2,

− x2 + x

3x2 + 2
)
− 3x4 + 3x3 − 2x2 + 2x

3x4 + 2x2

3x3 + 2x
− 3x3 − 2x

0

We get the result x− x2 as expected (h[n] = δ[n− 1]− δ[n− 2]). Convolution and
deconvolution operations can be computed using products and divisions of polyno-
mials.
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32. Problem: The impulse response h1[n] of a LTI system is known to be h1[n] = µ[n] −
µ[n − 2]. It is connected in cascade (series) with another LTI system h2 as shown in
Figure 44.

h [n]1 h [n]1

x[n] y[n]
h [n]2

Figure 44: The cascade system of Problem 32.

Compute the impulse response h2[n], when it is known that the impulse response h[n] of
the whole system is shown in Table 6 below.

n < 0 0 1 2 3 4 > 4
h[n] 0 1 5 9 7 2 0

Table 6: Impulse response of the cascade system in Problem 32.

[L0241] Solution: There are three subsystems connected in cascade (series). They are
all linear and time-invariant (LTI). The overall impulse response of the whole system is
therefore

h[n] = (h1[n] ⊛ h2[n]) ⊛ h1[n]

h[n] = (h1[n] ⊛ h1[n]) ⊛ h2[n]

= δ[n] + 5δ[n− 1] + 9δ[n− 2] + 7δ[n− 3] + 2δ[n− 4]

= {1, 5, 9, 7, 2}

Notice that h[n] and h1[n] are known but h2[n] is unknown. If one of the signals to
be convolved is unknown and the convolution result is known, the operation to find the
unknown is called deconvolution, inverse operation of convolution. The procedure of
deconvolution is basically the same as that with convolution. If polynomial products are
used, then the operation is polynomial division H2(x) = H(x)/(H1(x)H1(x)).

First, compute h11[n] = h1[n]⊛h1[n], with h1[n] = δ[n] + δ[n− 1], or h1[0] = 1, h1[1] = 1,

h11[n] = h1[n] ⊛ h1[n]

=

+∞∑

k=−∞

h1[k]h1[n− k]

= δ[n] + 2δ[n− 1] + δ[n− 2]

Second, compute the length (here L{.}) of h2[n]. While L{h[n]} = 5, L{h11[n]} = 3, and
L{h[n]} = L{h11[n]}+ L{h2[n]} − 1, the result is L{h2[n]} = 3.

The index of the first non-zero element (here A{.}) is A{h2[n]} = A{h[n]}−A{h11[n]} =
0− 0 = 0. Therefore the unknown sequence can be written as

h2[n] = aδ[n] + bδ[n− 1] + cδ[n− 2]
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Third, compute the convolution, and solve the unknown constants a, b, and c.

h[n] = h11[n] ⊛ h2[n]

=
+∞∑

k=−∞

h11[k]h2[n− k] =
2∑

k=0

h11[k]h2[n− k]

= h11[0] · h2[n− 0] + h11[1] · h2[n− 1] + h11[2] · h2[n− 2]

= h2[n− 0] + 2h2[n− 1] + h2[n− 2]

= (aδ[n] + bδ[n− 1] + cδ[n− 2])

+2(aδ[n− 1] + bδ[n− 2] + cδ[n− 3])

+(aδ[n− 2] + bδ[n− 3] + cδ[n− 4])

= aδ[n] + (b + 2a)δ[n− 1] + (c + 2b + a)δ[n− 2] + (2c + b)δ[n− 3] + cδ[n− 4]

= δ[n] + 5δ[n− 1] + 9δ[n− 2] + 7δ[n− 3] + 2δ[n− 4] | h[n] is known

The comparison between the last two lines from left gives a = 1, then (b + 2 · 1) = 5 ⇒
b = 3, then (c + 2 · 3 + 1) = 9 ⇒ c = 2, and also the rest values hold. In the end, the
result is

h2[n] = δ[n] + 3δ[n− 1] + 2δ[n− 2]

which can be ensured by convolution.

Remark. The last convolution can be written easily in a visual way using “tabular
method” (Mitra 2Ed Sec. -, p. - / 3Ed Sec. 2.5.2, p. 83–85 ).

Recall that h[n] =
∑2

k=0 h11[k]h2[n− k], where h11[n] = {1, 2, 1}, h2[n] = {a, b, c}, and
h[n] = {1, 5, 9, 7, 2}. Write down the sum into a table

n: −1 0 1 2 3 4 5
h11[0]· 0 a b c 0 0 0 ← h2[n]
h11[1]· 0 0 a b c 0 0 ← h2[n− 1]

+ h11[2]· 0 0 0 a b c 0 ← h2[n− 2]
= h[n] = h[−1] h[0] h[1] h[2] h[3] h[4] h[5]

Now, inserting all known values, and multiplying h11[k] scaling factors in, we get

n: −1 0 1 2 3 4 5
0 a b c 0 0 0
0 0 2a 2b 2c 0 0

+ 0 0 0 a b c 0
= h[n] = 0 1 5 9 7 2 0

We can start either from left-most non-zero column (or from right-most) to solve unknown
values. First, we find out that in the column at n = 0 there is a + 0 + 0 = 1, from which
we get a = 1:

n: −1 0 1 2 3 4 5
0 1 b c 0 0 0
0 0 2 2b 2c 0 0

+ 0 0 0 1 b c 0
= h[n] = 0 1 5 9 7 2 0

The next column at n = 1 gives b + 2 + 0 = 5, from which b = 3:

n: −1 0 1 2 3 4 5
0 1 3 c 0 0 0
0 0 2 6 2c 0 0

+ 0 0 0 1 3 c 0
= h[n] = 0 1 5 9 7 2 0
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The next column at n = 2 gives c + 6 + 1 = 9, from which c = 2:

n: −1 0 1 2 3 4 5
0 1 3 2 0 0 0
0 0 2 6 4 0 0

+ 0 0 0 1 3 2 0
= h[n] = 0 1 5 9 7 2 0

Because everything holds, the deconvolution result is

h2[n] = δ[n] + 3δ[n− 1] + 2δ[n− 2]
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33. Problem: LTI systems are commutative, distributive and associative. Determine the
expression for the impulse response of each of the LTI systems shown in Figure 45.

h5[n]

h2[n]

h4[n]h3[n]

h1[n]

(a)

h5[n]

h3[n]h2[n]

h4[n]

h1[n]

(b)

Figure 45: LTI systems in Problem 33.

[L0242] Solution: All subsystems are LTI. Therefore we can use sum of impulse re-
sponses for parallel systems and convolution of impulse responses for cascade systems
(Mitra 2Ed Ex. 2.27 / 3Ed Ex. 2.35 ).

If any temporary variables are needed, they are probably best situated right after the
summing units.

a) We can derive the impulse response h[n] of the whole system directly, or using a
temporary variable v[n] (easier!?) shown in Figure ??. The useful position for v[n]
is after summation.

v[n] = (h1[n] ⊛ x[n]) + ((h3[n] ⊛ h5[n]) ⊛ x[n])

y[n] = (h2[n] ⊛ v[n]) + ((h3[n] ⊛ h4[n]) ⊛ x[n])

=
(
(h2[n] ⊛ h1[n]) + (h2[n] ⊛ h3[n] ⊛ h5[n]) + (h3[n] ⊛ h4[n])

)
⊛ x[n]

h[n] = (h2[n] ⊛ h1[n]) + (h2[n] ⊛ h3[n] ⊛ h5[n]) + (h3[n] ⊛ h4[n])

b) In the same way as in (a).

v[n] = (h4[n] ⊛ x[n]) + ((h1[n] ⊛ h2[n]) ⊛ x[n])

y[n] = (h3[n] ⊛ v[n]) + ((h1[n] ⊛ h5[n]) ⊛ x[n])

=
(
(h3[n] ⊛ h4[n]) + (h1[n] ⊛ h2[n] ⊛ h3[n]) + (h1[n] ⊛ h5[n])

)
⊛ x[n]

h[n] = (h3[n] ⊛ h4[n]) + (h1[n] ⊛ h2[n] ⊛ h3[n]) + (h1[n] ⊛ h5[n])
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34. Problem: The impulse response of a digital matched filter, h[n], is the time-reversed
replica of the signal to be detected (Mitra 2Ed Sec. 4.14, p. 272 / 3Ed Sec. -, p. -). The
time-shift is needed in order to get a causal filter.

The (binary) signal to be detected is given by s[n] = {1, 1, 1,−1,−1, 1,−1}. Consider an
input sequence x[n] which is a periodic sequence repeating s[n]. Determine h[n] and the
result of filtering y[n] = h[n] ⊛ x[n].

[L0247] Solution: Matched filter. Let s[n] be a (binary) 7-bit long codeword to be
detected, x[n] an input signal of repeated s[n], and the impulse response of the matched
filter h[n] = s[−n]:

s[n] = {1, 1, 1,−1,−1, 1,−1}
x[n] = {. . . , s[n], s[n], s[n], . . .} =

= {. . . , 1, 1, 1,−1,−1, 1,−1, 1, 1, 1,−1,−1, 1,−1, 1, 1, 1,−1,−1, 1,−1, . . .}
h[n] = s[−n] = {−1, 1,−1,−1, 1, 1, 1}

The convolution result y[n] = h[n] ⊛ x[n] is shown in Figure 46.

0 5 10 15 20 25
−2

0

2

4

6

8
Problem 4. Output of the matched filter with input to be detected.

Figure 46: Convolution result of the matched filter and desired sequence in Problem 34.

The signal s[n] was chosen so, that the every seventh sample (length of s[n]) in output is
high, and all others are low. If the signal s[n] were different, there would be not so clear
peaks in the convolution result.

Remark. Convolution and cross-correlation have a close connection (Mitra 2Ed Eq.
2.106, p. 89 / 3Ed Eq. 2.127, p. 101 )

rxy[l] =

∞∑

n=−∞
y[n]x[−(l − n)] = y[l] ⊛ x[−l]
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35. Problem: Determine the autocorrelation sequence of the sequence x1[n] = αnµ[n], |α| <
1 and show that it is an even sequence. What is the location of the maximum value of
the autocorrelation sequence?

[L0249] Solution: Cross-correlation sequence rxy[l] of two sequences and autocorrelation
sequence rxx[l] with lag l = 0,±1,±2, . . . are defined in (Mitra 2Ed Sec. 2.7 / 3Ed Sec.
2.9 )

rxy[l] =

∞∑

n=−∞
x[n]y[n− l] rxx[l] =

∞∑

n=−∞
x[n]x[n − l]

rxx[l] =
∞∑

n=−∞
x1[n]x1[n− l]

=
∞∑

n=−∞
αnµ[n]αn−lµ[n− l]

=

∞∑

n=0

α2n−lµ[n− l]

=

{∑∞
n=0 α2n−l = α−l

1−α2 , for l < 0
∑∞

n=l α
2n−l = α−l

1−α2 − α−l−αl

1−α2 = αl

1−α2 , for l ≥ 0

Note for the lag l ≥ 0, rxx[l] = αl

1−α2 , and for l < 0, rxx[l] = α−l

1−α2 .

Replacing l with −l in the second expression we get rxx[−l] = α−(−l)

1−α2 = rxx[l].

Hence, rxx[l] is an even function of l.

Maximum value of rxx[l] occurs at l = 0 since αl is a decaying function for increasing l
when |α| < 1.

−2 0 2 4 6 8 10 12 14

0

0.5

1

x[
n]

Problem 3. Autocorrelation of x[n] = αn µ[n], α = 0.8
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−2 0 2 4 6 8 10 12 14
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3

r xx
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]

Figure 47: Autocorrelation sequence in Problem 35. Top: x[n], middle: x[n − 2], bottom:
rxx[l], rxx[2] =

∑

k x[k]x[k − 2].
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36. Problem: Compute continuous-time Fourier transform (CTFT) of the following analog
signals using the definition

X(jΩ) =

∫ ∞

−∞
xa(t) e−jΩt dt

a) x1(t) = e−3tµ(t)

b) x2(t) = e−j3t

c) x3(t) = e−j3t + ej3t

[L0275] Solution: The continuous-time Fourier transform (CTFT) of a continuous-time
signal xa(t) is given by (Mitra 2Ed Eq. -, p. - / 3Ed Eq. 3.1, p. 118 ) below. The variable
is the angular frequency Ω = 2πf ∈ R, in range −∞ < Ω <∞.

Xa(jΩ) =

∫ ∞

−∞
xa(t) e−jΩt dt

a) Now x1(t) = e−3tµ(t) ∈ R, see Figure 48(a). Note that the unit step function µ(t)
sets the low border of intergration to zero. See also (Mitra 2Ed Ex. -, p. - / 3Ed
Ex. 3.1, p. 118 ).

X1(jΩ) =

∫ ∞

−∞
x1(t) e−jΩt dt =

∫ ∞

0

e−3t e−jΩt dt =

∫ ∞

0

e−(3+jΩ)t dt

= − 1

3 + jΩ

∞/

0

e−(3+jΩ)t = − 1

3 + jΩ
·
(

0− 1
)

=
1

3 + jΩ

b) Now x2(t) = e−j3t ∈ C. The signal is complex-valued and runs clock-wise around
unit circle with angular frequency Ω = −3 (rad/s), see Figure 48(b).

X2(jΩ) =

∫ ∞

−∞
x2(t) e−jΩt dt =

∫ ∞

−∞
e−j3t e−jΩt dt =

∫ ∞

−∞
e−j(3+Ω)t dt

= 2πδ(Ω + 3)

There is a peak of height 2π at Ω = −3, because
∫

δ(t)a(t)dt = a(t)|t=0. The signal
is complex and therefore the spectrum is not symmetric around y-axis.

c) Now x3(t) = e−j3t + ej3t = 2 cos(3t) ∈ R using Euler’s formula. There are two peaks
of height 2π at frequencies Ω = ±3.

X3(jΩ) = 2π
(

δ(Ω− 3) + δ(Ω + 3)
)
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Figure 48: Problem 36: Top row (a), (b), (c): signals x1(t), x2(t), and x3(t), time t in x-
axis. Bottom row (d), (e), (f): corresponding CTFTs, amplitude spectra |X1(jΩ)|, |X2(jΩ)|,
|X3(jΩ)|, angular frequency Ω in x-axis. In case of real signals x(t) ∈ R the spectrum is
symmetric around y-axis.

37. Problem: Sketch the following signals in time-domain and their (amplitude) spectra in
frequency-domain.

a) x1(t) = cos(2π 500 t)

b) x2(t) = 4 cos(2π 200 t) + 2 sin(2π 300 t)

c) x3(t) = e−j(2π 250t) + ej(2π 250t)

d) x4(t) = x1(t) + x2(t) + x3(t)

[L0271] Solution: The continuous-time Fourier transform (CTFT) decomposes the sig-
nal to its frequency components. Cosine and exponential function have a close relationship
via Euler’s formula:

cos(Ωt) = 0.5 · (ejΩt + e−jΩt)

Ideally, each real cosine component xi(t) = Ai cos(2πfit + θi) is a peak at frequency fi in
an one-sided spectrum or a peak pair at frequencies −fi and fi in a two-sided spectrum.
So, if the signal x(t) is real-valued, then the two-sided spectrum |X(jΩ)| is symmetric.

The amplitude Ai expresses how strong the cosine component is.

a) A pure cosine at 500 Hz. Figure 49(a).

b) A sum of two cosines. Peaks at 200 and 300 Hz. Figure 49(b).

c) Two complex exponentials with the same amplitude and opposite frequencies can be
combined to a cosine using Euler’s formula. A peak at 250 Hz. Figure 49(c).

d) The sum signal contains all components in time domain as well as in frequency
domain. Figure 49(d).

Remark. Typically, when computing spectra numerically (x[n] instead of x(t)) with
computer, the peaks “spread”. There is the of signal x4[n] ← x4(t) in Figure 50, DFT
using N=40 points in (a), and DFT using N=41 points in (b), and both having the
sampling frequency fs = 2000 Hz. So, in (a) the resolution f0 of the frequency is exactly
50 Hz, whereas in (b) it is 2000 Hz /41 = 48.78 Hz. The components of the signal are
multiples of 50 Hz (4·50 = 200, etc.) but not multiples of 48.78 Hz. In practice, the former
case is very rare – normally all possible peaks are spread. This example was executed
using the command fft in Matlab.
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Figure 49: Problem 37: Signals and their one-sided spectra (CTFT).

When analyzing spectra in any commercial software, the sequence is first “cut” with a
window (Hamming, Hanning, Blackman, etc.). Windows and their effect on spectra are
discussed later in FIR filter design.
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Figure 50: Remark in Problem 37. Discrete Fourier Transform (DFT) of the same signal (now
discrete-time x4[n]) as in Figure 49(d): (a) signal components (200, 250, 300, 500 Hz) are
multiples of the frequency resolution f0 = 2000 Hz /40, (b) signal components are not any
more multiples of f0 = 2000 Hz /41. Actually there are only four frequency components in
the signal, but this cannot be observed in (b). Fourier component X4[4] is highlighted in both
figures. In (a) its frequency is 4f0 = 200 Hz, while in (b) it is 4f0 ≈ 195 Hz. Dashed line is the
result of discrete-time Fourier transform (DTFT) where the frequency is continuous-valued.
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38. Problem: Compute discrete-time Fourier transform (DTFT) for each of the following
sequences using the definition

X(ejω) =

∞∑

n=−∞
x[n]e−jωn

a) x1[n] = δ[n− 2]

b) x2[n] = 0.5nµ[n]

c) x3[n] = a[n] · cos(π
5
n), where a[n] is a real-valued sequence whose DTFT is A(ejω).

[L0258] Solution: The discrete-time Fourier transform (DTFT) of sequence x[n] is de-
fined

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

a) x1[n] = δ[n− 2]

X1(e
jω) =

∞∑

n=−∞
x1[n]e−jωn =

∞∑

n=−∞
δ[n− 2]e−jωn

= e−j2ω

b) x2[n] = 0.5nµ[n]

X2(e
jω) =

∞∑

n=−∞
x2[n]e−jωn =

∞∑

n=−∞
0.5nµ[n]e−jωn

=

∞∑

n=0

(0.5 · e−jω)n

=
1

1− 0.5 · e−jω

c) x3[n] = a[n] cos(π
5
n). Using Euler’s formula we can express

cos(
π

5
n) = 0.5 ·

(
ej π

5
n + e−j π

5
n
)

Hence,

X3(e
jω) =

∞∑

n=−∞
x3[n]e−jωn =

∞∑

n=−∞
a[n] cos(

π

5
n)e−jωn

= 0.5
∞∑

n=−∞
a[n]

(
ej π

5
n + e−j π

5
n
)
e−jωn

= 0.5

∞∑

n=−∞
a[n]

(
e−j(ω−π

5
)n + e−j(ω+ π

5
)n
)

= 0.5
(
A(ej(ω−π

5
)) + A(ej(ω+ π

5
))
)

where A(ejω) is DTFT of a[n]. Signal a[n] is modulated with ω = π/5. In the
frequency domain the spectrum A(ejω) is“copied”(and scaled) at normalized angular
frequencies ω = ±π/5. See Problem 39(a) for solving the same problem with the
transform table.
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39. Problem: Consult the transform table and find the DTFTs of sequences

a) x3[n] = a[n] · cos(0.2πn)

b) x4[n] = 0.25n−1µ[n− 1]

c)

x5[n] =







0, n < −1 ∨ n ≥ 6

2, −1 ≤ n < 1

3, 1 ≤ n < 4

1, 4 ≤ n < 6

[L0282] Solution: The discrete-time Fourier transform (DTFT) is defined as

X(ejω) =
∞∑

n=−∞
x[n] e−jωn

but can often be solved via the transform table. There are a set of transform pairs and
some properties listed in the table.

a) There are two following lines in the transform table related to this problem. The
first one is for modulation (product in time domain) and the latter Fourier-transform
of a cosine sequence:

x1[n] · x2[n] ↔ 1

2π

∫

2π

X1(e
jθ) ·X2(e

j(ω−θ)) dθ

cos(ω0n) ↔ π
∑

l

(δ(ω − ω0 + 2πl) + δ(ω + ω0 + 2πl))

Now an unknown sequence a[n], whose DTFT is A(ejω), is modulated with a cosine
sequence with ω0 = 0.2π. Transform of the cosine is

x1[n] = cos((π/5)n)↔ π
∑

l

(δ(ω − π/5 + 2πl) + δ(ω + π/5 + 2πl)) = X1(e
jω)

which is an (infinite-length) impulse train. Convolving a spectrum X2(e
jω) = A(ejω)

with the impulse train X1(e
jω) over one period, that is l = 0, and multiplying with

1
2π

we get

X3(e
jω) =

1

2π

∫

2π

X1(e
jθ) ·X2(e

j(ω−θ)) dθ

=
1

2π
· π ·

(∫

2π

δ(θ − π/5) · A(ej(ω−θ)) dθ +

∫

2π

δ(θ + π/5) ·A(ej(ω−θ)) dθ
)

=
1

2
·
(

A(ej(ω−π/5)) + A(ej(ω+π/5))
)

where we have utilized Dirac’s delta function, see Formulas
∫∞
−∞ δ(t − t0)x(t) dt =

x(t0).

An example can be seen in Figure 51. The time-domain modulation corresponds
frequency-domain convolution.1 Hence, the original spectrum is “copied” at each
δ(.) frequency. In this case cosine cos((π/5)n) = 0.5(ej(π/5)n) + 0.5(ej(−π/5)n), from
which the normalized angular frequencies are −π/5 and π/5.

1Java applet for convolution of spectra http://www.jhu.edu/~signals/convolve/index.html.
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Figure 51: Problem 39(a): (a) X1(e
jω) (Dirac’s) impulse train from a cosine, depicted only in

range (−π . . . π], (b) X2(e
jω) = A(ejω) spectrum from an arbitrary sequence a[n], (c) X3(e

jω)
convolution of spectra X1 and X2, which corresponds modulation x1[n] · x2[n] in time-domain.
The spectrum X2 is “copied” at −π/5 and π/5, and overlapping parts are summed together
(assuming zero-phases signals). All scaling factors (y-axis) have been omitted in these graphs.
Discrete-time spectra X1, X2, and X3 are all 2π-periodic.

b) From table we see that anµ[n]↔ 1/(1− ae−jω) and x[n− k]↔ e−jkωX(ejω). In this
case we have a = 0.25 and there is a time shift by k = 1, from which we get

X4(e
jω) = e−jω · 1/

(
1− 0.25e−jω

)

c) The sequence x5[n] can be converted directly with the pair δ[n − k] ↔ e−jkω and
keeping in mind that transform is linear

∑

i ci · δ[n−ki]↔
∑

i ci · e−jkiω. In this way

X5(e
jω) = 2ejω + 2 + 3e−jω + 3e−2jω + 3e−3jω + e−4jω + e−5jω

However, this time we want to practice transform tables. Note that x5[n] can be
constructed as a sum from two “boxes” x5[n] = x51[n] + x52[n], see Figure 52(b)-(d)

x51[n] = 2, −1 ≤ n < 4

x52[n] = 1, 1 ≤ n < 6

we can utilize the time shifting property and a transform of a rectangle

x[n− k] ↔ e−jkωX(ejω)

xrect[n] =

{

1, |n| ≤ N1

0, |n| > N1

↔ sin(ω(N1 + 0.5))

sin(ω/2)
= Xrect(e

jω)|N1

Now we can see that x51[n] = 2xrect[n− 1] with length parameter N1 = 2 and delay
k = 1, as shown in Figure 52(a)-(b). For the other rectangle x52[n] = xrect[n− 3] we
have N1 = 2 and k = 3. Next, because of linearity, we can transform x51 and x52

separately and add the spectra together. Hence,

X5(e
jω) = X51(e

jω) + X52(e
jω)

= 2e−jωXrect(e
jω)|N1=2 + e−3jωXrect(e

jω)|N1=2

=
(
2e−jω + e−3jω

)(sin(2.5ω)

sin(0.5ω)

)

When computing at ω = 0, we get X5(e
j0) = 15, because sin(2.5ω)/ sin(0.5ω) →

5, when ω → 0 using l’Hospital’s rule: If limx→a
f(x)
g(x)

= 0
0
, then limx→a

f(x)
g(x)

=

limx→a
f ′(x)
g′(x)

. Now limω→0
sin(2.5ω)
sin(0.5ω)

= limω→0
2.5 cos(2.5ω)
0.5 cos(0.5ω)

= 5.
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Figure 52: Problem 39(b): (a) xrect[n], a rectangular sequence, whose transform Xrect|N1 is
known, (b) x51[n] = 2xrect[n−1]|N1=2, which is a rectangle of height 2, of length 5, i.e., N1 = 2,
and delayed by k = 1 from origo, (c) x52[n] = xrect[n− 3]|N1=2, height 1, length 5, delay 3, and
(d) x5[n] = x51[n] + x52[n].

40. Problem: Suppose that a real sequence x[n] and its discrete-time Fourier transform
(DTFT) X(ejω) are known. The sampling frequency is fs. At normalized angular fre-
quency ωc = π/4: X(ej(π/4)) = 3 + 4j. Determine

a) |X(ej(π/4))| b) ∠X(ej(π/4))

c) X(ej(−π/4)) d) X(ej(π/4+2π))

e) If fs = 4000 Hz, what is fc

[L0257] Solution: The discrete-time Fourier transform (DTFT) is always 2π-periodic:

X(ej(ω+2πk)) =

∞∑

n=−∞
x[n] e−j(ω+2πk)n =

∞∑

n=−∞
x[n] e−jωn e−j2π kn

︸ ︷︷ ︸

=1

= X(ejω)

Complex-valued DTFT can be considered in polar coordinates

X(ejω) = |X(ejω)| · ej∠X(ejω)

z = r · ejθ

where |X(ejω)| is (amplitude) spectrum and ∠X(ejω) phase spectrum.

The value of DTFT was given at ωc = π/4 : X(ej(π/4)) = 3 + 4j.

a) |X(ej(π/4))| = 5

b) ∠X(ej(π/4)) = arctan(4/3) ≈ 0.927

c) X(ej(−π/4)) = 3− 4j

d) X(ej(π/4+2π)) = 3 + 4j

e) Normalized angular sampling frequency is ωs = 2π. The interesting frequency can
be obtained from the ratio (ωc/ωs) = (fc/fs). If the sampling frequency fs = 4000
Hz, then

fc =
4000 Hz · (π/4)

2π
= 500 Hz.
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41. Problem: The magnitude response function |X(ejω)| of a discrete-time sequence x[n] is
shown in Figure 53 in normalized angular frequency axis. Sketch the magnitude response
for the range −π ≤ ω < π. Is the signal x[n] real or complex valued?

7.5π 9.5π8.5π

Figure 53: |X(ejω)| of Problem 41.

[L0276] Solution: Discrete-time Fourier transform (DTFT) is always 2π-periodic:

X(ej(ω+2πk)) =

∞∑

n=−∞
x[n] e−j(ω+2πk)n =

∞∑

n=−∞
x[n] e−jωn e−j2π kn

︸ ︷︷ ︸

=1

= X(ejω)

The spectrum in range (7.5π . . . 9.5π] can be repeated. Borders correspond 7.5π−(2·4)π =
−0.5π and 9.5π − (2 · 4)π = 1.5π. When origo taken as a central point, it can be seen
that the spectrum is symmetric around y-axis. See Figure 54.

6 7 8 9 10π π π π π7.5π 9.5π
0πππ−2 − π π2

Figure 54: Problem 41: Discrete-time spectrum is periodic with 2π. The bottom label line is
shifted by 8π. The two-sided spectrum in range (−π . . . π] in a dashed rectangle.

In case of a real valued sequence x[n] the following symmetry relations hold (Mitra 2Ed
Sec. 3.1.4, p. 127 / 3Ed Sec. 3.2.3, p. 128 ):

X(ejω) = X∗(e−jω)

Xre(e
jω) = Xre(e

−jω)

Xim(ejω) = −Xim(e−jω)

|X(ejω)| = |X(e−jω)|
∠X(ejω) = −∠X(e−jω)

Equivalently, because now our magnitude spectrum is symmetric (|X(ejω)| = |X(e−jω)|),
then x[n] ∈ R. For real sequences x[n] it is normal to draw the spectrum only in range
ω ∈ [0 . . . π], as in Figure 55.

0 π
Figure 55: Problem 41: One-sided spectrum.
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42. Problem: A LTI filter is characterized by its difference equation

y[n] = 0.25x[n] + 0.5x[n− 1] + 0.25x[n− 2]

a) Draw the block diagram

b) What is the impulse response h[n]

c) Determine the frequency response H(ejω) =
P

pke−jωk
P

dke−jωk

d) Determine the amplitude response |H(ejω)|
e) Determine the phase response ∠H(ejω)

f) Determine the group delay τ(ω) = −d∠H(ejω)
dω

[L0277] Solution: LTI system can be characterized by a linear constant coefficient dif-
ference equation of form (Mitra 2Ed Sec. 4.2.7, 4.2.6 / 3Ed Sec. 3.8.3, 3.9.1 )

∑

k

dky[n− k] =
∑

k

pkx[n− k]

and its corresponding frequency response can be derived by Fourier transform (a · x[n−
k]↔ a · e−jωkX(ejω)) or directly

H(ejω) =

∑

k pke
−jωk

∑

k dke−jωk

Finite-length sequences with certain geometric symmetry have an important role in digital
signal processing (Mitra 2Ed Sec. 4.4.3 / 3Ed Sec. 5.5.2 ). A length-N sequence is said
to be symmetric if

x[n] = x[N − 1− n]

and a length-N sequence is said to be antisymmetric if

x[n] = −x[N − 1− n]

For example, x1[n] = {−2, 3, −2} is symmetric around nc = 1, and x2[n] = {1, −2, 2, −1}
is antisymmetric around nc = −0.5.

Remark. If the length of the impulse response h[n] is N + 1, then the order of filter is
N . For instance, two-point moving average y[n] = 0.5 ·

(
x[n] + x[n − 1]

)
, whose impulse

response h[n] = 0.5 ·
(
δ[n] + δ[n − 1]

)
is of length 2, and has the frequency response

H(ejω) = 0.5 ·
(
1+e−jω

)
, which is 1st order filter according to the order of the polynomial

of ejω. There is a risk of confusing length and order, because N is typically used for both
of them.

a) The block (flow) diagram of the filter with the difference equation y[n] = 0.25x[n] +
0.5x[n − 1] + 0.25x[n − 2] is drawn in Figure 56(a). There is no feedback loops in
the system, i.e., there is no delayed y[n−k] terms in the difference equation. Hence,
the system is FIR.

b) The impulse response h[n] is computed by assigning x[n]← δ[n], which gives in the
output y[n] = 0.25δ[n] + 0.5δ[n− 1] + 0.25δ[n− 2]. Because the system response to
an impulse is called the impulse response, we write

h[n] = 0.25δ[n] + 0.5δ[n− 1] + 0.25δ[n− 2]

The length of the impulse response is L{h[n]} = 3 < ∞. So, the system is FIR
(= Finite (length) Impulse Response). While h[n] is of finite length, the stability
condition

∑

n |h[n]| always converges and therefore FIR filters are always stable.
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c) Recall, that any complex number z can be represented in the polar coordinate system
as z = r · ejθ, where r = |√z| and θ = ∠z = arctan Imag(z)/Real(z).

The frequency response H(ejω) can be expressed by its amplitude response (= mag-
nitude response) |H(ejω)| and the phase response ∠H(ejω) (Mitra 2Ed Sec. 4.2.1 /
3Ed Sec. 3.8.1 )

H(ejω) = |H(ejω)| · ej∠H(ejω)

Now using the expression above,

H(ejω) =
0.25 + 0.5e−jω + 0.25e−j2ω

1

In this particular case, when h[n] is symmetric around nc = 1, we can take e−jω·nc as
a common factor, utilize Euler’s formula, and write the frequency response as follows

H(ejω) = 0.25 + 0.5e−jω + 0.25e−j2ω

= e−jω
(

0.25ejω + 0.5 + 0.25e−jω
)

= e−jω
(

0.5 cos(ω) + 0.5
)

d) Recall that absolute value of product A and B is the same as product of absolute
values A and B: |A · B| = |A| · |B|.
When computing values for the amplitude response in range [0 . . . π] we will get the
curve which says if the filter is lowpass / highpass / bandpass / bandstop

|H(ejω)| = |e−jω|
︸ ︷︷ ︸

=1

· |
(

0.5 cos(ω) + 0.5
)

| = |0.5 cos(ω) + 0.5|

The amplitude response is plotted in Figure 56(b).

e) Recall that angle of product A and B is the same as sum of angles of A and B:
∠(A ·B) = ∠A + ∠B.

Now, in this case when h[n] is finite-length and symmetric, the phase response can
be expressed easily in closed form (Mitra 2Ed Sec. 4.4.3 / 3Ed Sec. 7.3 )

∠H(ejω) = ∠e−jω + ∠
(

0.5 cos(ω) + 0.5
)

︸ ︷︷ ︸

=0

= −ω

The phase response is linear and plotted in Figure 56(c).

f) In case of linear phase response, the group delay is constant for all frequencies (Mitra
2Ed Sec. 4.2.6 / 3Ed Sec. 3.9 ). That is, all frequency components are delayed by
the same amount (of time). In this case the output sequence is delayed by 1 in the
filter.

τ(ω) = − d

dω
∠H(ejω) = 1
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Figure 56: Problem 42: (a) block diagram, (b) amplitude response |H(ejω)|, (c) phase response
∠H(ejω), which in this case is linear because of symmetric properties of finite-length h[n]. x-axis
in (b) and (c) ω/π, y-axis in (b) linear and in (c) radians.

43. Problem: Consider a continuous-time signal x(t) which consists of two cosine compo-
nents:

x(t) = A1 cos(2πf1t + θ1) + A2 cos(2πf2t + θ2)

In Figure 57 there are the sinusoidal components in the first two rows and the sum signal
in bottom. The scale in x-axis is about 0 . . . 0.1 seconds.

a) Sketch the amplitude spectrum |X(jΩ)| of the signal x(t).

b) What is the smallest sampling frequency, with which there is no aliasing in x(t)?

c) Create a sequence x[n] by taking samples with sampling frequency fT = 100 Hz.

d) Sketch the waveform of the reconstructed signal xr(t) in the time domain.

0 0.02 0.04 0.06 0.08 0.1
−1

0

1

x 1(t
)

0 0.02 0.04 0.06 0.08 0.1
−1

0

1

x 2(t
)

0 0.02 0.04 0.06 0.08 0.1
−2

0

2

x(
t)

Figure 57: Problem 43: Sinusoidal components x1(t) and x2(t) and their sum x(t).

[L0422] Solution: The signal x(t) consists of two sinusoidals whose frequencies can be
computed from Figure 57. We see that the period of x1(t) is T1 = 0.1 s, and it oscillates
10 times a second, that is, f1 = 10 Hz. There are 9 oscillations of x2(t) in 0.1 seconds,
i.e., T2 = 0.0111 . . . s, and 90 periods a second, f2 = 90 Hz. Amplitudes can be read from
the extreme points, A1 ≈ 1 and A2 ≈ 0.8. The phase shifts θi can also be approximated
if needed.

We can compute the fundamental frequency f0 of the signal x(t) by finding greatest
common divisor (GCD) of f1 = 10 and f2 = 90. That is f0 = 10 Hz, because f1 = 1 · f0

and f2 = 9 · f0, see Problem 20.
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a) The one-sided spectrum of a sinusoidal signal is a peak at corresponding frequency.
Thus, the spectral components are a peak at 10 Hz with relative height of 1 and
another peak at 90 Hz with height of 0.8. This is sketched in Figure 58. X(jΩ) can
be computed via continuous-time Fourier transform (CTFT), where the spectrum
X(jΩ) is not periodic, see Problem 37.

|X(j    )|Ω

50 90 10010

f

(Hz)150

Figure 58: Problem 43: Spectrum |X(jΩ)|.

b) The smallest sampling frequency according to Shannon sampling theorem is at least
two times higher than highest frequency in the bandlimited signal (Mitra 2Ed Sec.
5.2.1 / 3Ed Sec. 4.2.1 ). In this case, fT ≥ 2 · 90 Hz = 180 Hz.

c) Analog signal x(t) is sampled with a sampling frequency of fT = 100 Hz. This means
taking samples every T = 1/f = 0.01 s. Therefore t is substituted by nT

x[n] = x(nT ) = x(n/fT ) = A1 cos(2π(f1/fT )n + θ1) + A2 cos(2π(f2/fT )n + θ2)

Two examples of sampling are given in Figure 59. Notice that the component at 10
Hz can be recovered whereas the component at 90 > fT /2 Hz is aliased to a lower
frequency.

d) After sampling the shape of x[n] can be seen in bottom subfigures of Figure 59. It
is a pure sinusoidal curve with 10 Hz. This is because the high-frequency 90 Hz
component is aliased down to exactly 10 Hz, t← n/100:

cos(2π90(n/100)) = cos(1.8πn) = cos(−0.2πn) = cos(2π10(n/100))

see more examples in Problem 47. The same can be found in frequency-domain either
by copying the base band (0 . . . fT /2) spectrum at each multiple of fT (Problem 46)
or by flipping each component down to the base band (Problem 48).

The ideal reconstruction returns the base band (corresponding 0 . . . π) back to analog
domain. In the reconstructed spectrum Xr(jΩ) there is only one peak at 10 Hz,
which corresponds one single sinusoidal, see the dash curves in bottom subfigures of
Figure 59.
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Figure 59: Problem 43: Sinusoidal components x1(t), x2(t), their sum x(t), and corresponding
sampled sequences x1[n], x2[n], x[n]. The amplitude of x[n] depends on the phases θi. The
dash curve in bottom is reconstructed analog signal xr(t).

44. Problem: Show that the periodic impulse train p(t)

p(t) =
∞∑

n=−∞
δ(t− nT )

can be expressed as a Fourier series

p(t) =
1

T

∞∑

k=−∞

ej(2π/T )kt =
1

T

∞∑

k=−∞

ejΩT kt,

where ΩT = 2π/T is the sampling angular frequency.

[L0400] Solution: Since p(t)

p(t) =

∞∑

n=−∞
δ(t− nT )

is a periodic function of time t with a period T (time between samples), it can be repre-
sented as Fourier series (F-series for periodic, F-transform for non-periodic signals):

p(t) =

∞∑

n=−∞
cn ej(2πnt/T )

where Fourier coefficients (note, p(t) over one period T )

cn =
1

T

∫

T

p(t) e−j(2πnt/T ) dt

The unit impulse function (continuous-time) has properties
(1)
∫∞
−∞ δ(t) dt = 1, and

(2)
∫∞
−∞ δ(t)a(t) dt = a(t)|t=0.

Therefore Fourier series coefficients are:

cn =
1

T

∫ T/2

−T/2

δ(t) e−j(2πnt/T )dt =
1

T
e−j(2πnt/T )|t=0 =

1

T

Hence

p(t) =

∞∑

n=−∞
δ(t− nT ) =

1

T

∞∑

n=−∞
ej(2πnt/T )
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t n

p(t) cnT
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−2

... .........
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Figure 60: Problem 44: impulse train p(t) left, and its Fourier series coefficients cn right.

45. Problem: Impulse train in Problem 44 can be also expressed as a Fourier transform

P (jΩ) =
2π

Ts

∞∑

k=−∞

δ(Ω− k Ωs)

Sampling can be modelled as multiplication in time domain x[n] = xp(t) = x(t)p(t).
What is Xp(jΩ) for an arbitrary input spectrum X(jΩ)?

Hints: Fourier transform of a periodic signal (Fourier series)

X(jΩ) =
∞∑

n=−∞
2πakδ(Ω− kΩ0)

Multiplication of signals in time domain corresponds to convolution of transforms in
frequency domain:

x1(t) · x2(t) ↔ 1

2π

[
X1(jΩ) ⊛ X2(jΩ)

]
=

1

2π

∫ ∞

−∞
X1(jθ) ·X2(j(Ω− θ))dθ

[L0415] Solution: The Fourier series of a continuous-time signal can be expressed

x(t) =
∞∑

k=−∞

ak ejkΩ0t

where ak are Fourier coefficients and Ω0 is fundamental angular frequency. Fourier trans-
form of a periodic signal can be written in form of

X(jΩ) =

∞∑

k=−∞

2πak δ(Ω− kΩ0)

So, the impulse train p(t) of Problem 44 with all coefficients ak = 1/Ts and fundamental
angular frequency Ωs can be written as

P (jΩ) =
2π

Ts

∞∑

k=−∞

δ(Ω− kΩs)

Sampling in time and frequency domain can be modeled x[n] = x(t) · p(t)↔ 1
2π

[
X(jΩ) ⊛

T-61.3010 DSP 2009 79/170 PROBLEMS – Part E 43-49

P (jΩ)
]
, which finally gives

1

2π

[
P (jΩ) ⊛ X(jΩ)

]
=

1

2π

∫ ∞

−∞
P (jθ)X(j(Ω− θ))dθ

=
1

2π

∫ ∞

−∞

2π

Ts

∞∑

k=−∞

δ(θ − kΩs)X(j(Ω− θ))dθ

=
1

Ts

∞∑

k=−∞

∫ ∞

−∞
δ(θ − kΩs)X(j(Ω− θ))dθ |

∫

δ(t)x(t)dt = x(t)|t=0

=
1

Ts

∞∑

k=−∞

X(j(Ω− kΩs))

In other words, the spectrum X(ejω) of the discrete-time signal x[n] can be obtained
by summing the shifted spectra X(jΩ) of the corresponding analog signal x(t). Spectra
X(jΩ) are scaled by (1/Ts) and copied at every sampling (angular) frequency.

W

P(jW)

−2

... ...

0 2 4

2pi/T

W−2 0 2 4

X(jW)

W

......

(1/T) P(jW) * X(jW)

Figure 61: Problem 45: Left, an example of a spectrum P (jΩ) of an impulse train, middle, a
spectrum X(jΩ) of an arbitrary signal, and their convolution in right. Notice that X(jΩ) is
not symmetric, which means that x(t) is complex-valued.
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46. Problem: Suppose that a continuous-time signal x(t) and its spectrum |X(jΩ)| in Fig-
ure 62 are known.

|X(j    )|

1

f h

Ω

Figure 62: Spectrum X(jΩ) in Problem 46.

The highest frequency component in the signal is fh. The signal is sampled with frequency
fs, i.e. the interval between samples is Ts = 1/fs: x[n] = x(nTs). Sketch the spectrum
|X(ejω)| of the discrete-time signal, when

a) fh = 0.25 fs

b) fh = 0.5 fs

c) fh = 0.75 fs

[L0416] Solution: The spectrum X(jΩ) of a real analog signal is symmetric around y-axis.
When sampling, the spectrum X(ejω) is 2π-periodic (corresponds sampling frequency fs)

x[n] = xp(nTs) = x(t)p(t) ↔ X(ejω) = Xp(jΩ) =
1

Ts

∞∑

k=−∞

X(j(Ω− kΩs))

where ω = 2πΩ/Ωs = 2πf/fs.

a) Figure 63. The highest component of x(t) is only 0.25 · fs ⇒ No aliasing.

f h f  /2 fs s

|X  (j   )|p Ω

1/T_s

Figure 63: fh = 0.25 fs, no aliasing in Problem 46(a).

b) Figure 64. Case: Nyquist frequency, half of the sampling frequency.

f  /2s f s f s

f h

2

p Ω|X  (j   )|

1/T_s

Figure 64: fh = 0.5 fs, critical sampling in Problem 46(b).

c) Figure 65. Aliasing takes place. X(ejω) is the sum of all folded analog spectra. The
spectrum X(ejω) is depicted in Figure 65 with a thick continuous line.

X(ejω) =
1

Ts

(

... + X(j(Ω− Ωs)) + X(jΩ) + X(j(Ω + Ωs)) + ...

)
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47. Problem: Consider a continuous-time signal

x̃(t) =

{
cos(2πf1t) + cos(2πf2t) + cos(2πf3t), t ≥ 0
0, t < 0

where f1=100 Hz, f2=300 Hz and f3=750 Hz. The signal is sampled using frequency fs.
Thus, a discrete signal x[n] = x̃(nTs) = x̃(n/fs) is obtained.

Sketch the magnitude of the Fourier spectrum of x[n], the sampled signal, when fs equals
to (i) 1600 Hz (ii) 800 Hz (iii) 400 Hz.

Use an ideal reconstruction lowpass filter whose cutoff frequency is fs/2 for each case.
What frequency components can be found in reconstructed analog signal xr(t)?

[L0417] Solution: There is a continuous-time signal

x(t) = cos(2πf1t) + cos(2πf2t) + cos(2πf3t)

Let f1 = 100 Hz, f2 = 300 Hz and f3 = 750 Hz.

It is possible directly to express the Fourier transform of a periodic signal using transform
pairs (or see Page 78). In this case using frequencies f and a constant A

X(f) = A ·
(
δ[f + 750] + δ[f + 300] + δ[f + 100] + δ[f − 100] + δ[f − 300] + δ[f − 750]

)

The signal is sampled with sampling frequency fs, (T = 1/fs).

x[n] = x(nT ) = x(
n

fs
) =

(

cos(2π
f1

fs
n) + cos(2π

f2

fs
n) + cos(2π

f3

fs
n)

)

In the frequency domain the discrete-time spectrum Gp(jΩ) can be seen as a sum of shifted
and scaled replicas of the analog spectrum Ga(jΩ) as shown in Problems 45 and 46 (Mitra
2Ed Eq. 5.9, p. 302 / 3Ed Eq. 4.10, p. 174 ):

Gp(jΩ) =
1

T

∞∑

k=−∞

Ga(j(Ω− kΩT ))

Alternatively, sampling can be considered as flipping the analog spectrum around each
half of the sampling frequency down to the band 0 . . . fs/2.

Reconstruction means converting a digital sequence back to analog signal. An ideal
lowpass filter with the passband up to half of the sampling frequency is used. When
reconstructing signals we can only observe frequencies up to Nyquist frequency.2 If there

2There is variation in using “Nyqvist frequency” in the literature. It is either (1) half of the sampling
frequency (Mitra 2Ed p. 302 / 3Ed p. 174 ) or (2) the highest frequency in the signal (Mitra 2Ed p. 304 / 3Ed
p. 176 ). The first one is much more common. The reader should not confuse with this.

f  /2s f s f s f s

f h

2 3

p Ω|X  (j   )|
1/T_s

Figure 65: fh = 0.75 fs, aliasing in Problem 46(c).
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are frequencies over the Nyquist frequency in the original signal, those frequencies are
aliased into low frequencies.

In this problem X(jΩ) is sampled with three different sampling frequencies fs of 1600 Hz,
800 Hz and 400 Hz, The Nyquist frequency is the half of the sampling frequency fs/2,
800 Hz, 400 Hz, and 200 Hz, respectively. Let fm (in this case 750 Hz) be the biggest
frequency found in the input signal. If the sampling frequency is less than 2fm = 1500
Hz, then there will be aliasing.

In the following figures for i, ii and iii, the scale and magnitude values for aliased frequen-
cies are not exactly correct. Phase shifts in input signal cause that a pure addition of
magnitudes will not hold. (The sum of two cosines with same frequency and phase shift
of π is zero. However, in practice, this is rarely significant.)

i) fs = 1600 Hz, highest frequency component fm = 750 Hz. The inequality 1600 >
2 · 750 holds, hence, there is no aliasing. All three frequencies can be recovered. See
Figure 66.
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Figure 66: Sampling in Problem 47(i) with sampling frequency 1600 Hz: original analog spec-
trum X(jΩ) (left top), and spectrum X(ejω) of the discrete-time signal (left bottom). Time
domain view (right), top down x(t), sampling x(t) · p(t) sampled sequence x[n] to be processed
with DSP, reconstruction, and reconstructed continuous-time signal xr(t). Again, in this case
no aliasing, i.e. x(t) ≡ xr(t).

ii) fs = 800 Hz, highest frequency component fm = 750 Hz. The inequality 800 > 2 ·750
does not hold, hence, there is aliasing. All frequencies over 400 Hz are missed (750 Hz
in this case); they cannot be observed. There is a new alias component at frequency
50 Hz. See Figure 67.

Before going further, there is a short demonstration on the aliasing signal component
x3(t) (fi = 750 Hz) of the signal x(t) in Figure 68. The figures are depicted in
time-domain: (a) original x(t) with period T = 1/f = (1/750) = 1.333 ms, (b)
samples x[n] using interval Ts = 1/fs = (1/800) = 1.250 ms, (c) reconstructed
signal x3r(t), whose period Tr = (1/50) = 20 ms. The same aliasing effect can be
shown using the cosine function, which is 2π-periodic (cos(ωn) ≡ cos(ωn + 2π)) and
even (cos(−ωn) ≡ cos(ωn)). The highest component x3(t) of 750 Hz aliases in the
sampling and reconstructing process to 50 Hz:
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Figure 67: Sampling in Problem 47(ii) with sampling frequency 800 Hz. Aliasing occurs,
x(t) 6= xr(t), compare the top and bottom axis in the figure right.

x3(t) = cos(2π 750t) | original: 750 Hz

x3[n] = x3(n/fs) = cos(2π(750/800)n) = cos(2π(750/800)n− 2πn) | 2π-periodicity

= cos(2π(−50/800)n) = cos(2π(50/800)n) | even function

x3r(t) = cos(2π 50t) | reconstructed: 50 Hz
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Figure 68: Problem 47(ii): Demonstration of aliasing of a single cosine. In top figure there is
a continuous cosine x3(t) = cos(2π750t) whose period is T = 1/750 s ≈ 1.33 ms. Cosine is
sampled with fs = 800 Hz, i.e., Ts = 1/800 s = 1.25 ms. The sampling rate is too small in
order to capture the cosine of 750 Hz, because 750 Hz > (800/2) Hz. The sampled sequence
x3[n] is plotted in middle figure. Then the sequence is ideally reconstructed back to analog,
that is, “slowest” possible cosine which fits the samples. In bottom figure 50 Hz cosine x3r(t) =
cos(2π50t) is plotted. Hence, cosine of 750 Hz is folded down (aliased) to 50 Hz. Note that any
cosine x(t) = cos(2π(±50+k ·fs)t), k ∈ Z goes through the points x3[n] = cos(2π(50/8000)n) =
cos((1/80)πn).

iii) fs = 400 Hz, highest frequency component fm = 750 Hz. The inequality 400 > 2 ·750
does not hold, hence, there is aliasing. All frequencies over 200 Hz are missed (300
and 750 Hz). There are new alias components at 50 and 100 Hz. See Figure 69.

cos(2π 750
400

n) = cos(2π 750
400

n− 4πn) = cos(2π−50
400

n) = cos(2π 50
400

n)

cos(2π 300
400

n) = cos(2π 300
400

n− 2πn) = cos(2π−100
400

n) = cos(2π 100
400

n)
After ideal reconstruction (x[n]→ xr(t)) there are the following components left:
(i) original 100, 300, 750 Hz.
(ii) original 100, 300 Hz, and an alias 50 Hz.
(iii) original 100 Hz, and aliases 50, 100 Hz.

There is a sampling (aliasing) demo demosampling.m in the course web pages.
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Figure 69: Sampling in Problem 47(iii) with sampling frequency 400 Hz. Aliasing occurs again,
x(t) 6= xr(t).

48. Problem: Real analog signal x(t), whose spectrum |X(jΩ)| is drawn in Figure 70, is
sampled with sampling frequency fs = 8000 Hz into a sequence x[n].

a) In the sampling process aliasing occurs. What would have been smallest sufficient
sampling frequency, with which no aliasing would not happen?

b) Analog signal x(t) is 0.2 seconds long. How many samples are there in the sequence
x[n]?

c) Sketch the spectrum |X(ejω)| of sampled sequence x[n].

d) Sequence x[n] is filtered with a LTI system, whose pole-zero plot is shown in Fig-
ure 70. After that filtered sequence y[n] is reconstructed (ideally) to continuous-time
yr(t). Sketch the spectrum |Yr(jΩ)| in range f = [0 . . . 20] kHz.

|X(j   )|Ω

84 f (kHz) −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

21

Figure 70: Problem 48: Spectrum left. Pole-zero plot right.

[L0419] Solution: The Shannon (Nyqvist) sampling theorem is discussed in (Mitra 2Ed
Sec. 5.2, p. 302 / 3Ed Sec. 4.2, p. 176 ).

a) The highest frequency component in the analog signal is fh = 9 kHz. Thus the
required sampling frequency would be fT = 2fh = 18 kHz.

b) The sampling frequency is 8 kHz, which means that there are 8000 samples each
second. Now

x

0.2 s
=

8000

1 s

gives 1600 samples for 0.2 seconds.
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c) Due to too low sampling frequency aliasing occurs. All frequency components above
fT /2 = 4 kHz are aliased into low frequencies between 0 . . . 4 kHz. Sampling in the
frequency domain can be considered as copying the original analog spectrum at each
multiple of the sampling frequency (Mitra 2Ed Eq. 5.9, p. 302 / 3Ed Eq. 4.10, p.
174 )

Gdiscrete(jΩ) =
1

T

∞∑

k=−∞

Ganalog(j(Ω + kΩT ))

Here we show another way of finding the discrete-time spectrum. If the analog signal
is real-valued and the amplitude spectrum therefore symmetric around y-axis, the
sampling can also be thought as flipping each fT /2 wide band of the analog spectrum
downwards into the fundamental range 0 . . . fT /2.

First, divide the spectrum to a set of bands, whose width is fT /2. In this case we
have B0 = [0 . . . 4000) Hz, B1 = [4000 . . .8000) Hz, and B2 = [8000 . . . 12000) Hz.

Flip the band B2 around 8000 Hz (mirror) down to B1. Spectral components of B1

and the mirrored B2 are summed together. See Figure 71 left top.

Finally, the band B1 is mirrored around 4000 Hz down to the fundamental band B0,
and the spectral components are summed together. See Figure 71 left bottom and
the final result in Figure 71 right. Scaling factors (height) are here ignored.

To be exact, Gdiscrete = a
∑

k Ganalog,k is different from |Gdiscrete| = a
∑

k |Ganalog,k|,
and therefore the procedure with amplitude spectra |X| shown in Figure 71 does not
hold. However, in practice (and in any DSP book) this can be considered as a good
approximation.

84 12

B B10

84 12

B B B10 2 |X(e   )|jω

84 f (kHz)

|X(j   )|Ω

Figure 71: Problem 48: (a) Two steps when mirroring spectral bands down to the fundamental
band 0 . . . 4 kHz. (b) Discrete-time spectrum |X(ejω)|. Scaling factors are ignored.

d) If pole-zero plots are not familiar, consult (Mitra 2Ed Sec. 4.3.4 / 3Ed Sec. 6.7.4 )
or Problem 54, p. 96.

The sampling frequency is 8 kHz. In the pole-zero plot the whole circle 2π corre-
sponds 8 kHz. The upper part of the circle from ω = 0 to ω = π is 0 . . . 4 kHz.
There are zeros on the unit circle from 2 . . . 4 kHz. Hence, the filter is a lowpass
filter, whose cut-off frequency is about at 2 kHz.

The discrete-time signal x[n] is filtered with a lowpass filter. Here we use a rough
approximation of the filter depicted with a pole-zero plot, an ideal lowpass filter
H(ejω) with cut-off at 2 kHz. The spectrum of filtered signal is Y (ejω) = H(ejω) ·
X(ejω) shown in Figure 72(a). Note! Filter with zeros like in Figure 70 is not ideal.
You can plot its real amplitude response using Matlab.

After reconstructing ideally (ideal lowpass filter with cut-off at fT /2) the sequence
y[n] back to analog yr(t), the spectrum |Yr(jΩ)| is plotted in in Figure 72(b).
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|Y(e   )|jω

84 f (kHz)

Ω|Y(j   )|

84 f (kHz)12 20

Figure 72: Problem 48: (a) Spectra |Y (ejω)| and (b) |Yr(jΩ)|. Discrete-time spectrum |Y (ejω)|
is periodic every 2π (or every fT ), wheras continuous-time spectrum |Yr(jΩ)| is not periodic.
Scaling factors are not taken into account.

49. Problem: Suppose that there is an analog signal which will be sampled with 8 kHz. The
interesting band is 0 . . . 2 kHz. Sketch specifications for an anti-aliasing filter. Determine
the order of the filter when using Butterworth approximation and minimum stopband
attenuation is 50 dB. The variables in Table 7: Ωp is the passband edge frequency (in-
teresting part), ΩT is the sampling frequency, and Ω0 is the frequency after which the
aliasing components are small enough.

Ω0 = 2Ωp 3Ωp 4Ωp

Attenuation (dB) 6.02N 9.54N 12.04N
ΩT = 3Ωp 4Ωp 5Ωp

Table 7: Approximate minimum stopband attenuation of a Butterworth lowpass filter (Mitra
2Ed Table 5.1, p. 336 / 3Ed Table 4.1, p. 210 ). See the text in Problem 49 for details.

[L0418] Solution: An is an analog lowpass filter used in order to remove components,
which cause aliasing when sampling (Mitra 2Ed Sec. 5.6 / 3Ed Sec. 4.6 ). Consider an
analog signal x(t) and its spectrum X(jΩ) depicted in Figure 73.

f

|X|

kHz8642
Figure 73: Spectrum X(jΩ) in Problem 49.

In the following, notations of (Mitra 2Ed Fig. 5.28 / 3Ed Fig. 4.34 ) are used, Ωp for
passband edge frequency, Ω0 = ΩT −Ωp for stopband edge frequency, and ΩT for sampling
frequency. Now that the interesting band stops at Ωp = 2 kHz and the sampling frequency
is ΩT = 8 kHz, we can set the edge frequency for the stopband to be at Ω0 = (8− 2) = 6
kHz (see Figure 74). After sampling there will be aliasing components in 2 . . . 4 kHz, but
we are not interested in them, i.e. we use digital filtering for that band.

When the specifications are not so tight as they normally (cut-off at 4 kHz) are, also the
order of the anti-aliasing filter is lower. The design of the anti-aliasing filter can be made
even easier by increasing sampling frequency with analog circuits (order of anti-aliasing
filter decreases), and afterwards decrease sampling frequency using multirate techniques
(Mitra 2Ed Sec. 10 / 3Ed Sec. 13 ).
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f

|X|

kHz8642

Figure 74: Problem 49: Spectrum X(jΩ), specifications for a LP filter (dashed line), frequency
components that would alias in 0 . . . 2 kHz without anti-aliasing filtering (gray).

Calculations using (Mitra 2Ed Table 5.1 / 3Ed Table 4.1 ) or Table 7: Ω0/Ωp = 3→ N =
⌈50/9.54⌉ = 6. Note that if the passband ended at 2 kHz and the stopband started at 4
kHz, the required order of the filter would be 10.
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50. Problem: The exponent term in DFT/IDFT is commonly written WN = e−j2π/N .

a) Compute and draw in complex plane values of W k
3

b) Compute 3-DFT for the sequence x[n] = {1, 3, 2}.

[L0259] Solution: Discrete Fourier transform (DFT), left, and Inverse Fourier transform

(IDFT), right, using N points are defined with WN = e−
j2π
N as

X[k] =

N−1∑

n=0

x[n]W kn
N

x[n] =
1

N

N−1∑

k=0

X[k]W−kn
N

DFT is discrete both in time and frequency, and can be calculated directly using com-
puters. For example, in Matlab a spectrum of a signal is computed in discrete frequency
points X[k], but so densely, that it seems to be continuous X(ejω).

a) WN = e−
j2π
N , now N = 3.

W 0
3 = e−

j2π
3

·0 = 1

W 1
3 = e−

j2π
3

·1 = −0.5−
√

3

2
j

W 2
3 = e−

j2π
3

·2 = −0.5 +

√
3

2
j

Notice that the exponent in WN defines the uniform angle jump in clockwise direc-

tion. WN is periodic with every N , e.g. W 2·2
3 = W 4

3 = e−
j2π
3

·4 = e−
j2π
3

·3
︸ ︷︷ ︸

=1

·e− j2π
3

·1 =

W 1
3 . We can compute values of W kn

3 , when k = 0 . . . 2 and n = 0 . . . 2 into a table
below

k, n 0 1 2

0 W
(0·0)
3 = W 0

3 W
(0·1)
3 = W 0

3 W
(0·2)
3 = W 0

3

1 W
(1·0)
3 = W 0

3 W
(1·1)
3 = W 1

3 W
(1·2)
3 = W 2

3

2 W
(2·0)
3 = W 0

3 W
(2·1)
3 = W 2

3 W
(2·2)
3 = W 1

3
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−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Problem 3a. W
3
 = e−j 2 π / 3

W
3
0

W
3
1

W
3
2

Figure 75: Values of W kn
3 in Problem 50.

b) The sequence x[n] = {1, 3, 2} is of length 3.

X[0] =
2∑

n=0

x[n]W 0·n

= 1 + 3 + 2 = 6

X[1] =
2∑

n=0

x[n]W 1·n

= 1 ·W 0 + 3 ·W 1 + 2 ·W 2

= 1 + (−1.5− 3
√

3

2
j) + (−1 +

2
√

3

2
j) = −1.5−

√
3

2
j

X[2] =

2∑

n=0

x[n]W 2·n

= 1 ·W 0 + 3 ·W 2 + 2 ·W 4

= 1 + (−1.5 +
3
√

3

2
j) + (−1− 2

√
3

2
j) = −1.5 +

√
3

2
j

DFT is therefore X[k] = {6, −1.5−
√

3
2

j, −1.5 +
√

3
2

j}.
Remark. Notice that

– DFT is discrete in frequency domain (DTFT is continuous)

– if having sampling frequency fT Hz, then the spectral resolution ∆f = fT /N

– N-point DFT of a real signal is generally complex-valued

– if N-point DFT is real-valued then x[n] has to be “symmetric” x[n] = x[−n]

– each value of X[k] is a dot product of x[n] and WN with some constant angle
jump (nk)

– X[0] is the sum of values of x[n] (DC-component)

– values of X[k] are N-periodic: X[k] = X[k + N ] = X[k + 2N ] = . . .

– absolute values (amplitude spectrum) are even, e.g., |X[1]| = |X[−1]|
– angle values are odd, e.g., ∠X[1] = −∠X[−1]

Remark. Discrete Fourier transform is a linear operation. It can be calculated in
matrix form as (Mitra 2Ed Sec. 3.2.2 / 3Ed Sec. 5.2.2 ) and Problem 13

X = DNx
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where X is a column vector of the N frequency-domain DFT samples, x is a column
vector of N time-domain input samples, and DN is the N ×N DFT matrix (dftmtx
in Matlab)

X = [X[0] X[1] . . . X[N − 1]]T

x = [x[0] x[1] . . . x[N − 1]]T

DN =










1 1 1 . . . 1
1 W 1

N W 2
N . . . W N−1

N

1 W 2
N W 4

N . . . W
2(N−1)
N

...
...

...
. . .

...

1 W N−1
N W

2(N−1)
N . . . W

(N−1)(N−1)
N










In this problem dftmtx gives

D3 =





1.0000 1.0000 1.0000
1.0000 −0.5000− 0.8660i −0.5000 + 0.8660i
1.0000 −0.5000 + 0.8660i −0.5000− 0.8660i





For instance, when x = [1, 3, 2]T , then X = D3x = [6, −1.5 − 0.8660j, −1.5 +
0.8660j]T as earlier computed.

In the inverse DFT x = D−1
N X the matrix D−1

N is

D−1
N =

1

N










1 1 1 . . . 1

1 W−1
N W−2

N . . . W
−(N−1)
N

1 W−2
N W−4

N . . . W
−2(N−1)
N

...
...

...
. . .

...

1 W
−(N−1)
N W

−2(N−1)
N . . . W

−(N−1)(N−1)
N










It can be seen that D−1
N = (1/N)DH

N .
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51. Problem: Consider a sequence

x1[n] = 2δ[n] + 8δ[n− 3] = {2, 0, 0, 8}

and its DFT-4

X1[k] = 10δ[k] + (2 + 8j)δ[k − 1]− 6δ[k − 2] + (2− 8j)δ[k − 3] = {10, 2 + 8j,−6, 2− 8j}

Having a circular shift (delay) of one, x2[n] = x1[< n − 1 >4], what is the DFT X2[k]?
Here < . >N computes modulo N .

[L0296] Solution: The circular shift of a sequence, see (Mitra 2Ed Sec. 3.4.1 / 3Ed Sec.
5.4.1, 5.7 ) and Problem 7(g), gives

x2[n] = 8δ[n− 2] + 2δ[n− 3] = {0, 0, 8, 2}

Instead of computing DFT again we are appling circular time-shifting which has a DFT
pair in (Mitra 2Ed Table 3.5, p. 141 / 3Ed Table 5.3, p. 264 )

x[< n− n0 >N ]↔W−k·n0
N X[k]

where WN = e−j2π/N (typo error in 2nd Edition).

Now we have N = 4 and n0 = 1. We compute the values X2[k] = W−k·n0
N X1[k] =

W−k
4 X1[k] in a table below.

k X1[k] W−kn0
N X2[k]

0 10 W 0
4 = 1 10

1 2 + 8j W−1
4 = j −8 + 2j

2 −6 W−2
4 = −1 6

3 2− 8j W−3
4 = −j −8− 2j
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52. Problem: Let h[n] and x[n] be two finite-length sequences given below:

h[n] =







5, for n = 0,
2, for n = 1,
4, for n = 2

x[n] =







−3, for n = 0,
4, for n = 1,
0, for n = 2,
2, for n = 3

a) Determine the linear convolution yL[n] = h[n] ⊛ x[n].

b) Extend h[n] to length-4 sequence he[n] by zero-padding and compute the circular
convolution yC[n] = he[n] 4© x[n].

c) Extend both sequences to length-6 sequences by zero-padding and compute the cir-
cular convolution yC [n] = he[n] 6© xe[n]. Show that now yC[n] = yL[n]!

[L0270] Solution: In this problem linear convolution yL[n] (Mitra 2Ed Sec. 2.5.1 / 3Ed
Sec. 2.5.1 ) and circular convolution yC [n] (Mitra 2Ed Sec. 3.4.2 / 3Ed Sec. 5.4.2 ) are
computed using sequences h[n] = {5, 2, 4} and x[n] = {−3, 4, 0, 2}.
Linear convolution y[n] = h[n] ⊛ x[n] can be computed using “flip and slide” method in
Figure 76(a). x[n] is flipped and at each n the items are multiplied and finally all summed
together. In the figure, when n = 1, it gives yL[1] = h[0]x[1−0]+h[1]x[1−1]+h[2]x[1−2] =
20− 6 + 0 = 14.

Computation of circular convolution yC [n] = h[n] N©x[n] can be illustrated with “a circular
buffer” of length N in Figure 76(b) and (c). x[n] is flipped and at each n the items are
multiplied. There are always N terms to be added to get the result at n. In the figure,
when N = 4 and n = 1, it gives yC [1] = h[0]x[1] + h[1]x[0] + h[2]x[3] + h[3]x[2] =
20− 6 + 8 + 0 = 22.

−3k −2 −1 0 1 2 3

x[1−k] 4 −3020 00

h[k] 5 2 4000 0
h[0] h[1] h[2]h[−1]h[−2]h[−3] h[3]

x[0] x[−2]x[−1]x[1]x[2]x[3]x[4]

52

4 0

01

32

4−3
x[1]x[0]

x[3]
2 0

x[2]

h[2] h[3]

h[1] h[0]

k
h[k] 5 2 4000 0

h[0] h[1] h[2]h[−1]h[−2]h[−3] h[3]

x[0] x[2]x[3]x[1]x[2]x[3]x[0]

4 −302−3 02x[<1−k>  ]

−3k −2 −1 0 1 2 3

4

Figure 76: Problem 52: Convolution depicted with “flip and slide” method, (a) left, linear
convolution, (b) right, circular convolution with N = 4. As an example, in both cases the
convolution sum is computed at n = 1.

a) Linear convolution: yL[n] =
∑2

k=0 h[k]x[n−k]. Its length will be L{h[n]}+L{x[n]}−
1 = 6. Using “flip around and slide”:

yL[0] = h[0]x[0] = 5 · (−3) = −15

yL[1] = h[0]x[1] + h[1]x[0] = 5 · 4 + 2 · (−3) = 14

yL[2] = h[0]x[2] + h[1]x[1] + h[2]x[0] = 5 · 0 + 2 · 4 + 4 · (−3) = −4

yL[3] = h[0]x[3] + h[1]x[2] + h[2]x[1] = 5 · 2 + 2 · 0 + 4 · 4 = 26

yL[4] = h[1]x[3] + h[2]x[2] = 2 · 2 + 4 · 0 = 4

yL[5] = h[2]x[3] = 4 · 2 = 8

Therefore,
yL[n] = {−15, 14, −4, 26, 4, 8}
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b) Circular convolution is computed in N = 4 points

yC[n] = he[n] 4© x[n] =

3∑

k=0

he[k]x[< n− k >4]

where he[n] = {5, 2, 4, 0} is zero-extended version of h[n], and < n >4 is modulo-4
operation. Hence, h[< n− 5 >4] = h[< n− 1 >4], i.e. the sequence can be thought
to be periodic with the period {h[0], h[1], h[2], h[3]}.

yC[0] = he[0]x[< 0− 0 >4] + he[1]x[< 0− 1 >4] +

he[2]x[< 0− 2 >4] + he[3]x[< 0− 3 >4]

= he[0]x[0] + he[1]x[3] + he[2]x[2] + he[3]x[1]

= 5 · (−3) + 2 · 2 + 4 · 0 + 0 · 4 = −11

yC[1] = he[0]x[1] + he[1]x[0] + he[2]x[3] + he[3]x[2]

= 5 · 4 + 2 · (−3) + 4 · 2 + 0 · 0 = 22

yC[2] = he[0]x[2] + he[1]x[1] + he[2]x[0] + he[3]x[3]

= 5 · 0 + 2 · 4 + 4 · (−3) + 0 · 2 = −4

yC[3] = he[0]x[3] + he[1]x[2] + he[2]x[1] + he[3]x[0]

= 5 · 2 + 2 · 0 + 4 · 4 + 0 · (−3) = 26

Thus,
yC[n] = {−11, 22, −4, 26}

c) Circular convolution using N = 6 points

yC [n] = he[n] 6© xe[n] =

5∑

k=0

he[k]x[< n− k >6]

where he[n] = {5, 2, 4, 0, 0, 0}, and xe[n] = {−3, 4, 0, 2, 0, 0} are zero-padded
versions. Computing like in (b) the result is

yC [n] = {−15, 14, −4, 26, 4, 8} ≡ yL[n]

If N in circular convolution is chosen so that N ≥ L{yL[n]}, then yC [n] = yL[n].

Remark. Circular convolution has a close connection to Discrete Fourier Transform
(DFT). For example, in (b)

yC[n] = he[n] 4© x[n] DFT-4−−−−→ He[k] ·X[k] = YC[k] IDFT-4−−−−−→ yC[n]
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53. Problem: Consider a LTI system depicted in Figure 77 with registers having initial
values of zero and the input sequence x[n] = (−0.8)nµ[n].

z−1 z−1

0.8

x[n] y[n]

z−1

−0.2

0.9

Figure 77: LTI system of Problem 53.

a) What is the difference equation of the system?

b) Compute X(z) using the definition of z-transform or consult the z-transform table.

c) Apply z-transform to the difference equation. What is the transfer function H(z) =
Y (z)/X(z)? Where are the constant multipliers of the system seen in Figure 77 in
difference equation and in transfer function? Hint: the z-transform of K w[n − n0]
is K z−n0 W (z).

d) Now it is possible to compute the output y[n] without convolution in time-domain
using the convolution theorem

y[n] = h[n] ⊛ x[n] ↔ Y (z) = H(z) ·X(z)

Write down the equation for Y (z), use partial fraction expansion in order to achieve
rational polynomials of first order, and then use the inverse z-transform (equation
in (b)).

[L0326] Solution:

a) The input-output-relation is y[n] − 0.9y[n − 1] + 0.2y[n − 2] = x[n] + 0.8x[n − 1].
Notice that the coefficients in the diagram are also present in the difference equation
(past output values maybe as opposite numbers).

b) If computing using the definition, see Problem 38(b). From the z-transform table
directly:

Z{anµ[n]} =
1

1− az−1
ROC: |z| > |a|

(−0.8)nµ[n] ↔ 1

1 + 0.8z−1
|z| > 0.8

c) Using the z-transform pair K · w[n− n0]↔ K · z−n0W (z):

y[n]− 0.9y[n− 1] + 0.2y[n− 2] = x[n] + 0.8x[n− 1] | z-transform

Y (z)− 0.9z−1Y (z) + 0.2z−2Y (z) = X(z) + 0.8z−1X(z)

Y (z)
(
1− 0.9z−1 + 0.2z−2

)
= X(z)

(
1 + 0.8z−1

)

Y (z) = X(z)
1 + 0.8z−1

1− 0.9z−1 + 0.2z−2
| /X(z)

H(z) = Y (z)/X(z) =
1 + 0.8z−1

1− 0.9z−1 + 0.2z−2
ROC: |z| > 0.5
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The flow (block) diagram was given in direct form (DF) (Mitra 2Ed Sec. 6.4.1 /
3Ed Sec. 8.4.1 ). The coefficients of the diagram are that of the difference equation
and transfer function. Coefficients in the loop (IIR subfilter) are in the denomi-
nator polynomial and coefficients of the FIR part can be found in the numerator
polynomial.

d) Using convolution theorem

Y (z) = H(z) ·X(z)

=
1 + 0.8z−1

1− 0.9z−1 + 0.2z−2
· 1

1 + 0.8z−1

=
1

1− 0.9z−1 + 0.2z−2
| partial fraction expansion

=
5

1− 0.5z−1
+

−4

1− 0.4z−1
| inverse z-transform

y[n] = 5 · (0.5)nµ[n]− 4 · (0.4)nµ[n]
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54. Problem: Consider the pole-zero plots in Figure 78.

a) What is the order of each transfer function?

b) Are they FIR or IIR?

c) Sketch the amplitude response for each filter.

d) What could be the transfer function of each filter?
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Figure 78: Pole-zero plots of LTI systems in Problem 54.

[L0327] Solution: The z-transform of the impulse response h[n] of the LTI system is the
transfer function H(z) (with certain regions of convergence, ROCs, see Problem 56). It
can be written as a rational function in z−1 as follows

H(z) =
B(z)

A(z)
=

b0 + b1z
−1 + b2z

−2 + . . . + bMz−M

a0 + a1z−1 + a2z−2 + . . . + aNz−N
=

∑M
k=0 bkz

−k

∑N
k=0 akz−k

= K · (1− z1z
−1) · (1− z2z

−1) · . . . · (1− zMz−1)

(1− p1z−1) · (1− p2z−1) · . . . · (1− pNz−1)
= K ·

∏M
k=1(1− zkz

−1)
∏N

k=1(1− pkz−1)

where bi are the coefficients of the numerator polynomial B(z), and ai are the coefficients of
the denominator polynomial A(z). The filter order , that is, order of H(z) is max{M, N}.
Those points zi where B(z) = 0 are called “zeros”, and points pi where A(z) = 0 are called
“poles”. The figure with zeros (circles) and poles (crosses) plotted in the complex plane
is called “pole-zero plot” (diagram) of the transfer function.

The rules of thumb for determining amplitude response from the pole-zero-diagram
(Mitra 2Ed Sec. 4.3.4 / 3Ed Sec. 6.7.4 )

1. Examine the frequencies ω ∈ (0 . . . π), in other words, the observation point moves on
the unit circle counterclockwise from (1, 0j) to (−1, 0j). In each point the amplitude
response |H(ejω)| is estimated. A “simple” function H(ejω) has a smooth response.

2. The amplification is big, when a pole is close to unit circle (a small factor in de-
nominator) or a zero is far from unit circle. The closer the pole is to unit circle, the
narrower the amplification is in frequency area.

3. The amplification is small, when a pole is far from the unit circle (big factors in
denominator) or there is a zero close to unit circle.

4. The amplification is zero, if a zero is on the unit circle at observation frequency.

5. Poles or zeros in the origo do not affect at all because the distance is always 1.
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6. The amplification cannot be found from pole-zero plot. Normally H(ejω) is scaled
so that the maximum value is set to be 1: H(ejω)← H(ejω)/ max{|H(ejω)|}.

a) The order is the maximum of the number of poles or zeros (not in origo).

So, (i) 2 poles, 1 zero: 2nd order; (ii) 4 zeros: 4th order; (iii) 6 poles, 6 zeros: 6th
order.

Note, in analog H(s) there are only poles, but in digital H(z) there can be both
poles and zeros.

b) If there is any pole (cross in the graph) outside the origo, it means that there is at
least first-order polynomial in the denominator in H(z)⇔ there is a feedback in the
system ⇔ IIR.

Hence, (i) IIR; (ii) FIR; (iii) IIR.

c) The analysis with graphs is done below for each case separately.

Shortly, (i) lowpass with narrow passband; (ii) highpass; (iii) a comb filter.

d) The transfer function can be constructed from zeros zi and poles pi

H(z) = K ·
∏M

k=1(1− zkz
−1)

∏N
k=1(1− pkz−1)

However, the scaling factor K cannot be seen from the pole-zero-plot. Therefore K
is set so that max{|H(ejω)|} = 1.

Next, a closer look at (c) and (d) is given for each filter.

i) Without computing any exact values of the amplitude response, it is possible to
approximate it by looking at the positions of zeros and poles. The angular frequency
gets values from 0 to π, and the observation is done on a unit circle counterclockwise.

Poles are close to unit circle at ω = ±π/30 in Figure 79(a). Therefore the amplitude
response gets the maximum approximately at that frequency and the filter is lowpass
type, see the sketch in Figure 79(b). The closer the poles are the unit circle, the
narrower the maximum area is. The value at ω = π is zero.

In this case the exact locations of poles and zeros were known (z1 = −1, p1 =
0.8950 + 0.0947i, p2 = 0.8950 − 0.0947i). The actual transfer function is H(z) =
K · (1 + z−1)/(1 − 1.79z−1 + 0.81z−2) from which the actual frequency response is
received by z ← ejω. Some values in range 0 . . . π are computed below, and K is
chosen so that the maximum of |H(z)| is one. Figures are plotted using Matlab in
both linear scale and in logarithmic scale in Figure 79(c) and (d), respectively.

ω H(ejω) |H(ejω)| ω H(ejω) |H(ejω)|
0 1 1 3π/4 −.0008 + .0023j .0025

π/4 −.0277 + .0210j .0348 π 0 0
π/2 −.0049 + .0061j .0078

ii) There are four zeros in Figure 80(left). At ω ≈ π/6 the zeros are closest to the
observation point, and the minimum of the response is probably reached (bandstop).
At ω = π the zeros are much further away than at ω = 0, so the attenuation is much
stronger at low frequencies (highpass). Notice that |H(ej0)| 6= 0, because there is
not a zero on the unit circle at ω = 0. The filter can be a highpass or bandstop FIR
filter.

Actually, H(z) = 1− 3.753z−1 + 5.694z−2 − 3.753z−3 + z−4. Filter coefficients have
a certain symmetry as well as the zeros lie in a certain symmetry, which implies a
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Figure 79: Problem 54(i): (a) Pole-zero-diagram, (b) an example of approximated amplitude
response, (c) actual amplitude response |H1(e

jω)| in linear scale, (d) actual amplitude response
|H1(e

jω)| in decibels.

linear-phase filter, see Problem 59. The minimum of |H(ejω)| ≈ 0.0114 (scaled) at
ω ≈ 0.11π, which is different from π/6 estimated earlier. All “zero vectors” affect to
the response, see the remark text below.

iii) Zeros are on the unit circle at uniform invervals forcing the amplification drop down
to zero, see Figure 80(right). This type of periodic filter is often called a comb filter.
The maximum is scaled to one. Note that all poles and zeros affect, so that if there
were not exactly same intervals between poles and zeros, the amplitude response
would also turn out to be non-symmetric.
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Problem 2 (ii)
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Problem 2 (iii)
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Figure 80: Problem 54(ii),(iii): Pole-zero-diagram and corresponding amplitude response of
|H2(e

jω)| left, and |H3(e
jω)| right.

Remark. Determining amplitude response from the pole-zero-diagram, theory in back-
ground.

Any transfer function H(z) can be expressed in form of

H(z) =
|p0|
|d0|

(1− z1 z−1)(1− z2 z−1)...(1− zM z−1)

(1− p1 z−1)(1− p2 z−1)...(1− pN z−1)

In order to achieve this, all zeros (zi) and poles (pi) of H(z) has to be computed. Zeros
are the roots of the numerator polynomial and poles are the roots of the denominator
polynomial. Numerator part is “FIR part” (always stable, y[n] depends only on values of
x[n− ki]), denominator is “IIR part” (feedback, in order to compute y[n] some old values
of it has to be used).

Frequency response is the transfer function computed on unit circle, i.e. substitution
z = ejω:

H(ejω) =
|p0|
|d0|

(1− z1 e−jω)(1− z2 e−jω)...(1− zM e−jω)

(1− p1 e−jω)(1− p2 e−jω)...(1− pN e−jω)

We are interested in amplitude response |H(ejω)|. Because the expression is in a product
form, the absolute value of |H(ejω)| can be computed with its first order blocks. Let
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K = |p0|/|d0|, Bi be the length of a first order block in numerator polynomial, and Ai the
length of a first order block in denominator polynomial:

|H(ejω)| = K ·

B1
︷ ︸︸ ︷

|(1− z1 e−jω)|
B2

︷ ︸︸ ︷

|(1− z2 e−jω)| . . .
BM

︷ ︸︸ ︷

|(1− zM e−jω)|
|(1− p1 e−jω)|
︸ ︷︷ ︸

A1

|(1− p2 e−jω)|
︸ ︷︷ ︸

A2

. . . |(1− pN e−jω)|
︸ ︷︷ ︸

AN

= K ·
∏M

k=1 Bk
∏N

k=1 Ak

The frequency axis lies on the unit circle from ω = 0, which is a complex point ejω|ω=0 = 1
to ω = π, which is situated at ejω|ω=π = −1. The observation frequency ω0 gets values
0 . . . π.

Bi is called a “zero vector”, i.e. it is the length from the observation point ω0 to zero i.
Ai is a “pole vector” correspondingly.

Any small Ai (pole close to unit circle) gives big value of |H(ejω)|. Any small Bi (zero
close to unit circle) decreases |H(ejω)|. However, it should be noticed that |H(ejω)| is a
product of all zero vectors and all pole vectors.

For example, in Figure 81(a) M = 2 and N = 2:

|H(ejω)| = K ·

B1
︷ ︸︸ ︷

|(1− z1 e−jω)|
B2

︷ ︸︸ ︷

|(1− z2 e−jω)|
|(1− p1 e−jω)|
︸ ︷︷ ︸

A1

|(1− p2 e−jω)|
︸ ︷︷ ︸

A2

It can be roughly estimated that the filter is highpass, because around ω = 5π/6 A1

is smallest and therefore |H(ejω)| is at maximum. Actually the maximum might be at
ω = π, where A1 · A2 is probably smaller. The rough estimate of the amplitude response
(0 . . . ω0 . . . π) is given in Figure 81(b).

0ω

0=π ω

1

ωjz = e

A

/2π

B2
A2

B1

(a)

/ 20

|H(e^j    )|

ω

ω

1

0
0 ππ

(b)

Figure 81: (a) Zero vectors Bk and pole vectors Ak. ω runs 0..π. (b) Amplitude response
roughly from the pole-zero-diagram.

The rules of thumb were given on page 96.

It can also be seen that the frequency response in discrete-time domain is always 2π-
periodic. Because |H(ejω)| is an even function, it is only necessary to draw angles 0 . . . π.
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55. Problem: Consider the filter described in Figure 82.

y[n]x[n]

-0.81-1

-1Z

-1

Z-1

Z -1Z

Figure 82: LTI system of Problem 55.

a) Derive the difference equation of the system.

b) Calculate the transfer function H(z).

c) Calculate the zeros and poles of H(z). Sketch the pole-zero plot. Is the system
stable and/or causal?

d) If the region of convergence (ROC) of H(z) includes the unit circle, it is possible to
derive frequency response H(ejω) by applying z = ejω. Do this!

e) Sketch the magnitude (amplitude) response |H(ejω)| roughly. Which frequency gives
the maximum value of |H(ejω)|? (If you want to calculate magnitude response
explicitely, calculate |H(ejω)|2 = H(ejω)H(e−jω) and use Euler’s formula.)

f) Compute the equation for the impulse response h[n] using partial fraction expansion
and inverse z-transform.

[L0328] Solution: Notice that the same filter can be represented (i) as a block diagram,
(ii) with a difference equation, (iii) with a transfer function (and ROC), (iv) with an
impulse response, (v) with poles, zeros and gain.

a) Difference equation: y[n] = x[n]− x[n− 2]− 0.81y[n− 2]

b) Transfer function H(z) can be obtained from h[n] using z-transform pairs:

Z{x[n]} = X(z)

Z{a · x[n− n0]} = a · z−n0 ·X(z) ROC : |z| > |a|

Hence,

y[n] = x[n]− x[n− 2]− 0.81y[n− 2]

Y (z) = X(z)− z−2X(z)− 0.81z−2Y (z)

(1 + 0.81z−2) · Y (z) = (1− z−2) ·X(z)

Y (z) = X(z) · 1− z−2

1 + 0.81z−2

H(z) =
Y (z)

X(z)
=

1− z−2

1 + 0.81z−2
ROC: |z| > 0.9
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c) Zeros are the points, where the numerator of transfer function H(z) is zero:

1− z−2 = 0⇔ z2 = 1⇔ z = ±1.

Poles are the points, where the denominator of transfer function H(z) is zero:

1 + 0.81z−2 = 0 ⇔ z2 = −0.81 ⇔ z = ±0.9j

The pole-zero plot of the system is (a common notation is to use a© for a zero and
a × for a pole) in Figure 83(a).

The system is causal, because current output does not depend on future values
of x[n] and y[n] (time-domain view). The system is stable, because the impulse
response h[n] is absolutely summable (time-domain view).

On the other hand, if all poles in the pole-zero plot are inside the unit circle, i.e.,
the region of convergence (ROC) includes both the unit circle and the infinity, the
filter is causal and stable (see Problem 56).

d) Frequency response of the system H(ejω) (continuous systems H(jΩ)) is obtained
by applying z = ejω (continuous s = jΩ). If the unit circle is contained in the ROC,
it is possible to apply H(ejω) = H(z)|z=ejω :

H(ejω) =
1− e−2jω

1 + 0.81e−2jω

e) The amplitude response can be computed as exact as wanted using the mathematical
functions. It can be computed also in specific points using calculator or computer.
These will be explained after the roughest way, which is graphical approximation
from poles and zeros.

The sketch the magnitude (amplitude) response |H(ejω)| can be drawn by using
pole-zero plot. There are zeros at z = 1 and z = −1. The corresponding angular
frequencies are 0 and π, because ej0 = 1 + 0j and ejπ = −1 + 0j. Hence, amplitude
response is zero when ω = 0 and ω = π. It is also clear that the maximum value
is at ω = π/2, where the pole is closest to the unit circle. A sketch is given in
Figure 83(b).
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Problem 4. Pole−zero−diagram
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Figure 83: Problem 55: (a) Pole-zero plot of H(z) and (b) |H(z)| as a grid and |H(ejω)| with
solid curve plotted with Matlab. (c) A rough sketch of amplitude response by hands using
pole-zero.

Second, the amplitude response H(ejω) = (1 − e−2jω)/(1 + 0.81e−2jω) can be cal-
culated in certain poins. More points, more exact amplitude response. Start with
points ω = {0, π/4, π/2, 3π/4, π}, and calculate more if it seems to be appropriate. If
your calculator does not support complex exponentials, decompose them by Euler’s
formula. (Notice that in Matlab you can use directly function exp.) A new sketch
is drawn in Figure 84.
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ω H(ejω) |H(ejω)| ω H(ejω) |H(ejω)|
0 0 0 5π/8 0.6352 + 2.5067 2.5859

π/8 0.0199− 0.4568j 0.4573 3π/4 0.1147 + 1.0929j 1.0989
π/4 0.1147− 1.0929j 1.0989 7π/8 0.0199 + 0.4568j 0.4573

3π/8 0.6352− 2.5067j 2.5859 π 0 0
π/2 10.5263− 0.0000j 10.5263

ππ/2

|H(e^jw)|

0

10.53

Figure 84: A sketch of amplitude response after computing several values in Problem 55(e).

Third, the magnitude response can (only sometimes) be simplified. For example, this
time the simplified version is relatively simple. Simplification is sometimes needed
to some proofs, etc.

|H(ejω)|2 = H(ejω)H⋆(ejω) = H(ejω)H(e−jω) | complex conjugate

=
1− e−2jω

1 + 0.81e−2jω
· 1− e+2jω

1 + 0.81e+2jω

=
1 + 1− (e2jω + e−2jω)

1 + 0.812 + 0.81(e2jω + e−2jω)

=
2− 2 cos(2ω)

1.6561 + 1.62 cos(2ω)
| square

|H(ejω)| gets the maximum value at frequency ω = π
2
. The maximum value is

|H(ejω)|max =
∣
∣H(ej π

2 )
∣
∣ ≈ 10.53

f) Notice that the partial fraction expansion can be written in various forms, see Prob-
lem 10, for instance. The transform pair anµ[n]↔ 1

1−az−1 is applied again.

H(z) =
1− z−2

1 + 0.81z−2

=
1

1 + 0.81z−2
− z−2 · 1

1 + 0.81z−2
| part. frac. exp.

=
[ 0.5

1− 0.9jz−1
+

0.5

1 + 0.9jz−1

]
− z−2

[ 0.5

1− 0.9jz−1
+

0.5

1 + 0.9jz−1

]

h[n] = 0.5 · ((0.9j)nµ[n] + (−0.9j)nµ[n])−
0.5 ·

(
(0.9j)n−2µ[n− 2] + (−0.9j)n−2µ[n− 2]

)

≈ {1.0000, 0, −1.8100, 0, 1.4661, 0, −1.1875, . . .}

Matlab (residuez) may give a different form of the same sequence:

h[n] ≈ −1.2346 · δ[n] + 1.1173 · (0.9j)nµ[n] + 1.1173 · (−0.9j)nµ[n]

T-61.3010 DSP 2009 103/170 PROBLEMS – Part G 53-57

56. Problem: The transfer function of a filter is

H(z) =
1− z−1

1− 2z−1 + 0.75z−2

a) Compute the zeros and poles of H(z).

b) What are the three different regions of convergence (ROC)?

c) Determine the ROC and the impulse response h[n] so that the filter is causal.

d) Determine the ROC and the impulse response h[n] so that the filter is stable.

[L0329] Solution: Let us begin by reviewing some properties (Mitra 2Ed Sec. 3.8 / 3Ed
Sec. 6.3 )

• The filter is causal ⇔ ∞ belongs to the region of convergence (ROC).

• The filter is stable ⇔ unit circle belongs to ROC, H(z) converges on the unit circle.

• ROC on z-plane must not contain any poles; it may be a ring between two poles,
the disc limited by the closest pole to origin or the plane outside the most distant
pole from origin.

• It is easiest to do the the inverse z-transform (here) by calculating first the fractional
expansion of the H(z) and then inverting each part of it individually using the sum
of a geometric series.

• The sum of a geometric series is

∞∑

k=0

qk =
1

1− q
, |q| < 1

• The z-transform of h[n] is
∞∑

n=−∞
h[n]z−k

a) First we have to solve the poles and zeros:

H(z) =
1− z−1

1− 2z−1 + 0.75z−2
=

z(z − 1)

z2 − 2z + 0.75

Poles:

z2 − 2z + 0.75 = 0⇔ z =
2±
√

4− 4 · 0.75

2
⇔ z1 = 0.5, z2 = 1.5

Zeros:
z(z − 1) = 0⇔ z1 = 0, z2 = 1

b) Now we may answer to the questions about stability and causality using different
ROCs, see Figure 85:

i) If we require causality, the region of convergence has to include z = ∞ Thus,
the region of convergence has to be ”outside” the pole z = 1.5, that is |z| > 1.5.

ii) If we require stability, the unit circle has to be on the region of convergence.
Thus the region is a ring between the poles: 0.5 < |z| < 1.5

iii) If ROC is the inner cicle |z| < 0.5, we will have a noncausal and astable filter.
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Figure 85: Region of convergence (ROC) in gray in Problem 56: (i)∞ belongs to ROC - causal
filter, (ii) unit circle belongs to ROC - stable filter.

Note, that in this case we cannot have a filter that is both causal and stable.

At this point, when we calculate the impulse response h[n], we have to do an inverse
z-transformation for the transfer function H(z). To do this we express the H(z)
as a partial fraction expansion as then we may apply the formula of the sum of a
geometric series.

Using the poles and zeros we may write the transfer function as follows:

H(z) =
(1− z1z

−1)(1− z2z
−1)

(1− p1z−1)(1− p2z−1)
=

1− z−1

(1− 0.5z−1)(1− 1.5z−1)

⇔ H(z) =
A

1− 0.5z−1
+

B

1− 1.5z−1

⇔ 1− z−1 ≡ A(1− 1.5z−1) + B(1− 0.5z−1)

We solve A and B by letting z → 0.5 and z → 1.5

z → 0.5 : 1− 0.5−1 = A(1− 1.5 · 0.5−1) + B(1− 0.5 · 0.5−1

︸ ︷︷ ︸

=0

)

⇒ A = 0.5

z → 1.5 : 1− 1.5−1 = A(1− 1.5 · 1.5−1

︸ ︷︷ ︸

=0

) + B(1− 0.5 · 1.5−1)

⇒ B = 0.5

Now we may write the expansion

H(z) =
0.5

1− 0.5z−1
+

0.5

1− 1.5z−1

c) Causal filter ⇒ we know that |z| > 1.5. We notice that both fractions in

H(z) =
0.5

1− 0.5z−1
+

0.5

1− 1.5z−1

represent a sum of a geometric series, as |0.5z−1| < 1 and |1.5z−1| < 1 as required.
We conclude

hcausal[n] = Z−1{H(z)} = 0.5 · 0.5nµ[n] + 0.5 · 1.5nµ[n]

See Figure 86(a), the impulse response grows to infinity, i.e. it is not absolutely
summable, and therefore the filter is not stable with the criterion

∑

n |h[n]| <∞.
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d) Stable filter ⇒ we know that 0.5 < |z| < 1.5. We note that
∑∞

n=0 1.5nz−n does not
converge as |1.5

z
| ≥ 1. We have to convert the expression to higher terms in order to

get the denominator to suitable form:

Hp2(z) =
1

2
· 1

1− (3/2)z−1
| · (−(2/3)z)/(−(2/3)z)

= −1

3
z

1

1− (2/3)z

= −1

3
z

∞∑

n=0

(
2

3

)n

zn

= −1

3

∞∑

n=−∞

(
2

3

)n

µ[n]zn+1 | let −m = n + 1

= −1

3

∞∑

m=−∞

(
2

3

)−m−1

µ[−m− 1]z−m

Thus, the inverse transform of H(z) is

hstable[n] = 0.5 · 0.5nµ[n]− 1

3

(
2

3

)−n−1

µ[−n− 1]

which is plotted in Figure 86(b). The impulse response is non-zero for indices n < 0,
and the filter is not causal with criterion h[n] < 0, n < 0. The filter is stable.
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Figure 86: Problem 56: Left, 56(c) where ROC: |z| > 1.5 ⇔ filter is causal but not stable.
Right, 56(d) where ROC: 0.5 < |z| < 1.5⇔ filter is not causal but stable.

Remark. In practice, we operate with causal and stable filters, which means that
all poles should be inside the unit circle.
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57. Problem: Magnitude specifications are normally expressed in normalized form. The
maximum of the amplitude response is scaled to one, and the frequency axis is scaled up
to half of the sampling frequency, 0 . . . π. The first term of the denominator polynomial
should also be 1.

Consider the following digital lowpass filter of type Chebyshev II:

H(z) = K · 0.71− 0.36z−1 − 0.36z−2 + 0.71z−3

1− 2.11z−1 + 1.58z−2 − 0.40z−3

Normalize the maximum of the amplitude response to the unity (0 dB).

[L0612] Solution: Chebyshev II approximation is monotonic in the passband, see Fig-
ure 87.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

H(z) = K ⋅ B(z) / A(z)

Figure 87: Problem 57, H(z) = K · B(z)/A(z) without magnitude scaling.

Therefore the maximum value of the amplitude response of the lowpass Chebyshev II
filter is at ω = 0. The gain K can be computed also in z-plane using z = ejω|ω=0 = 1.

|H(z)| =
∣
∣
∣K

0.71− 0.36z−1 − 0.36z−2 + 0.71z−3

1− 2.11z−1 + 1.58z−2 − 0.40z−3

∣
∣
∣

|H(z)|z=1 =
∣
∣
∣K

0.71− 0.36z−1 − 0.36z−2 + 0.71z−3

1− 2.11z−1 + 1.58z−2 − 0.40z−3

∣
∣
∣ = 1

= K
0.70

0.07
= 1

⇒ K = 0.1

In a similar way if the maximum is at ω = π (highpass), compute z = ejω|ω=π = −1, etc.

Remark. When |H(z)|max = 1, then the maximum reference level is in (power) desibels
|H(z)|max = 20 log10(1) = 0 dB.
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58. Problem: Show that the filter H(z) = 1− 2z−1 + 2z−2 − z−3 has linear phase response.

[L0510] Solution: If N -length h[n] is either symmetric (h[n] = h[N −1−n]) or antisym-
metric (h[n] = −h[N − 1− n]), then the filter has linear phase response (Mitra 2Ed Sec.
4.4.3 / 3Ed Sec. 5.5.2 ). At the same time, the locations of zeros are mirror-imaged with
respect to the unit circle (r · e±jω ↔ (1/r) · e±jω).

All possible linear-phase filters:

Type 1: symmetric odd length,
Type 2: symmetric even length,
Type 3: antisymmetric odd length,
Type 4: antisymmetric even length.

Zero-phase filter is a special case when the sequence is symmetric around origo, i.e., delay
is zero and the filter is noncausal.

Some examples of four types of linear-phase filters are given in Figure 88.
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Figure 88: Problem 58: Examples of four types of linear-phase filters with impulse response
h[n] in left and pole-zero-plot in right.

The inverse transform of H(z) is the impulse response h[n] of even length N = 4

h[n] = δ[n]− 2δ[n− 1] + 2δ[n− 2]− δ[n− 3]

which is clearly antisymmetric around nc = 1.5, see Figure 89(a).

We take the term e−jncω as a common factor in frequency response

H(ejω) = e−j1.5ω ·
(
ej1.5ω − 2ej0.5ω + 2e−j0.5ω − e−j1.5ω

)

= e−j1.5ω ·
(
(ej1.5ω − e−j1.5ω)− 2(ej0.5ω − e−j0.5ω)

)

= e−j1.5ω ·
(
2j sin(1.5ω)− 4j sin(0.5ω)

)
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using Euler’s formula ejω = cos(ω) + j sin(ω). Recall that ∠(A · B) = ∠A + ∠B. When
computing phase ∠H(ejω), we get

∠H(ejω) = ∠e−j1.5ω + ∠j + ∠(2 sin(1.5ω)− 4 sin(0.5ω))

= −1.5ω + 0.5π + ∠C(ω)

where C(ω) = 2 sin(1.5ω) − 4 sin(0.5ω), and ∠C(ω) gets values 0 or π, when C(ω) > 0
or C(ω) < 0, respectively. Now ∠H(ejω) is piecewise linear function of ω. The phase
response is depicted in Figure 89(c).

Hence, H(ejω) is said to have linear phase response3. All frequency components are
delayed by the same 1.5. Therefore the waveform is preserved as much as possible for a
given amplitude response.
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Figure 89: Problem 58: (a) One type of antisymmetric impulse response h[n], (b) pole-zero
plot, and (c) linear phase response ∠H(ejω). Notice the points of discontinuity (“jumps”) at
0 and ±π/3, when there is a zero on the unit circle. This kind of discontinuities (by π) are
allowed in the definition of linear-phase filters.

3More precisely“linear phase interrupted by discontinuities” (see http://ccrma.stanford.edu/~jos/mdft/
Linear_Phase_Terms.html, referred 2007-03-16)
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59. Problem: Examine the following five filters and connect them at least to one of the
following categories (a) zero-phase, (b) linear-phase, (c) allpass, (d) minimum-phase, (e)
maximum-phase.

h1[n] = −δ[n + 1] + 2δ[n]− δ[n− 1]

H2(z) =
1 + 3z−1 + 2.5z−2

1− 0.5z−1

y3[n] = 0.5y3[n− 1] + x[n] + 1.2x[n− 1] + 0.4x[n− 2]

H4(z) =
0.2− 0.5z−1 + z−2

1− 0.5z−1 + 0.2z−2

H5(e
jω) = −1 + 2e−jω − e−2jω

[L0331] Solution: Types of transfer functions are explained in (Mitra 2Ed Sec. 4.4,
4.6, 4.7, 4.8 / 3Ed Sec. 7.1, 7.2, 7.3 ). After some work at least the following pairs can
be mentioned: (a) h1[n], (b) H5(e

jω), (c) H4(e
jω), (d) y3[n], and (e) H2(z).

If the coefficients of the transfer function are real-valued (as they are in this course), then
the pole and zero pairs must be complex conjugates: z1 = rejθ, z2 = re−jθ.

If the coefficients of the FIR filter are symmetric, Type I, II, III, and IV, (Mitra 2Ed
Sec. 4.4.3, 4.4.4 / 3Ed Sec. 7.3 ) and (Mitra 2Ed Fig. 4.14, 4.16 / 3Ed Fig. -, 7.17 ),
then the filter has linear phase response (or even zero-phase). The group delay (τ(ω) =
−d/dω ∠H(ejω)) of linear-phase filters is constant for all frequencies.

Another important term is mirror-symmetry respect to the unit circle. In this case the
connection between poles or zeros is: z1 = rejθ, z2 = (1/r)ejθ (and their complex conju-
gates).

For each filter type there is also another example. There are four figures a row for each
example, (i) impulse response, (ii) pole-zero-diagram, (iii) amplitude response in desibels
and x-axis in range 0 . . . π, (iv) phase response.

h1) This noncausal FIR filter has zero phase. The impulse response h1 = −δ[n + 1] +
2δ[n] − δ[n − 1] is symmetric around the origo in the time-domain. The frequency
response can be written

H1(e
jω) = −ejω + 2− e−jω = 2− 2 cos(ω)

|H1(e
jω)| = |2− 2 cos(ω)| ≥ 0 | ampl.resp. ∈ R

∠H1(e
jω) = 0 | phase resp.

− d

dω
∠H1(e

jω) = 0 | no delay at all

from which it can be seen that H1(e
jω) is real-valued. The phase response and group

delay (τ(ω) = −d/dω ∠H(ejω)) is therefore zero (or 180 degrees for negative values
of H(ejω)) for all frequencies, in other words, the filter is zero-phase (Mitra 2Ed Sec.
4.4.2 / 3Ed Sec. 7.2.1 ) and the signal is not delayed in the filter. Matlab command
filtfilt can be applied instead of filter.

Another example, see Figure 90. The zeros are situated mirror-symmetrically ac-
cording to the unit circle, and the impulse response and the transfer function are

h[n] = {1, 3.2893, 3.8875, 0.0884,−3.0407, 0.0884, 3.8875, 3.2893, 1}
H(z) =

∑

n

h[n]z−n
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Figure 90: An example of a zero-phase transfer function in Problem 59. Subfigures (for Fig-
ures 90..95), (i) impulse response h[n], (ii) pole-zero plot, (iii) amplitude response |H(ejω)|,
x-axis (0 . . . π), (iv) phase response ∠H(ejω), x-axis (0 . . . π).

H2) When all zeros are outside the unit circle, the filter has maximum phase. The
filter is IIR, the two zeros are outside the unit circle. When plotting the amplitude
response, it can be noticed that the filter is lowpass (LP). The filter H2(z) is at least
maximum-phase.

Another example on a maximum-phase transfer function (Mitra 2Ed Sec. 4.7 / 3Ed
Sec. 7.2.3 ), whose all zeros lie outside the unit circle in Figure 91

H(z) =
1− 2.773z−1 + 3.108z−2 − 3.125z−3

1 + 1.559z−1 + 0.81z−2
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Figure 91: An example of a maximum-phase transfer function in Problem 59.

y3) When all zeros are inside the unit circle, the filter has minimum phase. From the
difference equation we get

H3(z) =
1 + 1.2z−1 + 0.4z−2

1− 0.5z−1

The transfer function is similar to H2(z), but the zeros are now mirror-symmetric to
those. Therefore the amplitude response is the same, but the filter is minimum-phase
(Mitra 2Ed Sec. 4.7 / 3Ed Sec. 7.2.3 ).

Another example on a minimum-phase transfer function whose all zeros lie inside
the unit circle in Figure 92

H(z) =
1− 0.9944z−1 + 0.8872z−2 − 0.32z−3

1 + 1.559z−1 + 0.81z−2

A minimum-phase transfer function can be converted to a maximum-phase transfer
function (or vice versa) by mirroring the zeros respect to the unit circle. This can
be done using an appropriate allpass function.
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Figure 92: An example of a minimum-phase transfer function in Problem 59.

H4) If the amplitude response (z ← ejω) is |H(ejω)| = 1 for all frequencies, then the
filter is allpass (Mitra 2Ed Sec. 4.6 / 3Ed Sec. 7.1.3 ). The phase response differs
from filter to filter. Allpass-filters contain both zeros and poles mirror-symmetrically,
and there is a certain symmetry in the coefficients of numerator and denominator
polynomials, too. Note that gain cannot be seen from the pole-zero plot.

In Figure 93 an allpass transfer function

H(z) = −3.4722 · −0.288 + 0.4785z−1 − 0.007771z−2 − 0.09443z−3 + z−4

1− 0.09443z−1 − 0.007771z−2 + 0.4785z−3 − 0.288z−4
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Figure 93: An example of an allpass transfer function in Problem 59.

Remark. A complemantary transfer function (Mitra 2Ed Sec. 4.8 / 3Ed Sec. 7.5 )
can be obtained using allpass filters. An example of a lowpass filter

HLP (z) = 0.5
(
A0(z) + A1(z)

)

= 0.5
(

1 +
−a + z−1

1− az−1

)

= 0.5
(1− a + z−1 − az−1

1− az−1

)

where A0(z) and A1(z) are allpass transfer functions and its power-complementary
highpass filter

HHP (z) = 0.5
(
A0(z)− A1(z)

)

= 0.5
(

1− −a + z−1

1− az−1

)

=
1 + a

2
· 1− z−1

1− az−1

In Figure 94(iii) is shown that |HLP (z)|2 + |HHP (z)|2 = 1, as expected by the defi-
nition of power-complementary transfer functions.
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Figure 94: An example of power-complementary LP and HP filters in Problem 59.

H5) Linear-phase. This impulse response is a shifted (delayed) version of h1[n]. The
frequency response is not any more real-valued, but still the phase response is linear
and the group delay constant.

H5(e
jω) = e−jω ·H1(e

jω)

|H5(e
jω)| = |H1(e

jω)| = |2− 2 cos(ω)|
∠H5(e

jω) = −ω | linear

− d

dω
∠H5(e

jω) = 1 | constant

There are four types of linear-phase transfer functions (Mitra 2Ed Sec. 4.4.3 / 3Ed
Sec. 7.3 ). Impulse response of Type 1 is symmetric and odd-length. Type 2 is
symmetric and even-length. Type 3 is antisymmetric and odd-length. Type 4 is
antisymmetric and even-length. The zeros have mirror-image symmetry respect to
the unit circle.

In Figure 95 there is a Type 1 (length: 9, order: 8) impulse response, which is a
shifted version of the filter in Figure 90.

h[n] = {1, 3.2893, 3.8875, 0.0884,−3.0407, 0.0884, 3.8875, 3.2893, 1}
H(z) =

∑

n

h[n]z−n
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Figure 95: An example of a linear-phase transfer function in Problem 59.
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60. Problem: A second-order FIR filter H1(z) has zeros at z = 2± j.

a) Derive a minimum-phase FIR filter with exactly same amplitude response (Mitra
2Ed Sec. 4.7, p. 246 / 3Ed Sec. 7.2.3, p. 365 ).

b) Derive an inverse filter of the minimum-phase FIR filter computed in (a) (Mitra 2Ed
Sec. 4.9, p. 253 / 3Ed Sec. 7.6, p. 396 ).

[L0332] Solution: Minimum-phase filter has all zeros inside the unit circle whereas
maximum-phase filter filter has all zeros outside the unit circle. A filter with zeros inside
and outside the unit circle is often called a mixed-phase filter (Mitra 2Ed Sec. 4.7, p. 246
/ 3Ed Sec. 7.2.3, p. 365 ).

Two causal LTI discrete-time systems with impulse responses h1[n] and h2[n] are inverses
if h1[n] ⊛ h2[n] = δ[n]. After z-transform H1(z) · H2(z) = 1, or H1(z) = 1/H2(z). If
H1(z) = B(z)/A(z), then H2(z) = A(z)/B(z), that is, all zeros are replaced by poles,
and vice versa. If the filter is minimum-phase FIR with all zeros inside the unit circle,
then its inverse is stable. Inverse filtering can be used, e.g., in recovering a signal which
has been distorted in an imperfect transmission channel (Mitra 2Ed Sec. 4.9, p. 253 /
3Ed Sec. 7.6, p. 396 ). In the case of non-minimum-phase FIR filter the situation is more
complex (Mitra 2Ed Sec. -, p. - / 3Ed Sec. 7.6.2, p. 398 ).

a) A second-order FIR filter H1(z) with zeros at z = 2± j is drawn in Figure 96(a). It
is clearly a high-pass filter. Its tranfer function can be written

H1(z) = (1− (2 + j)z−1) · (1 + (2− j)z−1) = 1− 4z−1 + 5z−2

Consider a stable noncausal all-pass filter in Figure 96(b)

A(z) =
5− 4z−1 + z−2

1− 4z−1 + 5z−2
ROC: |z| <

√
5

which has poles at p = 2 ± j and zeros at z = 0.4 ± 0.2j, and |A(z)| ≡ 1 for
all frequencies. Poles and zeros are mirror-images pi = rej±θ, and zi = (1/r)ej∓θ.
Note also that the inverse of a pole gives a complex conjugate of a mirrored zero,

1
2+j

= 2−j
(2+j)(2−j)

= 2−j
4+2j−2j+1

= 0.4−0.2j. Now, the minimum-phase FIR filter H2(z)

is received by H2(z) = H1(z) · A(z), see Figure 96(c)

H2(z) = (1− 4z−1 + 5z−2) · 5− 4z−1 + z−2

1− 4z−1 + 5z−2
= 5− 4z−1 + z−2

The amplitude response of H2(z) is exactly the same as that of H1(z), because
|H2(z)| = |H1(z)| · |A(z)|, where |A(z)| = 1 by definition of all-pass filter. The phase
responses of H1(z) and H2(z) differ. H2(z) has two zeros at z = 0.4± 0.2j.

b) The inverse filter is now received directly H3(z) = 1/H2(z)

H3(z) =
1

5− 4z−1 + z−2
=

0.2

1− 0.8z−1 + 0.2z−2
ROC: |z| >

√
0.2

H3(z) is a stable lowpass all-pole filter with poles at p = 0.4±0.2j, see Figure 96(d).
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Figure 96: Problem 60: (a) H1(z), (b) A(z), (c) H2(z) = H1(z) · A(z), (d) H3(z) = 1/H2(z).

61. Problem: Consider a stable and causal discrete-time LTI system S1, whose zeros zi and
poles pi are

zeros: z1 = 1, z2 = 1

poles: p1 = 0.18, p2 = 0

Add a LTI FIR filter S2 in parallel with S1 as shown in Figure 97 so that the whole system
S is causal second-order bandstop filter, whose minimum is approximately at ω ≈ π/2
and whose maximum is scaled to one. What are transfer functions S2 and S?

S1

S2

y[n]x[n] K

Figure 97: Problem 61: Filter S constructed from LTI subsystems S1 and S2.

[L0345] Solution: Denote transfer functions of the system S1 by H1(z) = B1(z)/A1(z),
S2 by H2(z) = B2(z)/A2(z), and the total system S by H(z) = K ·B(z)/A(z). The system
S2 is FIR, so A2(z) = 1, and therefore H2(z) = B2(z). The subsystems are parallel which
gives

H(z) = K ·
(

H1(z) + H2(z)
)

= K ·
(B1(z)

A1(z)
+ B2(z)

)

= K · B(z)

A(z)

The system S1 is clearly a high-pass filter, see Figure 98(a),(b),

H1(z) =
(1− z1z

−1) · (1− z2z
−1)

1− p1z−1
=

(1− z−1) · (1− z−1)

1− 0.18z−1
=

1− 2z−1 + z−2

1− 0.18z−1

We would like to have a bandstop filter H(z) whose minimum is approximately at ωm =
π/2. Zeros do not necessarily need to lie on the unit circle, but with the angle ωm and
−ωm, see Figure 98(c),(d). The numerator polynomial of H(z), i.e., B(z) is of form

B(z) = (1− rjz−1) · (1 + rjz−1) = 1 + r2z−2

Next we will compute two different solutions for bandstop filters. In the first case, zeros
lie inside the unit circle (r < 1), and in the second case they are on the unit circle (r = 1).
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Figure 98: Problem 61: (a),(b) Known H1(z), (c),(d) B(z) of the whole system.

Adding H1(z) and H2(z) results to (H ′(z) is H(z) without scaling factor K)

H ′(z) =
B1(z)

A1(z)
+ B2(z)

=
B1(z)

A1(z)
+

A1(z) ·B2(z)

A1(z)

=
(1− 2z−1 + z−2) + (1− 0.18z−1) · B2(z)

1− 0.18z−1

It can be seen that the order of B2(z) cannot be more than 1 because B(z) has to be
second-order at most. We can write B2(z) = a + bz−1, and

H ′(z) =
(1− 2z−1 + z−2) + (1− 0.18z−1) · (a + bz−1)

1− 0.18z−1

=
(1 + a) + (−2− 0.18a + b)z−1 + (1− 0.18b)z−2

1− 0.18z−1

Now we can simply choose a = 0 and b = 2, i.e., B2(z) = 2z−1, in order to get a required
form of B(z) = 1 + 0.64z−2. In this case zeros are at z1 = 0.8j and z2 = −0.8j. The
pole-zero plot and the (scaled) magnitude response of

H ′(z) =
1 + 0.64z−2

1− 0.18z−1

are given in Figure 99(a),(b).

The only pole lies at p1 = 0.18, which is closer to 1 than −1, and the maximum is therefore
at ω = 0 (z = 1). The scaling constant K:

|H(z = 1)| = K · |1 + 0.64|
|1− 0.18| = 2K = 1

which gives K = 0.5 and the final results:

H2(z) = 2z−1

H(z) = 0.5 · 1 + 0.64z−2

1− 0.18z−1

Another solution is to compute other values for a and b. By demanding B(z = j) = 0
and B(z = −j) = 0, i.e., zeros on the unit circle, we get the following two equations with
two unknowns. Note that (1/j) = −j.

B(z = j) = (1 + a) + (−2− 0.18a + b)(−j) + (1− 0.18b)(−1) = 0

B(z = −j) = (1 + a) + (−2− 0.18a + b)(j) + (1− 0.18b)(−1) = 0

1 + a− 1 + 0.18b = 0 | real part

−2− 0.18a + b = 0 | imaginary part
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Computing the unknowns gives a ≈ −0.35 and b ≈ 1.94, leading to B2(z) = −0.35 +
1.94z−1 and

H ′(z) = 0.65 · 1 + z−2

1− 0.18z−1

whose pole-zero plot and (scaled) magnitude response are plotted in Figure 99(c),(d).

Now the scaling constant K is:

|H(z = 1)| = K · 0.65 · |1 + 1|
|1− 0.18| ≈ 1.59K = 1

which gives K = 0.63 and the final results:

H2(z) = −0.35 + 1.94z−1

H(z) = 0.41 · 1 + z−2

1− 0.18z−1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

0 0.2 0.4 0.6 0.8 1

−20

−15

−10

−5

0

* π

dB

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

* π

dB

Figure 99: Problem 61: (a),(b) H(z) of first solution, (c),(d) H(z) of second solution.
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62. Problem: Derive the transfer function of the feedback system shown in Figure 100.

E(z)
w[n] y[n]x[n]

F(z)

G(z)

Figure 100: System in Problem 62.

[L0500] Solution: Systems in parallel, see Figure 101: Hp(z) = H1(z)+H2(z) in frequency
domain and hp[n] = h1[n] + h2[n] in time domain. Systems in cascade, see Figure 102:

H1(z)

H2(z)

Figure 101: Systems in parallel, example in Problem 62.

Hc(z) = H1(z)H2(z) in frequency domain and hc[n] = h1[n] ⊛ h2[n] in time domain.
The flow diagram of the system being investigated with temporary variable w[n] is in

H2(z)H1(z)

Figure 102: Systems in cascade, example in Problem 62.

Figure 103. We get the following equations:

{
Y (z) = F (z)W (z)
W (z) = E(z)X(z) + G(z)Y (z)

Y (z) = F (z) (E(z)X(z) + G(z)Y (z))

Y (z) (1− F (z)G(z)) = (F (z)E(z)) X(z)

H(z) =
Y (z)

X(z)
=

F (z)E(z)

1− F (z)G(z)

E(z)
X(z)

F(z)

G(z)

Y(z)Y(z)

G(z)Y(z)

W(z)

Y(z)

E(z)X(z)

Figure 103: System in Problem 62.
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63. Problem: The filter in Figure 104 is in canonic direct form II (DF II). Draw it in DF I.
What is the transfer function H(z)?

z

z

w[n] y[n]x[n]

0.8

−1

−1

−0.2

0.9

Figure 104: The block diagram of direct form II of Problem 63.

[L0508] Solution: Direct form structure means that the coefficients of the block diagram
are the same (or negative values) as in the difference equation and transfer function. There
are also other structures, e.g. lattice. The transfer function for any direct form (I, II,
and transposes IT , IIT , respectively, see Page 120) is the same. Some differences (may)
occur when working with finite word length. There are also differences in computational
load and memory storage.

a) The block diagram in Figure 105 is in canonic direct form II.

z

z

w[n] y[n]x[n]

0.8

−1

−1

−0.2

0.9

Figure 105: The block diagram of direct form II in Problem 63.

If we want to convert it into direct form I without any calculations (done below
in (b)), we can duplicate the registers. The same signal w[n] goes into the both
branches. See Figure 106(a).

Then we can denote the part in left as an “IIR subsystem” and the structure in right
as an “FIR subsystem”. Because both of them are LTI, we can change the order of
them, as in any LTI system, for example, using impulse responses

h[n] = hIIR[n] ⊛ hFIR[n] ≡ hFIR[n] ⊛ hIIR[n]

Now we have direct form I in Figure 106(b), and the difference equation and the
transfer function can be obtained directly without any temporal variables! However,
there are now three registers instead of two.
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z−1

w[n] w[n]

"FIR""IIR"

0.8

−0.2

0.9

x[n] w[n] y[n]

z−1 z−1

(a)

0.8

"IIR""FIR"

y[n]

0.9

x[n]

z−1

−0.2

z−1z−1

(b)

Figure 106: From direct form II to direct form I in Problem 63(a).

b) The transfer function and difference equation can be derived directly from the filter
in Figure 105:

y[n] = w[n] + 0.8w[n− 1]

w[n] = x[n] + 0.9w[n− 1]− 0.2w[n− 2]

Using z-transform

Y (z) = W (z) + 0.8z−1W (z) = W (z)(1 + 0.8z−1)

W (z) = X(z) + 0.9z−1W (z)− 0.2z−2W (z)

From the latter one, W (z) = X(z)/(1 − 0.9z−1 + 0.2−2), and substituting into the
first one, we get

Y (z) = X(z)
1 + 0.8z−1

1− 0.9z−1 + 0.2−2

H(z) = Y (z)/X(z) =
1 + 0.8z−1

1− 0.9z−1 + 0.2−2

Using inverse z-transform we get difference equation which can be easily drawn as
direct form I block diagram:

Y (z)/X(z) =
1 + 0.8z−1

1− 0.9z−1 + 0.2−2

Y (z)(1− 0.9z−1 + 0.2−2) = X(z)(1 + 0.8z−1)

y[n]− 0.9y[n− 1] + 0.2y[n− 2] = x[n] + 0.8x[n− 1]
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Remark. Direct Forms.

(Mitra 2Ed Sec. 6.4.1 / 3Ed Sec. 8.4.1 ) Direct form: coefficients of difference equation
or transfer function can be found in block diagram. (This is not the case, for example, in
lattice form.) Common in all forms is that they have the same transfer function, but the
“implementation” is different.

Let the transfer function be

H(z) =
Y (z)

X(z)
=

1 + 0.5z−1

1− 0.2z−1 + 0.4z−2

In the top numerator polynomial 1 + 0.5z−1 refers to “FIR part” P (z) and in the bottom
denominator polynomial 1− 0.2z−1 + 0.4z−2 “IIR part” D(z):

H(z) = P (z)
1

D(z)

How to get difference equation and block diagram from tranfer function,
z-transform ax[n− n0]↔ a z−n0 X(ejω):

H(z) =
Y (z)

X(z)
=

1 + 0.5z−1

1− 0.2z−1 + 0.4z−2

Y (z) =
X(z)[1 + 0.5z−1]

1− 0.2z−1 + 0.4z−2

Y (z)[1− 0.2z−1 + 0.4z−2] = X(z)[1 + 0.5z−1]

Y (z)− 0.2z−1Y (z) + 0.4z−2Y (z) = X(z) + 0.5z−1X(z)

y[n]− 0.2y[n− 1] + 0.4y[n− 2] = x[n] + 0.5x[n− 1]

y[n] = 0.2y[n− 1]− 0.4y[n− 2] + x[n] + 0.5x[n− 1]

Direct form I can be drawn directly H(z) = P (z) · 1
D(z)

, first “FIR” and then “IIR”

(Figure 107).

−0.4

0.2

"IIR""FIR"

0.5

x[n] y[n]1

−1

z
−1

z
−1

z

Figure 107: Direct form I. You may connect FIR and IIR parts in the middle sum line.

When transposing (Figure 108) transfer function stays, but structure changes. “Rules”
for transposing:

1 Change directions
2 Nodes to sums
3 Sums to nodes
4 Flip the whole structure
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−0.4

0.2

"IIR""FIR"

x[n]

0.5

1
y[n]

−1

z
−1

zz
−1

Phases 1-3

"FIR""IIR"

w[n] w[n]

w[n]
y[n]

0.5

1

-0.4

0.2

x[n]

-1
z

-1
z

-1
z

Phase 4: flip around. You may connect
parts in the middle line.

Figure 108: Transposed direct form I.

Direct form II contains minimum number of delay registers. Draw in order “IIR” and
then “FIR”. Think the transfer function in order H(z) = 1

D(z)
· P (z). Because LTI, the

order of subfilters can be changed. Connect the delay registers, because there are the
same signals (see Book). So you get canonic form, where the number of delays is the
same as order of the filter (Figure 109).

w[n]

y[n]x[n] w[n]

w[n]

"FIR"

−0.4

0.2

1

0.5

"IIR"

z
−1

z
−1

z
−1

IIR-FIR before connecting

"FIR"

y[n]

0.5

1w[n]

-0.4

0.2

"IIR"

x[n]

z
-1

z
-1

Canonic form

Figure 109: Direct form II.

Corresponding transponing IIT , see Figure 110.

Example on direct form, cascade and parallel system. Consider a second order transfer
function

H(z) =
1

(1 + 1
3
z−1)(1− 1

4
z−1)

=
1

1 + 1
12

z−1 − 1
12

z−2

with difference equation

y[n] = − 1

12
y[n− 1] +

1

12
y[n− 2] + x[n]

Cascade form can be written as

H(z) =

(
1

1 + 1
3
z−1

)(
1

1− 1
4
z−1

)

and parallel form using partial fraction (draw!)

H(z) =
4
7

1 + 1
3
z−1

+
3
7

1− 1
4
z−1
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y[n] "IIR"

"FIR"

1 x[n]

0.2

-0.4

0.5

z

-1
z

-1

Phases 1-3

x[n]

"FIR"

"IIR" y[n]

0.2

−0.4

0.5

1

z

−1
z

−1

Phase 4: flip around

Figure 110: Transposed direct form II.

64. Problem: Analyze the digital filter structure shown in Figure 111 and determine its
transfer function H(z) = Y (z)/X(z).

a) Is the system LTI?

b) Is the structure canonic with respect to delays?

c) Compute H(z)H(z−1) (the squared amplitude response). What is the type of this
filter (lowpass/highpass/bandpass/bandstop/allpass)?

z−1 z−1

z−1 z−1

y[n]x[n]

K

A B

−1

−1

Figure 111: The flow diagram of the system in Problem 64.
.

[L0502] Solution: Let us use three temporary signals w1[n], w2[n], and w3[n], in the
following locations in Figure 112.

From the figure we get the following expressions in transform-domain (W ≡W (z)):

W1 = KX + z−1W3

W2 = (z−1 −A)W1

W3 = AW1 − Bz−1W1 = (A− Bz−1)W1

Y = z−1W2 + BW1

Substituting the equation from third line to first line we get

W1 = KX + z−1(A− Bz−1)W1

(1− Az−1 + Bz−2)W1 = KX
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z−1 z−1

z−1 z−1

y[n]x[n]

K

A B

−1

−1

W

W1 W2

3

Figure 112: The filter with temporary signals w1, w2, and w3 in Problem 64.

Next, substituting second line in fourth line we get

Y = [z−1(z−1 −A) + B]W1

Finally, we get rid of the last temporary variable W1, and get

H(z) =
Y (z)

X(z)
= K · B − Az−1 + z−2

1−Az−1 + Bz−2

a) It is LTI. There are only multiplications by constants, delays, and sums of sequences.

b) Since the structure employs 4 unit delays to implement a second-order transfer func-
tion, it is not canonic.

Canonic structure: the number of registers, i.e. delay components, is the same
as the filter order. Direct form I is not canonic, but it is intuitive and its difference
equation is easy to obtain. Direct form II is canonic. It is more efficient to use
canonic structures. (Consider, for example, Problem 71. If canonic structure is
used, there are only 8 storage locations instead of 10.)

c)

H(z)H(z−1) = K2

(
B − Az−1 + z−2

1−Az−1 + Bz−2

)(
B −Az1 + z2

1−Az1 + Bz2

)

| · z
−2

z−2

= K2

(
B − Az−1 + z−2

1−Az−1 + Bz−2

)(
Bz−2 − Az−1 + 1

z−2 −Az−1 + B

)

= K2

Therefore |H(ejω)| = K for all values of ω and hence |H(ejω)| = 1 if K = 1. H(z) is
an allpass transfer if K = 1.
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65. Problem: Develop a polyphase realization of a length-9 FIR transfer function given by

H(z) =
8∑

n=0

h[n]z−n

with (a) 2 branches and (b) 4 branches.

[L0501] Solution: Polyphase realizations (Mitra 2Ed Sec. 6.3.3 / 3Ed Sec. 8.3.3 ) can
be used in multirate techniques.

a) Two branches

H(z) =

8∑

n=0

h[n]z−n

= h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 +

h[5]z−5 + h[6]z−6 + h[7]z−7 + h[8]z−8

=
(
h[0] + h[2]z−2 + h[4]z−4 + h[6]z−6 + h[8]z−8

)
+

z−1
(
h[1] + h[3]z−2 + h[5]z−4 + h[7]z−6

)

= H0(z
2) + z−1H1(z

2)

where

H0(z) = h[0] + h[2]z−1 + h[4]z−2 + h[6]z−3 + h[8]z−4

H1(z) = h[1] + h[3]z−1 + h[5]z−2 + h[7]z−3

H0(z2)

H1(z2)

z−1

Figure 113: Polyphase realization with two branches in Problem 65(a).

b) Four branches

H(z) =
8∑

n=0

h[n]z−n

= h[0] + h[1]z−1 + h[2]z−2 + h[3]z−3 + h[4]z−4 +

h[5]z−5 + h[6]z−6 + h[7]z−7 + h[8]z−8

=
(
h[0] + h[4]z−4 + h[8]z−8

)
+ z−1

(
h[1] + h[5]z−4

)
+

z−2
(
h[2] + h[6]z−4

)
+ z−3

(
h[3] + h[7]z−4

)

= H0(z
4) + z−1H1(z

4) + z−2H2(z
4) + z−3H3(z

4)
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where

H0(z) = h[0] + h[4]z−1 + h[8]z−2

H1(z) = h[1] + h[5]z−1

H2(z) = h[2] + h[6]z−1

H3(z) = h[3] + h[7]z−1

H0(z4)

H2(z4)

H3(z4)

H1(z4)

z−1

z−1

z−1

Figure 114: Polyphase realization with four branches in Problem 65(b).
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66. Problem: Sketch the following specifications of a digital filter on paper. Which of the
amplitude responses of the realizations in Figure 115 do fulfill the specifications?

Specifications: Digital lowpass filter, sampling frequency fT 8000 Hz, passband edge fre-
quency fp 1000 Hz, transition band 500 Hz (transition band is the band between passband
and stopband edge frequencies!), maximum passband attenuation 3 dB, minimum stop-
band attenuation 40 dB.

0 2000 4000
−70

−60

−50

−40

−30

−20

−10

0

Hz

dB

(a) Elliptic, N=4

0 2000 4000
−70

−60

−50

−40

−30

−20

−10

0

Hz

dB

(b) Chebychev II, N=10

0
−70

−60

−50

−40

−30

−20

−10

0

ω

dB

π/2 π

(c) FIR/Hamming, N=50

Figure 115: Three realizations in Problem 66: amplitude responses of (a) 4th order elliptic, (b)
10th order Chebychev II, (c) 50th order FIR using Hamming window.

[L0644] Solution: The frequency specifications are in Hertz, radians, and in normalized
Matlab frequency in Table 8 and they are drawn in Figure 116 with dashed line.

sampling frequency fT 8000 Hz ωT 2π (rad) 2
passband edge fp 1000 Hz ωp π/4 (rad) Wp 2 · 1000/8000 = 0.25
stopband edge fs 1500 Hz ωs 3π/8 (rad) Ws 2 · 1500/8000 = 0.375
passband ripple Rp 3 dB Rp 3
stopband attenuation Rs 40 dB Rs 40

Table 8: Specifications for the filter in Problem 66.

Now that specifications are written and sketched, the filter order and the filter coefficients
are computed using a specific software (e.g. Matlab, ellipord and ellip, buttord and
butter, etc.). Then the amplitude response |H(ejω)| of the calculated filter is plot-
ted in the same picture as the sketch of the specifications (e.g. Matlab, [...] =

freqz(B,A,...);). If the amplitude response curve fits in the specifications, we have
succeeded. In other case, the specifications and the code for the filter are re-checked.

The elliptic IIR filter in Figure 116(a) (via bilinear transform) is of order 4 and it fulfills
the specifications exactly.

Chebychev II filter (Figure 116(b)), which is 10th order IIR, is monotonic in passband
and has stopband attenuation of 50 dB instead of 40. The amplitude response fits in the
allowed area, and it is already too strict. Probably the order N = 8 would be sufficient.

The third filter (Figure 116(c)) is 50th order FIR, whose transition is narrow enough
but at the wrong cut-off frequency. So, this is the only filter, which does not fulfill the
specifications. One should check the cut-off frequency so that the amplitude response fits.
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Figure 116: Three realizations in Problem 66: amplitude responses (solid line) with specifica-
tions (dashed line) of (a) 4th order elliptic (OK!), (b) 10th order Chebychev II (OK, too tight
realization?), (c) 50th order FIR using Hamming window (bad cut-off frequency).

67. Problem: Connect first each amplitude response to the corresponding pole-zero plot
in Figure 117. Then recognize the following digital IIR filter algoritms: Butterworth,
Chebyshev I, Chebyshev II, Elliptic. The conversion from analog to digital form is done
using bilinear transform. The sampling frequency in figures is 20 kHz.
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Figure 117: Problem 67. Digital filters from analog approximations through bilinear transform,
(a) amplitude responses with specifications, fs = 20000 Hz (b) pole-zero plots.

[L0643] Solution: Analog filter design is represented in (Mitra 2Ed Sec. 5.4 / 3Ed Sec.
4.4 ). The approximations are given with magnitude-squared responses of Nth order in
Table 9.

The response of Butterworth is monotonic. Chebyshev I is equiripple in the passband
and monotonic in the stopband whereas Chebyshev II is monotonic in the passband and
equiripple in the stopband. Elliptic approximation is equiripple both in the passband
and stopband. The filter order can often be obtained by computing the number of local
maximum and minimum.

The digital filters are obtained through bilinear transform (Mitra 2Ed Sec. 7.2 / 3Ed Sec.
9.2 ). Hence, approximations, amplitude responses and pole-zero plots are related to each
other according to the Figure 118.
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Approximation M 2Ed Sec. M 3Ed Sec. Response

Butterworth 5.4.2 4.4.2 |Ha(jΩ)|2 =
1

1+(Ω/Ωc)2N

Chebyshev I 5.4.3 4.4.3 |Ha(jΩ)|2 =
1

1+ǫ2T 2
N (Ω/Ωp)

Chebyshev II 5.4.3 4.4.3 |Ha(jΩ)|2 =
1

1+ǫ2[
TN (Ωs/Ωp)
TN (Ωs/Ω)

]2

Elliptic 5.4.4 4.4.4 |Ha(jΩ)|2 =
1

1+ǫ2R2
N (Ω/Ωp)

Table 9: Analog filter approximations in Problem 67.
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Figure 118: Problem 67, see the titles of each subfigure for filter type and order.

68. Problem: Consider the following prototype analog Butterworth-type lowpass filter

HprotoLP (s) =
1

s + 1

a) Form an analog first-order lowpass filter with cutoff frequency Ωc by substituting
H(s) = HprotoLP ( s

Ωc
). Draw the pole-zero plot in s-plane.

b) Implement a discrete first-order lowpass filter HImp(z), whose cutoff frequency (-3
dB) is at fc = 100 Hz and sampling rate is fs = 1000 Hz, applying the impulse-
invariant method to H(s). Draw the pole-zero plot of the filter HImp(z).

c) Implement a discrete first-order lowpass filter HBil(z) with the same specifications
applying the bilinear transform to H(s). Prewarp the edge frequency. Draw the
pole-zero plot of the filter HBil(z).

[L0613] Solution: The solution to the problem starts from the page 129. Two methods
for digital IIR design are shown in the lecture slides, impulse invariant method and bilinear
transform method.

Analog Butterworth lowpass filter

Analog Butterworth filter is discussed in (Mitra 2Ed Sec. 5.4.2 / 3Ed Sec. 4.4.2 ).
The definition of an analog Butterworth filter with cut-off frequency Ωc is |Ha(jΩ)|2 =
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1/(1 + ( Ω
Ωc

)2N) (Mitra 2Ed Eq. 5.31 / 3Ed Eq. 4.33 ). The first order (N = 1) filter is
therefore

|Ha(jΩ)|2 =
1

1 +
(

Ω
Ωc

)2

Ha(s)Ha(−s) =
1

1 +
(

s
jΩc

)2 =
1

1−
(

s
Ωc

)2

=

=H(s)
︷ ︸︸ ︷

1

1 +
(

s
Ωc

) ·

H(−s)
︷ ︸︸ ︷

1

1 +
(

−s
Ωc

)

where s = jΩ

⇒ Ha(s) =
Ωc

s + Ωc

The pole in s-plane is at s = −Ωc.

Here, Ω refers to frequency in analog domain (H(jΩ)) and ω to frequency in digital
domain (H(ejω)).

As said earlier, there are two ways to convert analog filter to digital. The inpulse-invariant
method is straigtforward but it has severe limitations. The bilinear transform is a standard
way.

Impulse-invariant method, see, e.g. lecture slides:

Ha(s) 7→ ha(t) 7→ h[n] = ha(nT ) 7→ H(z)

In the impulse-invariant method the target is to get impulse response of digital filter h[n]
to be the same as the sampled impulse response of analog filter ha(nT ). Because IIR
filters have normally an impulse response of infinite length, this method brings distortion.

The bilinear transformation is acquired when

s = k · 1− z−1

1 + z−1

is inserted into the system function (Mitra 2Ed Eq. 7.21 / 3Ed Eq. 9.15 )

H(z) = Ha(s)|s=k· 1−z−1

1+z−1

Note that here k is a parameter used in the derivation of the bilinear transformation. It
is originally k = (2/T ) but can be set k = 1 to simplify the procedure.

The frequency is warped before the bilinear transformation (Mitra 2Ed Fig. 7.4, 7.5 /
3Ed Fig. 9.3, 9.4 ). In the small frequencies the difference is not big, but it is significant
in high frequencies. Therefore the discrete-time normalized angular cut-off frequency ωc

has to be first prewarped into analog-time prewarped cut-off frequency Ωpc:

Ωpc = k · tan
(ωc

2

)

where ωc = 2πfc/fT = 2πfcT = ΩcT , and 0 < ωc < π, and [fc] = Hz, and fT = 1/T
is the sampling frequency. For example, if discrete-time fc = 100 Hz and fs = 1000 Hz,
then Ωpc = 2000 · tan(0.1π), and fpc ≈ 103.4 Hz. Analog design has to be done using fpc

instead of fc in order to get the cut-off frequency to 100 Hz in the digital filter.

Solution to Problem 68
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a) Substitution gives directly

H(s) = HprotoLP (s/Ωc) =
Ωc

s + Ωc

The pole-zero plot of a lowpass filter in s-plane is in Figure 119.

Ω
c

Im s

Re s

Analog LP filter H
a
(s)=Ω

c
/(s+Ω

c
)

Figure 119: Problem 68(a), LP in s-plane. The stable pole is at s = −Ωc in the left subspace,
the y-axis is the frequency.

b) Transfer function using the impulse-invariant method.

Ha(s) =
Ωc

s + Ωc

7→ ha(t) = Ωce
−Ωctµ(t) 7→

h[n] = ha(nT ) = Ωce
−ΩcnT µ[n] 7→ H(z) = Ωc

∞∑

n=0

e−ΩcnTz−n =
Ωc

1− e−ΩcT z−1

The constant K is introduced in order to scale the maximum of |H(ejω)| into unity.
Using (Mitra 2Ed Eq. 7.7 / 3Ed Eq. 9.7 ), ωc = Ωc/fT = 2πfc/fT and values fT = 1
kHz (sampling frequency) and fc = 100 Hz (cut-off frequency),

H(z)Imp =
K

1− e−ωcz−1
=

K

1− e−π/5z−1

We also know that the maximum is located at zero frequency, because the frequency
response of a Butterworth filter is monotonic. Thus we get

K

1− e−π/5
= 1⇔ K = 1− e−π/5

The transfer function of the filter is therefore

H(z)Imp =
1− e−π/5

1− e−π/5z−1
= 0.4665 · 1

1− 0.5335z−1

There is a pole at z = 0.5335, see Figure 120 for the amplitude response in linear
scale, in desibels and the pole-zero plot.

c) Transfer function using bilinear transform. Compute the normalized angular discrete-
time cut-off frequency ωc,

ωc =
2πΩc

Ωs
=

2π2πfc

2πfT
=

2πfc

fT
= 0.2π

and the prewarped cut-off frequency Ωpc (k = 2/T ):

Ωpc = k · tan(
ωc

2
) = k · tan(0.1π)
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Figure 120: Problem 68, the filter HImp(z) using impulse-invariant method. (a) Amplitude
response in linear scale |H(ejω)| and (b) in desibels 10 · log10 |H(ejω)|2, (c) pole-zero diagram.

The digital filter is obtained through bilinear transform:

H(z) = H(s)|
s=k· 1−z−1

1+z−1 , Ωc=Ωpc=k·tan(0.1π)

=
Ωc

s + Ωc

|
s=k· 1−z−1

1+z−1 , Ωc=Ωpc=k·tan(0.1π)

=
k · tan(0.1π)

k · 1−z−1

1+z−1 + k · tan(0.1π)
| 6 k

=
tan(0.1π)(1 + z−1)

(1 + tan(0.1π))− (1− tan(0.1π))z−1

The last task is to normalize the transfer function. The constant term in denominator
polynomial should be scaled to 1, and the maximum value of the amplitude response
to 1. While this is a Butterworth lowpass filter, the maximum is reached at
ω = 0, i.e., z = ejω|ω=0 = 1.

|H(z)Bil|max =
∣
∣
∣K · 1 + z−1

1− 1−tan(0.1π)
1+tan(0.1π)

z−1

∣
∣
∣
z=1

= 1

Finally,

HBil(z) = 0.2452 · 1 + z−1

1− 0.5095z−1

There is a zero at z = −1 and a pole at z = 0.5095. See Figure 121 for the amplitude
response in linear scale, in (power) desibels (20*log10(A)=10*log10(A2)), and the
pole-zero plot. Compare also to the filter obtained through the impulse-invariant
method in Figure 120.
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Figure 121: Problem 68, the filter HBil(z) using bilinear transform. (a) Amplitude response in
linear scale and (b) in desibels, (c) pole-zero diagram.

69. Problem:

a) Show that the best finite-length approximation to the ideal infinite length impulse
response in the mean square error sense is obtained by truncated Fourier series
method.

b) What is the disadvantage of this method and what are the solutions to this problem?

[L0618] Solution:

a) Let the Hd(e
jω) denote the desired frequency response function. Since Hd(e

jω) is a
periodic function of ω with the period 2π, it can be expressed as a Fourier series:

Hd(e
jω) =

∞∑

n=−∞
hd[n]e−jωn,

where the Fourier coefficients hd[n] are the corresponding impulse response samples
given by

hd[n] =
1

2π

∫ π

−π

Hd(e
jω) ejωn dω, −∞ ≤ n ≤ ∞

For most practical solutions, hd is of infinite length and noncausal. Therefore we
try to find a finite-duration impulse response sequence ht[n] of length 2M+1, whose
DTFT Ht(e

jω) approximates the Hd(e
jω) in some sense. One commonly used ap-

proximation criteria is to minimize the integral squared-error

Φ =
1

2π

∫ π

−π

|Ht(e
jω)−Hd(e

jω)|2dω

where

Ht(e
jω) =

M∑

n=−M

ht[n]e−jωn.

Using Parseval’s relation

∞∑

n=−∞
g[n]h∗[n] =

1

2π

∫ π

−π

G(ejω)H∗(ejω)dω,

we can rewrite the cost function

Φ =

∞∑

−∞
|ht[n]− hd[n]|2 =

M∑

n=−M

|ht[n]− hd[n]|2 +

−M−1∑

n=−∞
h2

d[n] +

∞∑

n=M+1

h2
d[n].
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It obvious from the latter form that the integral-squared error is a minimum when
ht[n] = hd[n], for −M ≤ n ≤ M , that is the best finite-length approximation to the
ideal infinite-length impulse response in the mean-square error sense is obtained by
truncation.

The causality is achieved by delaying the ht[n] by M samples. (Mitra 2Ed Sec. 7.6.1,
p. 447 / 3Ed Sec. 10.2.1, p. 527 )

b) Disadvantage is the oscillatory behaviour of Ht(e
jω) (Gibbs phenomenon). This

is caused by simple truncation (window function with abrupt transitions in time
domain) and the instability of the ideal filter. Possible solutions are the use of tapered
windows (fixed or adjustable) and specification of FIRs with smooth transitions.
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70. Problem: Use windowed Fourier series method and design a FIR-type (causal) lowpass
filter with cutoff frequency 3π/4. Let the order of the filter be 4.

See Figure 122, in left the amplitude response of the ideal lowpass filter H(ejω) with
cut-off frequency at 3π/4. In right, the corresponding inverse transform of the desired
ideal filter hd[n], which is sinc-function according to the transform pair rect(.) ↔ sinc(.):

hd[n] = {. . . ,−0.1592, 0.2251, 0.75, 0.2251,−0.1592, . . .}
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Figure 122: Problem 70: (a) The amplitude response of the ideal lowpass filter, and (b) the
corresponding impulse response h[n] values. The cut-off frequency is at ωc = 3π/4.

a) Use the rectangular window of length 5, see Figure 123(a). The window function is
wr[n] = 1,−M ≤ n ≤M, M = 2

b) Use the Hamming window of length 5, see Figure 123(b). The window function is

wh[n] = 0.54 + 0.46 cos

(
2πn

2M

)

, −M ≤ n ≤M, M = 2

which results to wh[n] = {0.08, 0.54, 1, 0.54, 0.08}
c) Compare how the amplitude responses of the filters designed in (a) and (b) differ

assuming that the window size is high enough (e.g. M = 50).
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Figure 123: Problem 70: (a) rectangular window wr[n] of length 5, and (b) Hamming window
wh[n] of length 5.

[L0614] Solution: Digital FIR filter design with windowed (truncated) Fourier series
method. The idea is to find infinite-length impulse response of the ideal filter and truncate
it so that a realizable finite-length filter is obtained.
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ht[n] = hd[n] · w[n] ↔ Ht(z) = Hd(z) ⊛ W (z)

Now, when cut-off frequency (-3 dB) is at ωc = 3π/4, the infinite-length impulse response
of the ideal filter is:

hd[n] = sin(
3π

4
n)/(πn) = (3/4) sinc(

3

4
n)

When computing values, sin(x)/x → 1, when x → 0, or sinc(x) → 1, when x → 0. So,
we get hd[n] = {. . . ,−0.1592, 0.2251, 0.75, 0.2251,−0.1592, . . .}.

a) Now we are using rectangular window wr[n] of length 5 (4th order),

wr[n] =

{

1, −2 ≤ n ≤ 2

0, otherwise

Hence,

ht[n] = hd[n] · wr[n] = {−0.1592, 0.2251, 0.75, 0.2251,−0.1592}

If causal filter is needed, then the shift by two is needed
hc[n] = ht[n− 2] = {−0.1592, 0.2251, 0.75, 0.2251,−0.1592}.
In Figure 124 time-domain view:
(a) hd[n] (IIR), (b) wr[n], and (c) ht[n] = hd[n] · wr[n] (FIR).

In Figure 125 the corresponding frequency-domain view:
(a) Hd(e

jω) (ideal, desired), (b) Wr(e
jω), and (c) Ht(e

jω) = Hd(e
jω)⊛ Wr(e

jω) (real-
isable).
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Figure 124: Problem 70(a): time domain view, (a) hd[n], (b) wr[n],(c) ht[n].
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Figure 125: Problem 70(a): frequency domain (0 . . . π), (a) Hd(e
jω), (b) Wr(e

jω), (c) Ht(e
jω).
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b) Now we are using Hamming window4 wh[n] of length 5,

wh[n] =

{

0.54 + 0.46 cos(2πn/4), −2 ≤ n ≤ 2

0, otherwise

Hence,

ht[n] = hd[n] · wh[n] = hd[n] ·
(
0.54 + 0.46 cos(2πn/(2M))

)

= {0.08 · (−0.1592), 0.54 · 0.2251, 0.75, 0.54 · 0.2251, 0.08 · (−0.15592)}
= {−0.0127, 0.1215, 0.75, 0.1215,−0.0127}

If causal filter is needed, then
hc[n] = ht[n− 2] = {−0.0127, 0.1215, 0.75, 0.1215,−0.0127}
In Figure 126 time-domain view:
(a) hd[n], (b) wh[n], and (c) ht[n] = hd[n] · wh[n].

In Figure 127 the corresponding frequency-domain view:
(a) Hd(e

jω), (b) Wh(e
jω), and (c) Ht(e

jω) = Hd(e
jω) ⊛ Wh(e

jω).
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Figure 126: Problem 70(b): time domain view, (a) hd[n], (b) wh[n],(c) ht[n].
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Figure 127: Problem 70(b): frequency domain (0 . . . π), (a) Hd(e
jω), (b) Wh(e

jω), (c) Ht(e
jω).

c) Some examples of window functions:

i) Rectangular N=11, Figure 128

ii) Rectangular N=65, Figure 129

iii) Hamming N=65, Figure 130

4The expression is slightly different from that given in (Mitra 2Ed Eq. 7.75, p. 452 / 3Ed Eq. 10.31, p.
533 ) but the same as in Matlab.
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There are three figures for each item. Top left figure is the window function in time
domain w[n]. The causal version can be obtained by shifting. Bottom left figure is
the window function in frequency domain W (ejω). The third figure in right is the
amplitude frequency of actual filter which is obtained via window function method.
The desired lowpass filter Hd(e

jω) is drawn in dashed line, the implemented filter
Ht(e

jω) = Hd(e
jω) ⊛ W (ejω) is solid line. The cut-off frequency is at 100 Hz, and

the sampling frequency is 1000 Hz.

Notice that

i) Rectangular N=11 gives insufficient result.

ii) Rectangular N=65 gives sharp transition band but oscillates (Gibbs phenomenon).

iii) Hamming N=65 is flat both in passband and stopband but the transition band
is not as tight as in (ii).
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Figure 128: Rectangular window N = 11, see the text in Problem 70(c).
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Figure 129: Rectangular window N = 65, see the text in Problem 70(c).
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Figure 130: Hamming window N = 65, see the text in Problem 70(c).

71. Problem: The following transfer functions H1(z) and H2(z) representing two different
filters meet (almost) identical amplitude response specifications

H1(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

where b0 = 0.1022, b1 = −0.1549, b2 = 0.1022, a1 = −1.7616, and a2 = 0.8314, and

H2(z) =

12∑

k=0

h[k]z−k

where h[0] = h[12] = −0.0068, h[1] = h[11] = 0.0730, h[2] = h[10] = 0.0676,
h[3] = h[9] = 0.0864, h[4] = h[8] = 0.1040, h[5] = h[7] = 0.1158, h[6] = 0.1201.

For each filter,

a) state if it is a FIR or IIR filter, and what is the order

b) draw a block diagram and write down the difference equation

c) determine and comment on the computational and storage requirements

d) determine first values of h1[n]

[L0730] Solution: The transfer functions H1(z) and H2(z) have been designed using the
same amplitude specifications, see Figure 131.

a) H1(z) is IIR. There is a denominator polynomial.

H2(z) is FIR. There is only the nominator polynomial.

b) H1(z) is an IIR filter. In order to show the feedback in time domain one has to use
inverse z-transform:

H(z) =
Y (z)

X(z)
=

b0 + b1z
−1 + b2z

−1

1 + a1z−1 + a2z−1

Y (z)
(
1 + a1z

−1 + a2z
−1
)

= X(z)
(
b0 + b1z

−1 + b2z
−1
)

| Z−1{.}
y[n] + a1y[n− 1] + a2y[n− 2] = b0x[n] + b1x[n− 1] + b2x[n− 2]

From the difference equation the block diagram can be drawn (Figure 132). Note
that the same coefficients can be found also in the form of H1(z).
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Figure 131: Amplitude responses of H1(z) and H2(z) in Problem 71.
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Figure 132: H1(z) as a block diagram in Problem 71.

The impulse response h[n] of FIR filter H2(z) is directly seen and its length is 13
(finite impulse response). The block diagram consists only of multipliers and delays
(Figure 133).

c) From examination of the two difference equations the computational and storage
requirements for both filters are summarized in Table 10.

FIR IIR
Number of multiplications 13 5
Number of additions 12 4
Storage locations (coefficients and data) 26 10

Table 10: Computational and storage requirements of H1(z) and H2(z).

It is evident that the IIR filter is more econimical in both computational and storage
requirements than the FIR filter. However, there are some tricks to improve FIR
filter structure, see e.g. (Mitra 2Ed Sec. 6.3.3, 6.3.4 / 3Ed Sec. 8.3.3, 8.3.4 )

d) A simple way to determine the impulse response is to insert an impulse x[n] = δ[n]
into input and compute recursively with difference equation what comes out in y[n].
The registers are assumed to be zero in the initial moment. Another way to solve
first values of h1[n] is to apply long division. Unfortunately, both cases are heavy by
hands. Inverse z-transform can be used in order to receive exact h[n]. Using Matlab,

h1[n] = {0.1022, 0.0251, 0.0615, 0.0875, 0.1029, 0.1086, . . .}
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y[n]
h0 h1 h2 h12

x[n]
z−1−1z−1 z

Figure 133: H2(z) as a block diagram in Problem 71.

72. Problem: See the digital filter structure in Figure 134. Write down all equations for wi[n]
and y[n]. Create an equivalent matrix representation y[n] = Fy[n] + Gy[n − 1] + x[n],

where y[n] =
[
w1[n] w2[n] w3[n] w4[n] y[n]

]T
. Verify the computability condition by

examining the matrix F. Develop a computable set of time-domain equations. Develop
the precedence graph (Mitra 2Ed Sec. 8.1, p. 515 / 3Ed Sec. 11.1, p. 589 ).

Z−1

Z−1

Z−1

y[n]x[n]

5w2

2

−3

1

−2

w1

−1

w4

w3

Figure 134: Problem 72: Digital filter structure.

[L0701] Solution: In this problem issues of computable set of time-domain equations are
considered (Mitra 2Ed Sec. 8.1, p. 515 / 3Ed Sec. 11.1, p. 589 ). See the digital filter
structure in Figure 134.

The difference equations for wi[n] and y[n] can be written as

w1[n] = x[n]− w3[n] + w2[n]

w2[n] = −15w1[n− 1]

w3[n] = −3w1[n− 1] + w4[n]

w4[n] = −2w3[n− 1]

y[n] = 2x[n]− 3w1[n]

Note that you cannot compute this ordered set of time-domain equatios in this order,
i.e., the set is noncomputable. For instance, in order to get the value of w1[n] one has
to compute w2[n] and w3[n] first. It is not directly seen either, if the structure contains
delay-free loops (like wu[n] = ax[n] + . . . + bwu[n]).

We start from forming a matrix representation for the above set of equations using

y[n] = Fy[n] + Gy[n− 1] + x[n]
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where y[n] =
[
w1[n] w2[n] w3[n] w4[n] y[n]

]T
. F contains coefficients at the time

moment n, and G coefficients at the previous time n− 1. The matrix representation is









w1[n]
w2[n]
w3[n]
w4[n]
y[n]









=









0 1 −1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
−3 0 0 0 0

















w1[n]
w2[n]
w3[n]
w4[n]
y[n]









+









0 0 0 0 0
−15 0 0 0 0
−3 0 0 0 0
0 0 −2 0 0
0 0 0 0 0

















w1[n− 1]
w2[n− 1]
w3[n− 1]
w4[n− 1]
y[n− 1]









+









x[n]
0
0
0

2x[n]









See the matrix F closer. If the diagonal element in F is nonzero, then the computation
of the present value wi[n] requires knowledge of itself (delay-free loop), which makes the
structure totally noncomputable.

Any nonzero element in the top triangular of F makes the ordered set of equation non-
computable. The task is to re-order the equations so that this triangular becomes zero.

A signal flow-graph representation of the filter structure is created in Figure 135. The
dependent and independent signal variables y[n] are represented as nodes. Note that here
all different coefficients have been replaced by a single constant C = 1 (omitted) because
we are not interested in exact values of variables.

w2 w3 w4 y[n]x[n] w1 D

D

D

Figure 135: Problem 72: Signal flow-graph representation of the digital filter structure of
Figure ??. All coefficients have been omitted. Delay registers are marked with D.

First, remove all delay branches and branches going out from the input node, see the
reduced signal-flow chart in Figure 136(a). Label all those nodes which have only outgoing
brances into a set {N1}. Second, remove all outgoing branches from nodes {N1}, see
Figure 136(b). Label all nodes which have only outgoing brances into a set {N2}. Repeat
until there is no nodes left. If the algorithm stops before, there is a delay-free loop and
the whole system is noncomputable. Here we get

{N1} = {w2, w4}
{N2} = {w3}
{N3} = {w1}
{N4} = {y}

The graph with branches and nodes shown in Figure 137 is called precedence graph
(Mitra 2Ed Sec. 8.1.2, p. 518 / 3Ed Sec. 11.1.2, p. 592 ). The computational order of
the variables inside the same set {Ni} can be chosen arbitrary.
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w2 w3 w4 y[n]x[n] w1 w2 w3 w4 y[n]x[n] w1

Figure 136: Problem 72: (a) The reduced signal flow-graph obtained by removing outgoing
branches from the input and all delay branches. All nodes with only outgoing brances, w2 and
w4, belong to the set {N1}. (b) All outgoing branches from nodes in the set {N1} have been
removed. All nodes with only outgoing brances, w3, belong to the set {N2}.

The computable ordered set of equations is

w2[n] = −15w1[n− 1]

w4[n] = −2w3[n− 1]

w3[n] = −3w1[n− 1] + w4[n]

w1[n] = x[n]− w3[n] + w2[n]

y[n] = 2x[n]− 3w1[n]

N2N1 N3 N4

w1[n] y[n]

w2[n]

w4[n] w3[n]

Figure 137: Problem 72: Presedence graph with node sets Ni. Coefficients have been omitted.
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73. Problem: Suppose that the calculation of FFT for a one second long sequence, sampled
with 44100 Hz, takes 0.1 seconds. Estimate the time needed to compute (a) DFT of a one
second long sequence, (b) FFT of a 3-minute sequence, (c) DFT of a 3-minute sequence.
The complexities of DFT and FFT can be approximated with O(N2) and O(N log2 N),
respectively.

[L0700] Solution: Fast Fourier Transform (FFT) is a computationally effective algorithm
for calculating the Discrete Fourier Transform (DFT) of a sequence (Mitra 2Ed Sec. 8.3.2
/ 3Ed Sec. 11.3.2 ).

The computational complexity of FFT is O(N log N) where N is the length of the se-
quence. The complexity of the basic algorithm for DFT is quadratic to the input length
i.e. O(N2).

Here, it is supposed that the calculation of FFT for a one second long sequence, sam-
pled with 44100 Hz, takes 0.1 seconds. Thus, the length of the sequence is N = 1 s ×
44100 Hz = 44100 samples and we can approximate the number of operations needed
for the calculation as N log2 N (using the base-2 logarithm). Since performing these
operations takes 0.1 seconds, we get the (average) execution time for a single operation:

t =
0.1s

44100 log2(44100)
≈ 147 ns

a) The time needed to compute DFT of a one second long sequence is estimated as the
number of operations needed times the execution time for a single operation:

N2t = 441002 × 147 ns ≈ 300 s ≈ 5 min

b) A 3-minute sequence, sampled with 44100 Hz, consists of N ′ = 180 s× 44100 Hz =
7938000 samples. Calculating FFT for N ′ takes approximately:

N ′ log2(N
′)t = 7938000 log2(7938000)× 147 ns ≈ 30 s

c) Calculating DFT for N ′ takes approximately:

(N ′)2t = 79380002 × 147 ns ≈ 9 · 106 s ≈ 100 d

It should be noted that these are only very crude approximations of the actual time it
takes to calculate the FFT and DFT algorithms with different sizes of input sequences.
The O(·) notation omits all additive constants and constant coefficients of the complexity
and concerns only the asymptotic behavior of complexity when N grows without limit.
In addition, the length of N is assumed to be a power of 2 in FFT algoritms.
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74. Problem: Using radix-2 DIT FFT algorithm with modified butterfly computational
module compute discrete Fourier transform for the sequence x[n] = {2, 3, 5,−1} (Mitra
2Ed Sec. 8.3.2, p. 538 / 3Ed Sec. 11.3.2, p. 610 ). The equation pair on rth level (Mitra
2Ed Eq. 8.42a, 8.42c, p. 543 / 3Ed Eq. 11.45a, 11.45c, p. 614 )

Ψr+1[α] = Ψr[α] + W l
NΨr[β]

Ψr+1[β] = Ψr[α]−W l
NΨr[β]

[L0766] Solution: Discrete Fourier transform (DFT)

X[k] =
N−1∑

n=0

x[n]W nk
N k = 0 . . .N − 1

where WN = e−j2π/N , can be computed efficiently using fast Fourier transform (FFT)
algorithms. Algorithms are based on “divide and rule” – decomposing the N -point DFT
computation into smaller ones, and taking advantage of the periodicity and symmetry
properties of W nk

N . The computational complexity of DFT is quadratic O(N2) whereas
that of FFT is O(N log2 N). The difference is remarkable with large N . N is required
to be power of two 2µ = N . In addition, the temporary results during the algorithm
can be saved in the same registers (in-place computation), which is desirable for memory
management. See the literature for more details about deriving FFT algorithms (Mitra
2Ed Sec. 8.3.2, p. 540 / 3Ed Sec. 11.3.2, p. 610 ).

Here we apply radix-2 DIT FFT algorithm to compute DFT. DIT stands for decimation-
in-time and radix-2 means that the decimation factor is 2 at each step. Modified butterfly
module is depicted in Figure 138 and with equations (Mitra 2Ed Eq. 8.42a, 8.42c, p. 543
/ 3Ed Eq. 11.45a, 11.45c, p. 614 )

Ψr+1[α] = Ψr[α] + W l
NΨr[β]

Ψr+1[β] = Ψr[α]−W l
NΨr[β]

where r is the level of computation r = 1, . . . , µ, constant µ = log2 Nx[n], and at each level
r the coefficients W l

N : N = N(r) = 2r = 21, . . . , 2µ, and l = 0, . . . , 2r−1 − 1. The number
of Ψr[m] is Nx[n], m = 0, . . . , Nx[n] − 1.

Ψ [α]r

Ψ [β]r

Ψ   [α]r+1

Ψ   [β]r+1

−1WN

Figure 138: Problem 74: Modified butterfly module.

Here {Ψ1[m]} is the input sequence in the bit-reversed order to be transformed, that is, a
sample x[(bµ . . . b2b1b0)2] appears in the location m = (b0b1b2 . . . bµ)2 as Ψ1[(b0b1b2 . . . bµ)2]
(bits bi ∈ {0, 1}).
The algorithm is efficient also in the sense that only values of one level r (number of Nx[n])
has to be kept in the memory, this is called in-place computation.
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Hence, here we apply radix-2 DIT FFT algorithm to compute DFT of the sequence
x[n] = {2, 3, 5,−1}, where Nx[n] = 4 and µ = log2 4 = 2. Bit-reversed order gives the
starting point

(index (0)10 = (00)2) Ψ1[0] = x[0] = 2 (bit-reversed (00)2 = (0)10)

(index (1)10 = (01)2) Ψ1[1] = x[2] = 5 (bit-reversed (10)2 = (2)10)

(index (2)10 = (10)2) Ψ1[2] = x[1] = 3 (bit-reversed (01)2 = (1)10)

(index (3)10 = (11)2) Ψ1[3] = x[3] = −1 (bit-reversed (11)2 = (3)10)

The flow-graph for the algorithm is depicted in Figure 139. Computing the layer r = 1
where W l

N = {W 0
2 } = {1}

Ψ2[0] = Ψ1[0] + W 0
2 Ψ1[1] = 2 + 5 = 7

Ψ2[1] = Ψ1[0]−W 0
2 Ψ1[1] = 2− 5 = −3

Ψ2[2] = Ψ1[2] + W 0
2 Ψ1[3] = 3− 1 = 2

Ψ2[3] = Ψ1[2]−W 0
2 Ψ1[3] = 3 + 1 = 4

and the layer r = 2 with W l
N = {W 0

4 , W 1
4 } = {1,−j}

Ψ3[0] = Ψ2[0] + W 0
4 Ψ2[2] = 7 + 2 = 9

Ψ3[2] = Ψ2[0]−W 0
4 Ψ2[2] = 7− 2 = 5

Ψ3[1] = Ψ2[1] + W 1
4 Ψ2[3] = −3− 4j

Ψ3[3] = Ψ2[1]−W 1
4 Ψ2[3] = −3 + 4j

which gives the final result (compare to Problem 13 and Problem 50)

X[0] = Ψ3[0] = 9

X[1] = Ψ3[1] = −3− 4j

X[2] = Ψ3[2] = 5

X[3] = Ψ3[3] = −3 + 4j

Ψ [0]1

Ψ [1]1

Ψ [2]1

Ψ [3]1

Ψ [0]2

Ψ [1]2

Ψ [2]2

Ψ [3]2

Ψ [0]3

Ψ [1]3

Ψ [2]3

Ψ [3]3
−1W4

−1

−1W2

−1W2
0

0

W4
0

1

Figure 139: Problem 74: Flow-graph of the radix-2 DIT FFT algorithm with modified butterfly
module.

Remark. Radix-2 DIT FFT for the sequence of length N = 8 is just adding one layer
more as can be seen in Figure 140. In practice N depends on the application, e.g., in
speech processing N corresponding to 20 milliseconds with fT = 44100 Hz results to
0.02 · 44100→ either N = 512 or N = 1024.
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Ψ [4]1

Ψ [5]1

Ψ [6]1

Ψ [7]1

Ψ [4]2

Ψ [5]2

Ψ [6]2

Ψ [7]2

Ψ [0]1

Ψ [1]1

Ψ [2]1

Ψ [3]1

Ψ [0]2

Ψ [1]2

Ψ [2]2

Ψ [3]2

Ψ [0]3

Ψ [1]3

Ψ [2]3

Ψ [3]3

Ψ [4]3

Ψ [5]3

Ψ [6]3

Ψ [7]3

Ψ [4]4

Ψ [5]4

Ψ [6]4

Ψ [7]4

Ψ [0]4

Ψ [1]4

Ψ [2]4

Ψ [3]4

W8
0

W8
1

W8
2

W8
3

−1W2

−1W2
0

0

−1W2

−1W2
0

0

−1W4

−1W4
0

1

−1W4

−1W4
0

1

−1

−1

−1

−1

Figure 140: Problem 74: The same algorithm with N = 8, i.e., bit-reversed inputs
Ψ1[0], . . . , Ψ1[7]. In the right-most layer the multipliers are W 0

8 , W 1
8 , W 2

8 , and W 3
8 , and

the outputs are Ψ4[0], . . . , Ψ4[7].

75. Problem: Perform the following binary additions

a) 0∆10101 + 0∆01111

b) 0∆01011 + 0∆10001

and compute the differences by performing binary additions of a positive fraction and a
negative number represented in two’s complement form:

a) 0∆10101− 0∆01111

b) 0∆01011− 0∆10001

[L0768] Solution: Negative fractions are often represented in two’s complement form,
which is received from a positive fraction by inverting all bits and adding one.

a) 0∆10101 + 0∆01111

1 1 1 1 1 carry
0 ∆ 1 0 1 0 1

+ 0 ∆ 0 1 1 1 1
1 ∆ 0 0 1 0 0

As the sign bit is 1, there has been overflow and the sum is not correct.

b) 0∆01011 + 0∆10001

1 1 carry
0 ∆ 0 1 0 1 1

+ 0 ∆ 1 0 0 0 1
0 ∆ 1 1 1 0 0
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No overflow occured this time.

c) The difference 0∆10101−0∆01111 can be carried out as an addition of positive binary
fraction 0∆10101 andd thw two’s-complement representation of −0∆01111, which is
given by 1∆10001.

1 1 carry
0 ∆ 1 0 1 0 1

+ 1 ∆ 1 0 0 0 1
10 ∆ 0 0 1 1 0

The extra 1 bit on the left of the sign bit is dropped resulting in 0∆00110, which is
the correct difference.

d) 0∆01011− 0∆10001. The complement of −0∆10001 is given by 1∆01111.

1 1 1 1 carry
0 ∆ 0 1 0 1 1

+ 1 ∆ 0 1 1 1 1
1 ∆ 1 1 0 1 0

which can be changed back to a positive fraction by inverting bits and adding one:
−0∆00110.
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76. Problem: Express the decimal number −0.3125 as a binary number using sign bit and
four bits for the fraction in the format of (a) sign-magnitude, (b) ones’ complement, (c)
two’s complement. What would be the value after truncation, if only three bits are saved.

[L0764] Solution: The binary number representation is discussed in (Mitra 2Ed Sec. 8.4
/ 3Ed Sec. 11.8 ). Now, −0.3125 = −5/16. We can express it in fixed-point representation
using a sign bit s and four bits for the fraction.

There are three different forms for negative numbers, for which all the sign bit is 0 for a
positive number and 1 for a negative number.

a) Sign-magnitude format: 1∆0101.
b-bit fraction is always

∑b
i=1 a−i2

−i. For a negative number s = 1:
S = −(0 · 2−1 + 1 · 2−2 + 0 · 2−3 + 1 · 2−4) = −0.3125.

b) Ones’ complement: 1∆1010.
Decimal number S = −s(1− 2−b) +

∑b
i=1 a−i2

−i. The negative number can also be

achieved by complementing all bits of the corresponding positive value (+0.3125 ,

0∆0101→ 1∆1010 , −0.3125).
S = −1(1− 2−4) + (1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 0 · 2−4)
= −0.9375 + 0.625 = −0.3125

c) Two’s complement: 1∆1011.
Decimal number S = −s+

∑b
i=1 a−i2

−i. It can also be achieved by complementing all

bits and adding 1 to the least-significant bit (LSB) (+0.3125 , 0∆0101→ 1∆1010+
1 = 1∆1011 , −0.3125).
S = −1 + (1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4)
= −1 + 0.6875 = −0.3125

After truncation

a) 1∆0101→ 1∆01 , −0.25

b) 1∆1010→ 1∆10 , −0.25

c) 1∆1011→ 1∆10 , −0.5

it can be seen that in this case truncation of (a) and (b) produced a bigger number, but
(c) a smaller. The analysis of quantization (truncation) process (Mitra 2Ed Sec. 9.1 /
3Ed Sec. 12.1 ) results to quantization errors depicted in Problem 78.
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77. Problem: In the following Figure 141, some error probability density functions of the
quantization error are depicted.

e

f(e)

e

f(e)

−∆/2 ∆/2

−∆ ∆

(b)

(c)

e

f(e) (a)

∆/2−∆/2

Figure 141: Problem 77: Error density functions.

(a) Rounding

(b) Two’s complement truncation

(c) Magnitude (one’s complement) truncation

is used to truncate the intermediate results. Calculate the expectation value of the quan-
tization error me and the variance σ2

e in each case.

E[E] =
∫∞
−∞ f(e) e de, Var[E] = E[(E − E[E])2] = E[E2]− (E[E])2

[L0752] Solution: In this problem we are analysing different types of quantization meth-
ods. ∆ here means the quantization step, ∆ = 2−B. For example, if we are using
(B + 1) = (4 + 1) bits and fixed-point numbers with two’s complement representation,
possible 2B+1 = 32 quantized values are
{−1,−15/16,−14/16, . . . , 14/16, 15/16}.
The area (integral) of the propability density function f(e) is always one. All the dis-
tributions are uniform. Hence, f(e) (height of the box) of each pdf is easily computed.
We first compute E[E] = me and Var[E] = E[(E − E[E])2] = σ2

e for general uniform
distribution (see Figure 142).

ba

f(e)

e

1/(b−a)

Figure 142: Computing the mean and variance of general uniform distribution in Problem 77.

f(e) =







1

b− a
a ≤ e ≤ b

0 e < a ∨ e > b
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me =

∫ ∞

−∞
ef(e)de =

∫ b

a

e
1

b− a
de =

1

b− a

b/

a

1

2
e2

=
1

2

1

b− a
(b2 − a2) =

1

2

1

b− a
(b− a)(b + a) =

1

2
(b + a)

σ2
e =

∫ ∞

−∞
(e−me)

2f(e)de =

∫ b

a

[

e− 1

2
(a + b)

]2
1

b− a
de

=
1

b− a

b/

a

1

3

[

e− 1

2
(a + b)

]3

=
1

3

1

b− a

{[

b− 1

2
(a + b)

]3

−
[

a− 1

2
(a + b)

]3
}

=
1

3

1

b− a

{[
1

2
b− 1

2
a

]3

−
[
1

2
a− 1

2
b

]3
}

=
1

12

1

b− a
(b− a)3 =

1

12
(b− a)2

Computation of mean and variance for each tree cases in the exercise paper, (a) rounding,
(b) two’s complement truncation, and (c) magnitude truncation.

a) Rounding: a = −∆
2
, b = ∆

2

me =
1

2
(−∆

2
+

∆

2
) = 0

σ2
e =

1

12

[
∆

2
−
(

−∆

2

)]2

=
∆2

12

b) Two’s complement truncation: a = −∆, b = 0

me =
1

2
(−∆ + 0) = −∆

2

σ2
e =

1

12
[0− (−∆)]2 =

∆2

12

c) Magnitude truncation: a = −∆, b = ∆

me =
1

2
(−∆ + ∆) = 0

σ2
e =

1

12
[∆− (−∆)]2 =

∆2

3
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78. Problem: In this problem we study the roundoff noise in direct form FIR filters. Consider
an FIR filter of length N having the transfer function

H(z) =

N−1∑

k=0

h[k]z−k.

Sketch the direct form realization of the transfer function.

a) Derive a formula for the roundoff noise variance when quantization is done before
summations.

b) Repeat (a) for the case where quantization is done after summations, i.e. a double
precision accumulator is used.

[L0753] Solution: Direct form realization of the filter. Quantization blocks are marked
by Q in Figure 143.

y[n]

h[1]h[0] h[N − 1]

x[n]

Q Q

z−1z−1 z−1

Q

Figure 143: Filter with finite wordlength in Problem 78.

a) The roundoff noise model (ei[n]:s are error sources), when quantization is done before
summations, is depicted in Figure 144.

h[N − 1]

y[n]

e0[n] e1[n] eN−1[n]

h[0]

x[n]

h[1]

z−1z−1 z−1

Figure 144: Roundoff noise model with N quantization points in Problem 78.

It is assumed that the quantization is done using rounding. B + 1 bits are used in
the coefficient quantization (∆ = 2−B):

⇒ σ2
e =

2−2B

12
, me = 0 for all ei[n], i = 0, . . . , N − 1.

T-61.3010 DSP 2009 152/170 PROBLEMS – Part M 77-80

Transfer functions from noise sources to the output are equal to unity. Total output
noise is thus

e[n] =

N−1∑

i=0

ei[n] .

The expectation of the total noise is E[e[n]] = 0 because rounding was applied. The
variance of the noise is

σ2
e,tot = E

[
e2[n]

]
− E[e[n]]

︸ ︷︷ ︸

=0 (rounding)

2

= E





(
N−1∑

i=0

ei[n]

)2


 [E[ei[n]ej [n]] = 0, i 6= j]

=
N−1∑

i=0

E
[
e2

i [n]
]

=
N−1∑

i=0

σ2
e = Nσ2

e = N
2−2B

12

b) The model, when quantization is done after summations, is drawn in Figure 145.
Now there is only one quantization point, i.e., there is only one noise source, e[n].
The expectation of the total noise is again E[e[n]] = 0. However, variance is smaller.
This is achieved by using more bits in temporary computations.

⇒ σ2
e,tot = σ2

e =
2−2B

12
.

h[1]h[0] h[N − 1]

y[n]

x[n]

z−1z−1 z−1

Q

Figure 145: Filter with only one quantization point in Problem 78.

Remark. Consider a receipt with several products. In (a) you would round each purchase
before summing whereas in (b) you sum all purchases and round them in the end. While
this is done for a set of receipts, expectation and variance can be computed.
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79. Problem: The effect of the additive quantization noise e[n] on the input signal x[n] can
be evaluated by computing the signal-to-quantization noise ratio (SNRA/D) in dB defined
by

SNRA/D = 10 log10

(
σ2

x

σ2
e

)

dB ,

where σ2
x and σ2

e are the input signal and noise variances, respectively.

For a bipolar (b+1)-bit A/D converter, the quantization noise power can be expressed as

σ2
e =

2−2b(RFS)2

48
,

where RFS = Kσx is the full-scale range of the converter.

Derive the formula for SNRA/D in the case of a bipolar (b + 1)-bit A/D converter and
calculate the SNRA/D ratios for 8, 12, and 16 bit converters with K = 6.

[L0770] Solution: Signal-to-quantization noise ratio in the case of a bipolar (b + 1)-bit
A/D converter:

SNRA/D = 10 log10

(
σ2

x

σ2
e

)

= 10 log10

(
48σ2

x

2−2b(RFS)2

)

= −10 log10 2−2b + 10 log10 48 + 10 log10

(
σ2

x

(RFS)2

)

= 6.02b + 16.81− 20 log10

(
RFS

σx

)

dB

Now, RFS = Kσx = 6σx and b is the used bitrate minus one. Therefore, we get:

b = 7 : SNRA/D = 6.02 · 7 + 16.81− 20 log10(6) = 43.39 dB

b = 11 : SNRA/D = 6.02 · 11 + 16.81− 20 log10(6) = 67.47 dB

b = 15 : SNRA/D = 6.02 · 15 + 16.81− 20 log10(6) = 91.56 dB
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80. Problem: The quantization errors occuring in the digital systems may be compensated
by error-shaping filters (Mitra 2Ed Sec. 9.10 / 3Ed Sec. 12.10 ). The error components
are extracted from the system and processed e.g. using simple digital filters. In this way
part of the noise at the output of the system can be moved to a band of no interest.

Consider a lowpass DSP system with a second-order noise reduction system in Figure 146.

a) What is the transfer function of the system if infinite wordlength is used?

b) Derive an expression for the transform of the quantized output, Y (z), in terms of
the input transform, X(z), and the quantization error, E(z), and hence show that
the error feedback network has no adverse effect on the input signal.

c) Deduce the expression for the error feedback function.

d) What values k1 and k2 should have in order to work as an error-shaping system?

z−1z−1

z−1 z−1

z−1

z−1z−1

Q

k2 k1

1

2

1 −0.81

1.75

e[n]

−1

y[n]x[n]

w[n]

Figure 146: Second-order system with second-order noise reduction in Problem 80.

[L0765] Solution: The quantization errors produced in digital systems may be com-
pensated by error-shaping filters. First-order and second-order feedback structures are
introduced in (Mitra 2Ed Sec. 9.10.1, 9.10.2 / 3Ed Sec. 12.10.1, 12.10.2 ). The error
components are extracted from the system and processed e.g. using simple digital filters.
This way the noise at the output of the system can be reduced.

Consider first the block diagram shown in Figure 147(a) and its round-off noise model in
Figure 147(b).

a) If infinite precision is used, the quantization is not needed and e[n] ≡ 0 (see Fig-
ure 147(b) with e[n] = 0). In that case, the system function is

H(z) =
1 + 2z−1 + z−2

1− 1.75z−1 + 0.81z−2

Computing zeros and poles we get a pole-zero diagram from which it can be derived
that the filter is lowpass (Figure 148).

b) From Figure 147(a) it can be obtained the following difference equations:

e[n] = y[n]− w[n]

w[n] = (x[n] + 2x[n− 1] + x[n− 2])

+ (1.75y[n− 1]− 0.81y[n− 2])

+ (k1e[n− 1] + k2e[n− 2])
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z−1z−1

z−1 z−1

z−1

z−1z−1

Q

k2 k1

1

2

1 −0.81

1.75

e[n]

−1

y[n]x[n]

w[n]

(a)

z−1z−1

z−1 z−1

z−1

z−1z−1

k2 k1

1

2

1 −0.81

1.75

x[n]

w[n]

y[n]

e[n]

(b)

Figure 147: (a) Second-order direct form I system with second-order noise reduction, (b) and
its noise model in Problem 80.
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Figure 148: Problem 80: (a) The pole-zero plot and (b) the magnitude response of H(z) =
(1 + 2z−1 + z−2)/(1− 1.75z−1 + 0.81z−2).

After z-transform,

Y (z) =
[ 1 + 2z−1 + z−2

1− 1.75z−1 + 0.81z−2

]

X(z) +
[ 1 + k1z

−1 + k2z
−2

1− 1.75z−1 + 0.81z−2

]

E(z)

= H(z)X(z) + He(z)E(z)

It can be observed that the noise transfer function He(z) modifies only the quanti-
zation error.

c) The noise transfer function is

He(z) =
1 + k1z

−1 + k2z
−2

1− 1.75z−1 + 0.81z−2
= Heu(z) Hes(z)

Notice that without error-shaping feedback structure, i.e., k1 = 0 and k2 = 0, the
noise transfer function is (u = unshaped)

Heu(z) =
1

1− 1.75z−1 + 0.81z−2

So, the error-feedback circuit is actually shaping the error spectrum by (s = shaping)

Hes(z) = 1 + k1z
−1 + k2z

−2
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d) Without error-shaping the quantized output spectrum is

Yu(z) = H(z)X(z) + Heu(z)E(z)

Error-shaping filter Hes(z) should efficiently discard the effects of the poles of Heu(z).
Error-feedback coefficients are chosen to be simple integers or fractions (ki = 0,±0.5,±1,±2),
so that the multiplication can be performed using a binary shift operation and it
will not introduce an additional quantization error. Choosing k1 = −2, k2 = 1,
Hes(z) = 1 − 2z−1 + z−2 is a highpass filter with two zeros at z = 1. Finally, the
compensated output spectrum Ys(z) with random white round-off noise E(z) = 1,
can be written as (see Figure 149)

Ys(z) = H(z)X(z) + Heu(z)Hes(z)E(z)

Ys(z) = H(z)X(z) +
1− 2z−1 + z−2

1− 1.75z−1 + 0.81z−2
· 1

The error shaping structure lowers the noise in the passband by pushing it into the
stopband of the filter (Mitra 2Ed Fig. 9.45 / 3Ed Fig. 12.46 ).
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Figure 149: Problem 80: First row, Heu(z), error without feedback. Second row, Hes(z), com-
pensation by FIR-2 error feedback. Third row, He(z), compensation by FIR-2 error feedback.
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81. Problem: Consider a cosine sequence x[n] = cos(2π(f/fs)n) where f = 10 Hz and
fs = 100 Hz as depicted in the top left in Figure 150. While it is a pure cosine, its
spectrum is a peak at the frequence f = 10 Hz (top middle) or at ω = 2πf/fs = 0.2π
(top right).

a) Sketch the output sequence xu[n] with circles using up-sampler with up-sampling
factor L = 2, and draw its spectra into second row. Original sequence values of x[n]
are marked with crosses. The spectrum in middle column is 0..200 Hz and in right
0..2π, i.e., 0..fs.

xu[n] =

{

x[n/L], n = 0,±L,±2L, . . .

0, otherwise
Xu(e

jω) = X(ejωL)

b) Sketch the output sequence xd[n] with circles using down-sampler with down-sampling
factor M = 2, and draw its spectra into bottom row.

xd[n] = x[nM ] Xd(e
jω) =

1

M

M−1∑

k=0

X(ej(ω−2πk)/M )

0 0.05 0.1 0.15 0.2
−1

0

1
x[n] = cos(2 π 10/100 n)

x[
n]

0 0.05 0.1 0.15 0.2
−1

0

1

x u[n
] =

 x
[n

/2
]

0 0.05 0.1 0.15 0.2
−1

0

1

x d[n
] =

 x
[2

n]

0 50 100 150 200
0

0.2

0.4

0.6

|X(ej ω)|, Hz

0 1 2
0

0.2

0.4

0.6

|X(ej ω)|, ω x π
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0
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Figure 150: Empty figures for Problem 81. The up-sampling factor L = 2, and the down-
sampling factor M = 2. Left column: sequence x[n] with circles, fill in the sequences xu[n]
and xd[n]. X-axis: time (0 . . . 0.2 s). Middle column: Spectrum X(ejf) (10 Hz component,
100 Hz sampling frequency), fill in the spectra Xu(e

jf) and Xd(e
jf). X-axis: frequency

(0 . . . 200 Hz). Right column: Spectrum X(ejω) (2π · (10/100) = 0.2π), fill in the spectra
Xu(e

jω) and Xd(e
jω). X-axis: angular frequency (0 . . . 2π).

[L0910] Solution: Sometimes it is necessary or useful to change the sampling frequency
fs. Consider music formats DAT (48 kHz) and CD (44.1 kHz).
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Figure 151: Problem 81(a). The original sequence of a cosine of f = 10 Hz and its spectrum.
The angular frequency ω = 2π(f/fs) = 2π(10/100) = 0.2π.

a) Up-sampling with factor L = 2. In the time domain there will be L−1 zeros between
the original samples, see Figure 152(a).

xu[n] =

{

x[n/L], n = 0,±L,±2L, . . .

0, otherwise

=

{

x[n/2], n = 0,±2,±4, . . .

0, otherwise

In the frequency domain the sampling frequency is multiplied by L, hence, the new
sampling frequency is 200 Hz. L− 1 images from the original spectrum are emerged
equivalently between 0 and fs,new.

Xu(e
jω) = X(ejωL) = X(ej2ω)

Each cosine is a peak pair (±f) in the spectrum. The original peaks are at f = 10
and f = 200 − 10 = 190 Hz, and after up-sampling new images at f = 90 and
f = 110 Hz, as shown in Figure 152(b). The same with angular frequencies is shown
in Figure 152(c).
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0.6 Image f
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s
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Figure 152: Problem 81(a). Up-sampled signal xu[n], factor L = 2. The sampling frequency is
increased to 200 Hz, and there is an image spectrum.

Notice that if you ideally convert the sequence xu[n] into continuous-time xu(t) you
will find also a high frequency component, an image component. Normally images
are filtered out using a lowpass filter (see anti-imaging and anti-aliasing filters). See
Figure 153.

b) Down-sampling with factor M = 2 means taking only every second sample.

xd[n] = x[nM ] = x[2n]
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−1
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[n] 

x uL
P
[n

] f
s
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Figure 153: A closer look at up-sampling. Top, original sequence. Middle L = 2, L − 1 = 1
zeros added between the original samples. Bottom, using (ideal) LP-filter to remove the image,
i.e., 90 Hz component. The continuous curve is plotted only for better visual view. See the
text in Problem 81(a).

A possible effect is losing information. However, in this case, this does not occur
because f = 10 Hz < fs,new/2 = 25 Hz. See Figure 154(a).

In the frequency domain the sampling frequency is decreased to 50 Hz. See Fig-
ures 154(b)-(c).
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Figure 154: Problem 81(b). Down-sampled signal xd[n], factor M = 2. The sampling frequency
is decreased to 50 Hz.
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82. Problem: Express the output y[n] of the system shown in Figure 155 as a function of
the input x[n].

↑ 2

↑ 2

↓ 2

↓ 2
x[n]

w[n]

vu[n]v[n]

z−1 z−1

y[n]wu[n]

Figure 155: Multirate system of Problem 82.

[L0909] Solution: Consider an input signal x[n] with the corresponding z-transform
X(z). After factor-of-L up-sampling, the z-transform of the signal xu[n] is

Xu(z) = X(zL)

and after factor-of-M down-sampling, the z-transform of the signal xd[n] is

Xd(z) =
1

M

M−1∑

k=0

X(z1/MW−k
M )

where WM = e−j2π/M . See (Mitra 2Ed Sec. 10.1.2 / 3Ed Sec. 13.1.2 ) for the derivation
of these equations.

Using these equations, let us derive the z-transforms of the intermediate signals v[n], vu[n],
w[n], and wu[n] and finally the z-transform of the output y[n]. Let us denote the delayed
version of the input as X ′(z) = z−1X(z). Furthermore, note that W−1

2 = ej2π/2 = −1.

V (z) =
1

2

1∑

k=0

X(z1/2W−k
2 ) =

1

2
X(z1/2) +

1

2
X(−z1/2)

W (z) =
1

2

1∑

k=0

X ′(z1/2W−k
2 ) =

1

2
z−1/2X(z1/2)− 1

2
z−1/2X(−z1/2)

Vu(z) = V (z2) =
1

2
X(z) +

1

2
X(−z)

Wu(z) = W (z2) =
1

2
z−1X(z)− 1

2
z−1X(−z)

Y (z) = z−1Vu(z) + Wu(z) = z−1X(z)

or y[n] = x[n− 1] in time-domain (derive the same in time-domain!).
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83. Problem: Show that the factor-of-L up-sampler xu[n] and the factor-of-M down-sampler
xd[n] defined as in Problem 81 are linear systems.

[L0911] Solution: First, consider the up-sampler. Let x1[n] and x2[n] be two arbitrary
inputs with y1[n] and y2[n] as the corresponding outputs. Now,

y1[n] =

{
x1[n/L] : n = 0,±L,±2L, . . .

0 : otherwise

y2[n] =

{
x2[n/L] : n = 0,±L,±2L, . . .

0 : otherwise

Let us now apply the input x3[n] = αx1[n] + βx2[n] with the corresponding output y3[n]
as

y3[n] =

{
αx1[n/L] + βx2[n/L] : n = 0,±L,±2L, . . .

0 : otherwise

=

{
αx1[n/L]

0
+

{
βx2[n/L] : n = 0,±L,±2L, . . .

0 : otherwise

= αy1[n] + βy2[n]

Thus, the up-sampler is a linear system.

Now, consider the down-sampler with the inputs x1[n] and x2[n] and the corresponding
outputs y1[n] and y2[n]. Now, y1[n] = x1[nM ] and y2[n] = x2[nM ]. By applying the input
x3[n] = αx1[n] + βx2[n] we get the corresponding output y3[n] = x3[nM ] = αx1[nM ] +
βx2[nM ]. Hence, the down-sampler is also a linear system.

It should also be noted, that both the up-sampler and the down-sampler are time-varying,
i.e. not LTI systems.
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84. Problem: Consider the multirate system shown in Figure 156 where H0(z), H1(z), and
H2(z) are ideal lowpass, bandpass, and highpass filters, respectively, with frequency re-
sponses shown in Figure 157(a)-(c). Sketch the Fourier transforms of the outputs y0[n],
y1[n], and y2[n] if the Fourier transform of the input is as shown in Figure 157(d).

↓ 3 ↑ 3
x[n]

H0(z)

H1(z)

H2(z)

y0[n]

y1[n]

y2[n]

Figure 156: Multirate system of Problem 84.

ω

H0(ejω)

0 π/3 2π/3 π

1

0 ω

H1(ejω)

0 π/3 2π/3 π

1

0

ω

H2(e
jω)

0 π/3 2π/3 π

1

0 ω

X(ejω)

0 π/3 2π/3 π

1

0

Figure 157: (a)-(c) Ideal filters H0(z), H1(z), H2(z), (d) Fourier transform of the input of
Problem 84.

[L0912] Solution: First, let us denote the down-sampled signal as xd[n] and the again
up-sampled signal as xu[n], shown in Figure 158.

↓ 3 ↑ 3
x[n]

H0(z)

H1(z)

H2(z)

y0[n]

y1[n]

y2[n]

xd[n] xu[n]

Figure 158: The multirate system in Problem 84.

The corresponding Fourier transforms (spectra) Xd(z) and Xu(z) are as follows (notice
the reduced amplitude) in Figure 159.

Now, the Fourier transforms of the outputs Y0(z), Y1(z), and Y2(z), are obtained by
(ideally) filtering Xu(z). The output spectra are in Figure 160.

T-61.3010 DSP 2009 163/170 PROBLEMS – Part N 81-86

ω

X(ejω )

0 π/3 2π/3 π

1

0

Xd(ejω )

0 π

1

3

0
2π

ω

Xu(ejω )

0 π

1

3

0
2π

ω

Figure 159: Original, upsampled and downsampled spectrum in Problem 84.
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Figure 160: Bandpass filters in top row, and corresponding Output spectra in bottom row in
Problem 84.

85. Problem: Consider a FIR filter, whose specifications are (i) lowpass, (ii) passband ends
at ωp = 0.15π, (iii) stopband starts from ωs = 0.2π, (iv) passband maximum attenuation
is 1 dB, (v) stopband minimum attenuation is 50 dB. The filter is to be implemented
using truncated Fourier series method (window method) with Hamming window.

a) Sketch the specifications on paper.

b) The filter order N can be estimated using (Mitra 2Ed Table 7.2 / 3Ed Table 10.2 ):
the transition bandwith is ∆ω = |ωp−ωs|, and for Hamming window ∆ω = 3.32π/M ,
where the window w[n] is in range −M ≤ n ≤ +M . What is the minimum order N
which fulfills the specifications?

c) The cut-off frequency of the filter in the window method is defined to be ωc =
0.5 · (ωp + ωs). Derive an expression for hFIR[n] when using (a) and (b). What is
the value of hFIR[n] at n = 0?

d) Consider now another way to implement a FIR filter with the same specifications. In
the interpolated FIR filter (IFIR) (Mitra 2Ed Sec. 10.3, p. 680 / 3Ed Sec. 10.6.2,
p. 568 ) the filter is a cascade of two FIR filters HIF IR(z) = G(zL) · F (z). Using
the factor L = 4 compute the order of HIF IR(z) = G(zL) · F (z) and compare to the
original filter HFIR(z).

[L0913] Solution: Specifications for a FIR filter were the following: (i) lowpass, (ii) pass-
band ends at ωp = 0.15π, (iii) stopband starts from ωs = 0.2π, (iv) passband maximum
attenuation is 1 dB, (v) stopband minimum attenuation is 50 dB. Implementation using
truncated Fourier series method (window method) with Hamming window.

a) Specifications are drawn in Figure 161(a).
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b) Hamming window is defined as

w[n] = 0.54 + 0.46 cos(
2πn

2M
) −M ≤ n ≤ +M

The window length is 2M + 1 and the window/filter order N = 2M . When having
the specifications ωp = 0.15π and ωs = 0.2π we get ∆ω = 0.05π. The connection of
M and transition band ∆ω with Hamming window is

M = ⌈3.32π

∆ω
⌉

where ⌈.⌉ is rounding up to the next integer. Minimum order with Hamming window
is

N = 2M = 2 · ⌈3.32π

∆ω
⌉ = 2 · ⌈3.32

0.05
⌉ = 134

c) The cut-off frequency of the filter in the window method is defined to be ωc =
0.5 · (ωp + ωs). The filter of order N = 2M is computed by

hFIR[n] = hideal[n] · w[n], −M ≤ n ≤M

where hFIR[n] is the filter constructed from the ideal filter with cut-off at ωc = 0.175π
multiplied by a Hamming window with M = 67

hideal[n] =
sin(ωcn)

πn
=

ωc

π
sinc(

ωcn

π
) = 0.175 sinc(0.175n) −∞ < n <∞

w[n] = 0.54 + 0.46 cos(
2πn

134
) − 67 ≤ n ≤ 67

hFIR[n] = 0.175 sinc(0.175n) ·
(
0.54 + 0.46 cos(

2πn

134
)
)

− 67 ≤ n ≤ 67

In the origo w[0] = 1 and hFIR[0] = hideal[0] = 0.175. The magnitude response of
the filter is in Figure 161(b) with thick line HFIR(z). It can be seen that the filter
fulfills given specifications.
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Figure 161: Problem 85: (a) Specifications for the filter. The scale in x-axis [0 . . . 1] corre-
sponds ω = [0 . . . π]. (b) Magnitude responses of |HFIR(ejω)| (thick) and |HIF IR(ejω)| (thin).
Interpolated FIR filter is HIF IR(z) = G(z4) · F (z).

d) Consider now another way to implement a FIR filter with the same specifications. In
the interpolated FIR filter (IFIR) (Mitra 2Ed Sec. 10.3, p. 680 / 3Ed Sec. 10.6.2,
p. 568 ) the filter is a cascade of two FIR filters HIF IR(z) = G(zL) · F (z). G(zL) is
derived from G(z) by replacing all delays by L-multiple delays, i.e., all z are replaced
by zL (upsampling).
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Using the factor L = 4 the following filters will be implemented, see also Fig-
ure 162(a): G(z) with cut-offs ωp = 4 · 0.15π = 0.6π and ωs = 4 · 0.2π = 0.8π.
After upsampling, there will be L− 1 zeros between each g[n], and L− 1 spectrum
“images”. The normalized cut-off frequencies for G(z4) are ωp = 0.15π and ωs = 0.2π.
The target of F (z) is to filter out all “image”components. So, the stopband can start
from that frequency where the first “image” appears: ωp = 0.15π and ωs = 0.3π.

Both filters G(z) and F (z) are implemented in the same way with Hamming window.
The order of G(z) is 34 with ∆ω = |0.8π − 0.6π| and ωc = 0.7π. After that G(z)
is modified to G(z4) by adding zeros in g[n]. The order of F (z) is 46 with ∆ω =
|0.3π − 0.15π| and ωc = 0.225π. All corresponding magnitude responses are plotted
in Figure 162(b). The magnitude response of HIF IR(z) is drawn in Figure 161(b)
with thin line HIF IR(z). Specifications are met and the overall behavior is very
similar to that of HFIR(z).
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Figure 162: Problem 85: (a) diagram of filters G(z) (0 . . . π), G(z) (0 . . . 8π), G(zL) (0 . . . 2π),
and F (z) (0 . . . 2π) with cut-off frequencies and upsampling factor L = 4. (b) Magnitude
responses of G(z), G(zL), F (z), and HIF IR(z) = G(z4) ·F (z) using Matlab and fir1. In x-axis
normalized frequencies (1 corresponds π) are used in all figures.
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T-61.3010 Digital Signal Processing and Filtering
Formulas for spring 2009. Corrections and comments to t613010@cis.hut.fi, thank you! This
list is available also as a two-page two-column version from the course web page.

Formulas

Basic math stuff
Even and odd functions:
Even{x(t)} = 0.5 · [x(t) + x(−t)]
Odd{x(t)} = 0.5 · [x(t)− x(−t)]
Roots of second-order polynomial:
ax2 + bx + c = 0, x = (−b±

√
b2 − 4ac)/(2a)

Logarithms, decibels:
log
(
(A · B/C)D

)
= D ·

(
log A + log B − log C

)

loga b = logc b/ logc a
decibels : 10 log10(B/B0), 20 log10(A/A0)
10 log10(0.5) ≈ −3.01 dB, 20 log10(0.5) ≈ −6.02 dB
20 log10(0.1) = −20 dB, 20 log10(0.01) = −40 dB
Complex numbers, radii, angles, unit circle:
i ≡ j =

√
−1 = −1/j

z = x + jy = r ejθ

r =
√

x2 + y2

θ = arctan(y/x) + nπ, (n = 0, if x > 0, n = 1, if x < 0)
x = r cos(θ), y = r sin(θ)
ejθ = cos(θ) + j sin(θ) (Euler’s formula)
cos(θ) = (1/2) · (ejθ + e−jθ), sin(θ) = (1/2j) · (ejθ − e−jθ)
z1 · z2 = r1r2e

j(θ1+θ2), z1/z2 = (r1/r2)e
j(θ1−θ2)

|A · B| = |A| · |B|, ∠(A · B) = ∠A + ∠B
zn = rnejnθ = rn(cos θ + j sin θ)n = rn(cos nθ + j sin nθ)
N
√

z =
N
√

r ejθ = | N
√

r| ej(θ+2πk)/N , k = 0, 1, 2, . . . , N − 1
Trigonometric functions:
1◦ = π/180 radians ≈ 0.01745 rad, 1 rad = 180◦/π ≈ 57.30◦

sinc(θ) = sin(πθ)/(πθ)
sin(θ)/θ→ 1, when θ → 0; sinc(θ)→ 1, when θ → 0
cos2(θ) + sin2(θ) = 1
sin(θ) = θ − θ3

3!
+ θ5

5!
− . . . + (−1)n θ2n+1

(2n+1)!
+ . . . (Taylor)

cos(θ) = 1− θ2

2!
+ θ4

4!
− . . . + (−1)n θ2n

(2n)!
+ . . . (Taylor)

θ 0 π/6 π/4 π/3

sin(θ) 0 0.5
√

2/2
√

3/2

cos(θ) 1
√

3/2
√

2/2 0.5
θ π/2 3π/4 π −π/2

sin(θ) 1
√

2/2 0 −1

cos(θ) 0 −
√

2/2 −1 0

π ≈ 3.1416,
√

3/2 ≈ 0.8660,
√

2/2 ≈ 0.7071
Geometric series:
∑+∞

n=0 an = 1
1− a, |a| < 1

∑N
n=0 an = 1− aN+1

1− a , |a| < 1

Continuous-time unit step and unit impulse fun.:
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µ(t) =

{

1, t > 0

0, t < 0

δ∆(t) = d
dt

µ∆(t), δ(t) = lim∆→0 δ∆(t) (Dirac’s delta)
∫∞
−∞ δ(t) dt = 1
∫∞
−∞ δ(t− t0)x(t) dt = x(t0)

In DSP notation 2πδ(t) is computed 2π
∫

δ(t) · 1 dt = 2π, when t = 0, and = 0 elsewhere.

Discrete-time unit impulse and unit step functions:

δ[n] =

{

1, n = 0

0, n 6= 0
µ[n] =

{

1, n ≥ 0

0, n < 0

Periodic signals
∃T ∈ R : x(t) = x(t + T ), ∀t ∈ R
∃N ∈ Z : x[n] = x[n + N ], ∀n ∈ Z
Fundamental period T0, N0 is the smallest T > 0, N > 0.

Convolution
Convolution is commutative, associative and distributive.
y(t) = h(t) ⊛ x(t) =

∫∞
−∞ h(τ)x(t − τ) dτ

y[n] = h[n] ⊛ x[n] =
∑+∞

k=−∞ h[k]x[n− k]

yC [n] = h[n] N© x[n] =
∑N−1

k=0 h[k]x[< n− k >N ]

Correlation:
rxy[l] =

∑+∞
n=−∞ x[n]y[n− l] = x[l] ⊛ y[−l]

rxx[l] =
∑+∞

n=−∞ x[n]x[n − l]

Mean and variance of random signal:
mX = E[X] =

∫
xpX(x)dx

σ2
X =

∫
(x−mX)2pX(x)dx = E[X2]−m2

X

Frequencies, angular frequencies, periods:
Here fs (also fT later) is the sampling frequency.
Frequency f , [f ] = Hz = 1/s.
Angular frequency Ω = 2πf = 2π/T , [Ω] = rad/s (analog).
Normalized angular frequency ω = 2πΩ/Ωs = 2πf/fs, [ω] = rad/sample (digital).
Normalized frequency in Matlab fMATLAB = 2f/fs, [fMATLAB] = 1/sample.

Sampling of xa(t) by sampling frequency fT

xp[n] = xa(nT ) = xa(n/fT )
Xp(jΩ) = 1

T

∑∞
k=−∞ Xa(j(Ω− kΩT ))

Integral transforms. Properties
Here all integral transforms share some basic properties. Examples given with CTFT, x[n] ↔
X(ejω), x1[n] ↔ X1(e

jω), and x2[n] ↔ X2(e
jω) are time-domain signals with corresponding

transform-domain spectra. a and b are constants.
Linearity. All transforms are linear.
ax1[n] + bx2[n]↔ aX1(e

jω) + bX2(e
jω)

Time-shifting. There is a kernel term in transform, e.g.,
x[n− k]↔ e−jkωX(ejω)
Frequency-shifting. There is a kernel term in signal e.g.,
ejωknx[n]↔ X(ej(ω−ωk))
Conjugate symmetry x∗[n] ↔ X∗(e−jω). If x[n] ∈ R, then X(ejω) = X∗(e−jω), |X(ejω)| =
|X(e−jω)|, ∠X(ejω) = −∠X(e−jω). If x[n] ∈ R and even, then X(ejω) ∈ R and even. If
x[n] ∈ R and odd, then X(ejω) purely ∈ C and odd.
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Time reversal. Transform variable is reversed, e.g.,
x[−n]↔ X(e−jω)
Differentiation. In time and frequency domain, e.g.,
x[n]− x[n− 1]↔ (1− e−jω)X(ejω), nx[n]↔ j d

dω
X(ejω)

Duality. Convolution property: convolution in time domain corresponds multiplication in
transform domain x1[n] ⊛ x2[n] ↔ X1(e

jω) · X2(e
jω) and multipication property, vice versa,

x1[n] · x2[n]↔ 1
2π

∫

2π
X1(e

jθ)X2(e
j(ω−θ)) dθ

Parseval’s relation. Energy in signal and spectral components:
∑
|x[n]|2 = 1

2π

∫

2π
|X(ejω)|2 dω

Fourier series of continuous-time periodic signals:
x(t) =

∑∞
k=−∞ ak ejkΩ0t (synthesis)

ak = 1
T

∫

T
x(t) e−jkΩ0t dt (analysis)

x(t− t0)↔ ake
jkΩ0t0

ejMΩ0tx(t)↔ ak−M∫

T
xa(τ)xb(t− τ) dτ ↔ Takbk

xa(t)xb(t)↔
∑

l albk−l
d
dt

x(t)↔ jkΩ0ak

Continuous-time Fourier-transform (CTFT):
x(t) = 1

2π

∫∞
−∞ X(jΩ) ejΩt dΩ (synthesis)

X(jΩ) =
∫∞
−∞ x(t) e−jΩt dt (analysis)

x(t− tk)↔ ejΩtkX(jΩ)
ejΩktx(t)↔ X(j(Ω− Ωk))
xa(t) ⊛ xb(t)↔ Xa(jΩ)Xb(jΩ)
xa(t)xb(t)↔ 1

2π
Xa(jΩ) ⊛ Xb(jΩ)

d
dt

x(t)↔ jΩX(jΩ)
tx(t)↔ j d

dΩ
X(jΩ)

ejΩ0t ↔ 2πδ(Ω− Ω0)
cos(Ω0t)↔ π[δ(Ω− Ω0) + δ(Ω + Ω0)]
sin(Ω0t)↔ jπ[δ(Ω + Ω0)− δ(Ω− Ω0)]
x(t) = 1↔ 2πδ(Ω)

x(t) =

{

1, |t| < T1

0, |t| > T1

↔ 2 sin(ΩT1)
Ω

sin(Wt)
πt
↔ X(jΩ) =

{

1, |Ω| < W

0, |Ω| > W

δ(t)↔ 1
δ(t− tk)↔ ejΩtk

e−atµ(t)↔ 1
a+jΩ

, where Real{a} > 0

Discrete-time Fourier-transform (DTFT):
x[n] = 1

2π

∫

2π
X(ejω) ejωn dω (synthesis)

X(ejω) =
∑∞

n=−∞ x[n] e−jωn, periodic with 2π (analysis)
x[n− k]↔ e−jkωX(ejω)
ejωknx[n]↔ X(ej(ω−ωk))
x1[n] ⊛ x2[n]↔ X1(e

jω) ·X2(e
jω)

x1[n] · x2[n]↔ 1
2π

∫

2π
X1(e

jθ)X2(e
j(ω−θ)) dθ

nx[n]↔ j d
dω

X(ejω)
ejω0n ↔ 2π

∑

l δ(ω − ω0 − 2πl)
cos(ω0n)↔ π

∑

l[δ(ω − ω0 − 2πl) + δ(ω + ω0 − 2πl)]
sin(ω0n)↔ jπ

∑

l[δ(ω + ω0 − 2πl)− δ(ω − ω0 − 2πl)]
x[n] = 1↔ 2π

∑

l δ(ω − 2πl)
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x[n] =

{

1, |n| ≤ N1

0, |n| > N1

↔ sin(ω(N1+0.5))
sin(ω/2)

sin(Wn)
πn

= W
π

sinc(Wn
π

)↔ X(ejω) =

{

1, 0 ≤ |ω| ≤W

0, W < |ω| ≤ π

δ[n]↔ 1
δ[n− k]↔ e−jkω

anµ[n]↔ 1
1−ae−jω , |a| < 1

N-point Discrete Fourier-transform (DFT):
Connection to DTFT: X[k] = X(ejω)|ω=2πk/N

WN = e−j2π/N

x[n] = 1
N

∑N−1
k=0 X[k]W−kn

N , 0 ≤ n ≤ N − 1 (synthesis)

X[k] =
∑N−1

n=0 x[n]W kn
N , 0 ≤ k ≤ N − 1 (analysis)

x[< n− n0 >N ]↔W−kn0
N X[k]

W−nk0
N x[n]↔ X[< k − k0 >N ]

yC [n] = h[n] N© x[n]↔ H [k] ·X[k] = Y [k]

Laplace transform:
Convergence with a certain ROC (region of convergence). Connection to continuous-time
Fourier-transform: s = jΩ
x(t) = 1

2πj

∫ σ+j∞
σ−j∞ X(s)est ds (synthesis)

X(s) =
∫∞
−∞ x(t) e−st dt (analysis)

z-transform:
Convergence with a certain ROC (region of convergence). Connection to discrete-time Fourier-
transform: z = ejω

x[n] = 1
2πj

∮

C
X(z)zn−1dz, C in ROC of X(z) (synthesis)

X(z) =
∑∞

n=−∞ x[n]z−n (analysis)
x[n− k]↔ z−kX(z)
x1[n] ⊛ x2[n]↔ X1(z) ·X2(z)
δ[n]↔ 1, ROC all z
δ[n− k]↔ z−k, all z, except 0 (k > 0) or ∞ (k < 0)
µ[n]↔ 1

1−z−1 , |z| > 1

−µ[−n− 1]↔ 1
1−z−1 , |z| < 1

anµ[n]↔ 1
1−az−1 , |z| > |a|

nanµ[n]↔ az−1

(1−az−1)2
, |z| > |a|

(n + 1)anµ[n]↔ 1
(1−az−1)2

, |z| > |a|
rn cos(ω0n)µ[n]↔ 1−r cos(ω0)z−1

1−2r cos(ω0)z−1+r2z−2 , |z| > |r|
rn sin(ω0n)µ[n]↔ r sin(ω0)z−1

1−2r cos(ω0)z−1+r2z−2 , |z| > |r|
LTI filter analysis
Stability

∑

n |h[n]| <∞; unit cirle belongs to ROC
Causality h[n] = 0, n < 0; ∞ belongs to ROC
Unit step response s[n] =

∑n
k=−∞ h[k]

Causal transfer function of order max{M, N}:
H(z) = B(z)/A(z) = K ·

PM
m=0 bmz−m

PN
n=0 anz−n

= G ·
QM

m=1(1−dmz−1)
QN

n=1(1−pnz−1)

Zeros dm: B(z) = 0; Poles pn: A(z) = 0
Frequency, magnitude/amplitude, phase response, z ← ejω

H(ejω) = |H(ejω)| ej∠H(ejω)

H(ejω) = H(z)|z=ejω
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H [k] = H(ejω)|ω=2πk/N

Group delay τ(ω) = − d
dω

∠H(ejω)
Four types of linear-phase FIR filters, h[n] = h[N − 1 − n] (even/odd symmetric), or h[n] =
−h[N − 1− n] (e/o antis.). Zeros symmetric w.r.t. unit circle: r e±jθ and (1/r) e∓jθ.
Important transform pairs and properties:
a δ[n− k]↔ a e−jkω ↔ a z−k

anµ[n]↔ 1/[1− a e−jω]↔ 1/[1− a z−1]
h[n] =

∑

i

(
ki · an

i µ[n]
)
↔ H(ejω) = . . .

. . .
∑

i

(
ki/[1− ai e

−jω]
)
↔ H(z) =

∑

i

(
ki/[1− ai z

−1]
)

a x[n− k]↔ a e−jkωX(ejω)↔ a z−kX(z)
y[n] = h[n] ⊛ x[n]↔ Y (z) = H(z) ·X(z)
rectangular ↔ sinc, sinc ↔ rectangular

LTI filter design (synthesis)
Bilinear transform H(z) = H(s)|s and prewarping
s = k · (1− z−1)/(1 + z−1), k = 1 or k = 2/T = 2fT

Ωprewarp,c = k · tan(ωc/2), k = 1 or k = 2/T = 2fT

Spectral transformations, ω̂c desired cut-off
LP-LP z−1 = (ẑ−1 − α)/(1− αẑ−1), where
α = sin(0.5(ωc − ω̂c))/ sin(0.5(ωc + ω̂c))
LP-HP z−1 = −(ẑ−1 + α)/(1 + αẑ−1), where
α = − cos(0.5(ωc + ω̂c))/ cos(0.5(ωc − ω̂c))
Windowed Fourier series method

H(ejω) =

{

1, |ω| < ωc

0, |ω| ≥ ωc

↔ h[n] = sin(ωcn)
πn

= ωc

π
sinc(ωcn

π
)

hFIR[n] = hideal[n] · w[n]
HFIR(ejω) = 1

2π

∫ π

−π
Hideal(e

jθ)W (ej(ω−θ)) dθ
Fixed window functions, order N = 2M , −M ≤ n ≤M :
Rectangular w[n] = 1
Hamming w[n] = 0.54 + 0.46 cos((2πn)/(2M))
Hann w[n] = 0.5 ·

(
1 + cos((2πn)/(2M))

)

Blackman w[n] = 0.42 + 0.5 cos(2πn
2M

) + 0.08 cos(4πn
2M

)
Bartlett w[n] = 1− (|n|/M)

Implementation
Radix-2 DIT FFT butterfly equations{

Ψr+1[α] = Ψr[α] + W l
NΨr[β]

Ψr+1[β] = Ψr[α]−W l
NΨr[β]

Multirate systems
Upsampling (interpolation) with factor L, ↑ L

xu[n] =

{

x[n/L], n = 0,±L,±2L, . . .

xu[n] = 0, otherwise

Xu(z) = X(zL), Xu(e
jω) = X(ejωL)

Downsampling (decimation) with factor M , ↓M

xd[n] = x[nM ]
Xd(z) = (1/M)

∑M−1
k=0 X(z1/MW−k

M ),

Xd(e
jω) = (1/M)

∑M−1
k=0 X(ej(ω−2πk)/M)

Index

A/D (A/D), 23
aikataso (time-domain), 31
alipÃd’Ãd’stÃűsuodin (lowpass filter), 24
alipäästösuodin (lowpass filter), 38
all-pass filter (kokopäästösuodin), 113
all-pole filter (kokonapasuodin), 113
amplify (vahvistaa), 24
amplitude response (amplitudivaste), 24
amplitudivaste (amplitude response), 24
analog signal (analoginen signaali), 23
analoginen signaali (analog signal), 23
angle, 8
angular frequency (kulmataajuus), 12, 23
anti-aliasing filter (antialisointisuodin), 86
antialisointisuodin (anti-aliasing filter), 86
askelvaste (step response), 51
asteluku (order), 16
atan, 8
atan2, 8
attenuate (vaimentaa), 24
autocorrelation (autokorrelaatio), 64
autokorrelaatio (autocorrelation), 64

binaariluvut (binary numbers), 15
binary numbers (binaariluvut), 15
border effect (rajavärähtely), 37, 39

Cartesian coordinate system (suorakulmainen
koordinaatisto), 6

causality condition (kausaalisuusehto), 48
circular buffer (ympyräpuskuri), 15
circular shift (ympyräsiirto), 15, 91
comb filter (kampasuodin), 25
complex conjugate (kompleksikonjugaatti), 8
complex conjugate (liittoluku), 6
complex number (kompleksiluku), 8
complex-valued function (kompleksiarvoinen funk-

tio), 9
continuous-time Fourier transform (CTFT) (jatkuva-

aikainen Fourier-muunnos (CTFT)), 28,
76

continuous-time Fourier transform (CTFT) (jatkuva-
aikainen Fourier-muunnos), 65, 66

continuous-time Fourier transform (jatkuva-aikainen
Fourier-muunnos), 21

continuous-time signal (jatkuva-aikainen signaali),
34

conv, 16
cross-correlation (ristikorrelaatio), 64

cut-off frequency (rajataajuus), 24

decibel scale (desibeliskaala), 14
deconvolution (dekonvoluutio), 59
dekonvoluutio (deconvolution), 59
desibeliskaala (decibel scale), 14
digitaalinen signaali (digital signal), 23
digital signal (digitaalinen signaali), 23
Dirac’s delta (Dirac’s delta), 21, 69
direct form (suora muoto), 120
discrete Fourier transform (DFT) (diskreetti

Fourier-muunnos (DFT)), 28, 66
discrete Fourier transform (diskreetti Fourier-

muunnos), 22
discrete-time Fourier transform (diskreettiaikainen

Fourier-muunnos), 20, 21
discrete-time Fourier transform (DTFT) (diskreet-

tiaikainen Fourier-muunnos (DTFT)),
28, 68, 71

discrete-time signal (diskreettiaikainen signaali),
23, 32, 34

diskreetti Fourier-muunnos (DFT) (discrete Fourier
transform (DFT)), 28, 66

diskreetti Fourier-muunnos (discrete Fourier trans-
form), 22

diskreettiaikainen Fourier-muunnos (discrete-
time Fourier transform), 20, 21

diskreettiaikainen Fourier-muunnos (DTFT) (discrete-
time Fourier transform (DTFT)), 28,
68, 71

diskreettiaikainen signaali (discrete-time signal),
23, 32, 34

eksponenttifunktio (exponential function), 6
Euler’s formula (Eulerin kaava), 6, 7
Eulerin kaava (Euler’s formula), 6, 7
even function (parillinen funktio), 7
exponential function (eksponenttifunktio), 6

fft, 26
filter (suodin, suodatin), 24
filter order (suotimen asteluku), 96
finite impulse response, FIR (äärellisen pitkä

impulssivaste, FIR), 38
flow diagram (virtauskaavio), 38, 39
frequency (taajuus), 23
frequency response (taajuusvaste), 31, 38, 39
frequency-domain (taajuustaso), 31
freqz, 14, 25
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fundamental period (perusjakso), 34

gcd, 36
geometric series (geometrinen sarja), 20
geometrinen sarja (geometric series), 20
Gibbs phenomenon (Gibbsin ilmiö), 133
Gibbsin ilmiö (Gibbs phenomenon), 133
greatest common divisor (suurin yhteinen jakaja),

36

heksadesimaali (hexadecimals), 15
hexadecimals (heksadesimaali), 15
Hospitalin sääntö (l’Hospital’s rule), 70

ideaalisuodin (ideal filter), 24
ideal filter (ideaalisuodin), 24
IEEE 754 (IEEE 754), 15
imaginaariyksikkö (imaginary unit), 6
imaginary unit (imaginaariyksikkö), 6
impulse response (impulssivaste), 31, 38, 39
impulssivaste (impulse response), 31, 38, 39
in-place computation (FFT) (tehokas laskenta

(FFT)), 144
infinite impulse response, IIR (äärettömän pitkä

impulssivaste, IIR), 39

jakojäännös (remainder), 15
jatkuva-aikainen Fourier-muunnos (continuous-

time Fourier transform (CTFT)), 65,
66

jatkuva-aikainen Fourier-muunnos (continuous-
time Fourier transform), 21

jatkuva-aikainen Fourier-muunnos (CTFT) (continuous-
time Fourier transform (CTFT)), 28,
76

jatkuva-aikainen signaali (continuous-time sig-
nal), 34

jäännös (residue), 15

kahden pisteen keskiarvoistava suodin (two-point
moving average), 37

kaksipuolinen spektri (two-sided spectrum), 26
kampasuodin (comb filter), 25
kausaalisuusehto (causality condition), 48
kiisseli.wav, 33
kohina (noise), 38
kokonapasuodin (all-pole filter), 113
kokopäästösuodin (all-pass filter), 113
kompleksiarvoinen funktio (complex-valued func-

tion), 9
kompleksikonjugaatti (complex conjugate), 8
kompleksiluku (complex number), 8
kulmataajuus (angular frequency), 12, 23

kvasijaksollinen (quasi-periodic), 36

l’Hospital’s rule (Hospitalin sääntö), 70
lcm, 36
least common multiple (pienin yhteinen jaet-

tava), 36
liittoluku (complex conjugate), 6
line spectrum (viivaspektri), 26
lineaarinen konvoluutio (linear convolution), 52,

54
lineaarivaiheinen suodin (linear-phase filter), 107
linear convolution (lineaarinen konvoluutio), 52,

54
linear-phase filter (lineaarivaiheinen suodin), 107
logarithm (logaritmi), 14
logaritmi (logarithm), 14
lovisuodin (notch filter), 25
lowpass filter (alipÃd’Ãd’stÃűsuodin), 24
lowpass filter (alipäästösuodin), 38
lukujono (sequence), 23, 32
lyhytaika Fourier-muunnos (STFT) (short-time

Fourier transform (STFT)), 27

magnitude response (magnitudivaste), 24
magnitudivaste (magnitude response), 24
maksimivaiheinen suodin (maximum-phase fil-

ter), 113
matriisien kertolasku (matrix product), 22
matrix product (matriisien kertolasku), 22
maximum-phase filter (maksimivaiheinen suodin),

113
minimivaiheinen suodin (minimum-phase filter),

113
minimum-phase filter (minimivaiheinen suodin),

113
mixed-phase filter (sekoitevaiheinen suodin), 113
modulaatio (modulation), 69
modulation (modulaatio), 69
modulo, see remainder
monikaistasuodin (multiband filter), 25
multiband filter (monikaistasuodin), 25
muunnostaso (transform-domain), 31

navat – nimittäjäpolynomin juuret (poles – roots
of denominator polynomial), 17

noise (kohina), 38
nollat – osoitinpolynomin juuret (zeros – roots

of numerator polynomial), 17
nollavaiheinen suodin (zero-phase filter), 107
normalisoitu kulmataajuus (normalized angu-

lar frequency), 12, 23
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normalized angular frequency (normalisoitu kul-
mataajuus), 12, 23

notch filter (lovisuodin), 25
number representation (numeron esittäminen

tietokoneessa), 15
numeron esittäminen tietokoneessa (number rep-

resentation), 15
näytteenottotaajuus (quantization level), 33
näytteenottotaajuus (sampling frequency), 23,

33, 76

odd function (pariton funktio), 7
one-sided spectrum (yksipuoleinen spektri), 26
order (asteluku), 16
osamurtohajotelma (partial fraction decompo-

sition), 18
osamurtokehitelmä (partial fraction expansion),

18
osoitin (phasor), 7, 10

parillinen funktio (even function), 7
pariton funktio (odd function), 7
partial fraction decomposition (osamurtohajotelma),

18
partial fraction expansion (osamurtokehitelmä),

18
periodicity of signal (signaalin jaksollisuus), 34
perusjakso (fundamental period), 34
phasor (osoitin), 7, 10
phasor.m, 10
pienin yhteinen jaettava (least common multi-

ple), 36
poles – roots of denominator polynomial (navat

– nimittäjäpolynomin juuret), 17
polynomin juuret (roots of a polynomial), 16
pwelch, 26

quantization level (näytteenottotaajuus), 33
quasi-periodic (kvasijaksollinen), 36

radiaanit (radians), 6
radians (radiaanit), 6
rajataajuus (cut-off frequency), 24
rajavärähtely (border effect), 37, 39
reaalimaailman signaalit (real-life signals), 36
real-life signals (reaalimaailman signaalit), 36
remainder (jakojäännös), 15
residue (jäännös), 15
residuez, 18
ristikorrelaatio (cross-correlation), 64
roots, 17
roots of a polynomial (polynomin juuret), 16

sampling frequency (näytteenottotaajuus), 23,
33, 76

sekoitevaiheinen suodin (mixed-phase filter), 113
sequence (lukujono), 23, 32
Shannon sampling theorem (Shannonin näyt-

teenottoteoreema), 76
Shannonin näytteenottoteoreema (Shannon sam-

pling theorem), 76
short-time Fourier transform (STFT) (lyhytaika

Fourier-muunnos (STFT)), 27
signaalin jaksollisuus (periodicity of signal), 34
siirtofunktio (transfer function), 17, 31
sinc (sinc), 14, 21
spectrogram (spektrogrammi), 27
spectrum estimation (spekrin estimointi), 26
spekrin estimointi (spectrum estimation), 26
spektrogrammi (spectrogram), 27
stabiilisuusehto (stability condition), 48, 73
stability condition (stabiilisuusehto), 48, 73
stationaarinen signaali (stationary signal), 27
stationary signal (stationaarinen signaali), 27
step response (askelvaste), 51
suodin, suodatin (filter), 24
suora muoto (direct form), 120
suorakulmainen koordinaatisto (Cartesian co-

ordinate system), 6
suotimen asteluku (filter order), 96
superpositio (superposition), 44, 47
superposition (superpositio), 44, 47
suurin yhteinen jakaja (greatest common divi-

sor), 36

taajuus (frequency), 23
taajuustaso (frequency-domain), 31
taajuusvaste (frequency response), 31, 38, 39
tehokas laskenta (FFT) (in-place computation

(FFT)), 144
time-domain (aikataso), 31
transfer function (siirtofunktio), 17, 31
transform-domain (muunnostaso), 31
two-point moving average (kahden pisteen keskiar-

voistava suodin), 37
two-sided spectrum (kaksipuolinen spektri), 26

unit impulse function (yksikköimpulssifunktio),
32

unit step function (yksikköaskelfunktio), 32

vahvistaa (amplify), 24
vaimentaa (attenuate), 24
viivaspektri (line spectrum), 26
virtauskaavio (flow diagram), 38, 39
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wavread, 33

yksikköaskelfunktio (unit step function), 32
yksikköimpulssifunktio (unit impulse function),

32
yksipuoleinen spektri (one-sided spectrum), 26
ympyräpuskuri (circular buffer), 15
ympyräsiirto (circular shift), 15, 91

zero-phase filter (nollavaiheinen suodin), 107
zeros – roots of numerator polynomial (nollat

– osoitinpolynomin juuret), 17

äärellisen pitkä impulssivaste, FIR (finite im-
pulse response, FIR), 38

äärettömän pitkä impulssivaste, IIR (infinite
impulse response, IIR), 39


