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FIR Digital Filter Design

* For IR filters, it is necessary to ensure that the
derived transfer function G(z) is stable

o o o * In the case of FIR filters, the stability is not an issue

1 O FIR Dlg”’ﬂl F|I1'er' as the transfer function is a polynomial in z'! and the

. stability is always guaranteed
Design . v 9o .

* Unlike the IIR filter design problem, it is always
possible to design FIR digital filters with exactly
linear phase response
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FIR Digital Filter Design FIR Digital Filter Design
* FIR filter design does not have any connection with
the analog filters « It has been shown that any finite duration sequence

of length N+1 is completely characterized by N+1

* The design of FIR filters is therefore based on a L . . )
samples of its discrete-time Fourier transform X(el®)

direct approximation of the specified magnitude
response, with the usually added requirement that * As a result, the design of an FIR filter of length can
the phase response be linear be accomplished by finding either the impulse
response sequence {h[n]} or N+1 samples of its
frequency response H(ei®)

» To ensure the linear-phase design, the symmetry

* A causal FIR transfer function H(z) of length N+1 is
N
H(z)=Y hinjz"
n=0

+ The corresponding frequency response is condition of the impulse response must be satisfied
N
H(e')=> hinje " hin]=t{N-n]
n=0
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Basic Approaches to

Truncating the Impulse Response
FIR Filter Design el by P

* Let H,(el®) denote the desired frequency response

+ Basic approaches in designing FIR filters: function
1) Truncating the Fourier series representation of * Hy(ei®) is periodic function of o with period 2z and
the desired frequency response can be expressed as a Fourier series

=> Window method
2) Frequency sampling
Length N FIR filter, N distinct equally spaced
frequency samples of the desired frequency
response constitute the N-point DFT of its >
impulse response h,[n]= 1 I H,(e)edw, —oo<n<w
3) Computer-aided design based on optimization 27 =,

Hy(e")= 3 hyn

* The Fourier coefficients {hy[n]} are the impulse
response samples
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Truncating the Impulse Response Truncating the Impulse Response
* Thus, given Hy(ei®) we can compute hy[n] and the * Minimizing the integral squared error
corresponding Hy(2) @ 1 ”H ioy_H_ (e d
« Usually, Hy(el®) is piecewise constant with ideal (or _E:U () —H, () do
sharp) transitions between bands where H. (e}) = d e ien
+(8") n;ﬂht[ ]

=> {hy[n]} sequence is of infinite length and noncausal

- The objective is to find a finite-duration impulse * Using the Parseval’s relation

response {h,[n]} of length 2M+1 whose DTFT H,(el®) = i\h‘[n]—hd[n]\2 = i\h[[n]—hd[n]\2 Jrimzﬂhd[n]2 + Zt:hd[n]2
approximates the desired DTFT Hy(el©) n=—e n=-M n=—e n=ml

» Now, @ is minimum when h[n]=hy[n] for-M <n <M,
i.e., the best finite-length approximation is obtained
by truncating the impulse response
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Truncating the Impulse Response Impulse Response of Ideal Lowpass Filter
» A causal impulse response h[n] can be obtained » The ideal lowpass filter has a zero-phase
from h,[n] by delaying it with M samples frequency response
= _ ' 1, |oko,
hin]=h[n—-M] HLP(em):{ |
0, o, <o|<7

+ h[n] has the same magnitude response as h,[n] but its o .
phase response has a linear phase shift of oM * The corresponding impulse response coefficients
sinw N

radians he[n]= , —o<N<w
» The group delay of h[n] is M samples m

(@) :7i(7wM): M * h,p[n] is doubly |.nf|n|te, not absolutely summable, and
do therefore unrealizable
where the linear phase response is 6(w) =-oM
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Impulse Response of Ideal Lowpass Filter Gibbs Phenomenon

» Truncating to range -M <n <M and delaying with M
samples yields the causal FIR lowpass filter

sin(w,(n—M))

» Gibbs phenomenon - Oscillatory behavior in the
magnitude responses of causal FIR filters obtained
by truncating the impulse response coefficients of

, , 0<n<N-1
helnl=y z(n-M) ideal filters
0 otherwise 15
— N=20
» The truncation of the impulse response coefficients of 51 —— N=60
the ideal filters exhibit an oscillatory behavior in the %
So0s

respective magnitude responses
* This is commonly referred to as the Gibbs
phenomenon

0 0.2 0.4 0.6 0.8 1
o/n
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Gibbs Phenomenon

» As can be seen, as the length of the lowpass filter
is increased, the number of ripples in both
passband and stopband increases, with a
corresponding decrease in the ripple widths
Height of the largest ripples remain the same
independent of length

Similar oscillatory behavior observed in the
magnitude responses of the truncated versions of
other types of ideal filters
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Explanation of the Gibbs Phenomenon

» Truncation of hy[n] can be expressed by windowing
operation, i.e., by multiplying the hy[n] sequence
with a finite-length sequence w[n]

h[n]=hs[nw(n]
where w[n] is a window function

» For arectangular window

w.[n] = I, 0<sn<M
RELT 0, otherwise

* The Gibbs phenomenon can be explained in the
frequency domain by the convolution theorem
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Explanation of the Gibbs Phenomenon

» Multiplication in the time domain corresponds to
convolution in the frequency domain

Ho(e") = - [H,(e)¥(e! *)dp
2z =,

where  H, (e"*)=F {h[n]}
Y(el)=F {w{n]}

H,(el?) is obtained by a periodic continuous
convolution of the frequency response H,(ei®) with
the Fourier transform #(ei®) of the window
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lllustration of the Windowing

Hy(ei®)

. j(w-8),
W(ei(@-8)y ﬁz<m<n)
o=x win]=wg[n]
AA Allan—o Jov 0
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(ei(@-8) r(€") Z
A D<w<ae n=-m
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lllustration of the Windowing

Rectangular window

30

* The frequency response
Hel?) has a narrow main
lobe centered at «=0

« All the other ripples in the
frequency response are
called sidelobes

Amplitude

— —0.5m 0 051 I3
Normalized frequency

* The main lobe is characterized by its width 47/(2M+1) defined by
the first zero crossings on both sides of «=0

* As M increases the width of the main lobe decreases

» The area under each lobe remains constant, while the width of
each lobe decreases with increasing M
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Gibbs Phenomenon

» Rectangular window has an abrupt transition to
zero outside the range -M <n <M, which results
in Gibbs phenomenon in H(el®)

» Gibbs phenomenon can be reduced either:

1. Using a window that tapers smoothly to zero
at each end, or

2. Providing a smooth transition from passband
to stopband in the magnitude specifications
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Window Functions

» Symmetric window functions are used in FIR filter
design in order to guarantee the linear phase
response

» Smoother behavior at the cutoff frequency is obtained

Window Functions

» Various window functions:

Hann : w[n]:l 1+ cos| 27m , —M<n<M
2 2M +1

by using different cosine-type functions instead of the . 27n
y using arer yP Hamming: w[n]=0.54 +0.46cos . _M<n<M
rectangular window 2M +1
™ ) 27 4m
* Hamming (M) Blackman: w[n]=0.42+0.5cos +0.08cos R
- Hanning (N) 2M +1 2M +1
-M<n<M
* Blackman (B) ‘n‘
. 30 dBJoctave (J) Bartlett: w[n]=1- Ml M <n<M
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: : Fixed Window Functions
Window Functions .
) + Plots of magnitudes of the DTFTs of these
« Parameters to be compared: .
i : windows for M = 25 are shown below:
1) Main lobe width
2) Relative sidelobe level (the largest sidelobe . Rectangular window | Momigwindow
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Figure 720 Gain response of the fixed window functions. 0 02 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8
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Lowpass Filter Design by Windowing Fixed Window Functions
Hel) * Magnitude spectrum of each window characterized
1+3 H(ei) by a main lobe centered at =0 followed by a
1-8 N series of sidelobes with decreasing amplitudes
s -\ f—s0 » Parameters predicting the performance of a window
. i N in filter design are:
i w‘: e — Main lobe width a,,
g given by the distance between zero crossings on both
W(ei(6-0c) sides of main lobe
— Relative sidelobe level A,
D\ R A given by the difference in dB between amplitudes of
o [] . .
largest sidelobe and main lobe
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Fixed Window Functions

il

Fixed Window Functions
Sy « Distance between the locations of the maximum
TN passband deviation and minimum stopband value

| s BOSN H H ~
F.@:—‘;“m‘_ is approximately =A,_

=

= S

e -

» Width of transition band is

o _ Ao =0,-w, <Ay
* Observe Ht(eJ(“’c+Aw))+ Ht(eJ(wc—Am)) =1
« Thus,  H,(e/*)=0.5
» Passband and stopband ripples are the same
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Fixed Window Functions Fixed Window Functions
» To ensure a.fast transition from passband to . « In the case of rectangular, Hann, Hamming, and
stopband, window should have a very small main Blackman windows, the value of ripple does not
lobe width depend on filter length or cutoff frequency «,, and
» To reduce the passband and stopband ripple &, is essentially constant
the area under the sidelobes should be very small « In addition, the transition width is inversily
» Unfortunately, these two requirements are proportional to the window length, i.e.,
contradictory c
Ao~ V
where c is a constant for most practical purposes
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Fixed Window Functions Fixed Window Functions
Table 7.3 Properties of Some Fixed Window Functions. « Filter Desi gn Steps:
Relative ~ Minimum  Transition (1) Set @. = (a) T )/2
Type of Main lobe side-lobe  stopband  bandwidth c = @p s
window width Apmp level A;y  attenuation Aw ) )
(2) Choose window based on specified
Rectangular  4n/(2M 4+ 1) 13.3dB  209dB  0.92n/M . .
o Sn/QM 1) 315dB  439dB  3.1lt/M (3) Estimate M using
Hamming 8n/(2M +1) 427dB  545dB  3.327/M Ao~ S

Blackman  127/(2M +1) 58.1db  753dB  5.56n/M
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FIR Filter Design Example
* Lowpass filter of length 51 and @, =7/2 FIR Filter DeSIQn Example

Lowpass Filer Designed Using Hann window

Lowpass Filter Designed Using Hamming window

Usig Hamning win * An increase in the main lobe width is associated

! with an increase in the width of the transition band

» A decrease in the sidelobe amplitude results in an

mm increase in the stopband attenuation

! » Several windows have been developed that
provide control over the ripple § by means of an
additional parameter characterizing the window

:> Adjustable window functions

0 02 04 06 08 1
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Adjustable Window Functions Adjustable Window Functions
« Dolph-Chebyshev Window: * Dolph-Chebyshev window can be designed with
Lo K onk any specified relative sidelobe level while the
== [ _ Ky os 2K ; ; - .
win]= M +1[7 +2kZ:]Tk(ﬁcos2M +1)°°SzM +1], main Iol_)e width adjusted by choosing length
appropriately
-M<n<M . . . :
where * Filter order is estimated using
_ amplitude of sidelobe  B= cosh(ﬁcosh" %) N = 2.056a, —16.4
main lobe amplitude 2.85(Aw)
and o where Aw is the normalized transition bandwidth,
T,(X)= cos(fcos™ ), |x<1 e.g, for a lowpass filter
cosh(fcosh™ x), [x|>1
Ao=0s-0p
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Adjustable Window Functions Adjustable Window Functions
» Gain response of a Dolph-Chebyshev window of ) ) .
length 51 and relative sidelobe level of 50 dB is Properties of Dolph-Chebyshev window:
shown below + All sidelobes are of equal height
Dolph-Chebyshev Window + Stopband approximation error of filters designed

have essentially equiripple behavior

» For a given window length, it has the smallest
main lobe width compared to other windows
resulting in filters with the smallest transition band

Gain, dB
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Adjustable Window Functions Adjustable Window Functions

+ Kaiser Window : + Parameter g controls the minimum stopband
_ 2 attenuation of the windowed filter response
win]= LdBVI=/MYT - ham . ,
1,(8) + pis estimated using

where £ is an adjustable parameter and is the 0.1102(a5—8.7), for &, >50
modified zeroth-order Bessel function of the first B=1 0.5842(crg—21)04+0.07886(crg21),  for 21<a, <50
kind: 0, for a, <21

/2
I”(u)_HrZ:l[ r! J * Filter order is estimated using

where Aw is the normalized transition bandwidth

* Note l(u)>0 foru>0 _ as-8
+ In practice 0 (U/2) 2.285(Aw)
OB e
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Impulse Responses of FIR Filters Impulse Responses of FIR Filters
with a Smooth Transition with a Smooth Transition

« First-order spline passband-to-stopband transition
» Pt-order spline passband-to-stopband transition

1 mc:(wp+a)s)/2 a)c/zr, n=0

scee, Ao=mg-0p hp[n]=1<(2sin(Awn/2P) P.sin(a)cn) In|>0
Awn/2P zn

n oy -ty @, o, x

./, n=0
h p[N]=12sin(Awn/2) sin(wn)
’ n

7 In|>0
Awn
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Computer-Aided Design of

LowpassEFIR Flllter Design FIR Filters
xample + Let |H(ei®)| denote the the magnitude response of
« Example H(z) designed to approximate the desired magnitude
response D(z):
| — E(0)=P(0) [H(e")|-D(@)]
Esz * The design is based on minimizing the weighted
Zo4 error function E(z)
02 » Minimax criterion minimizes the peak absolute value
of the weighted error (Parks-McClellan algorithm):

ol E = max|E(w)]
0<w<m
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Design of Equiripple Design of Equiripple
Linear-Phase FIR Filters Linear-Phase FIR Filters

* The linear-phase FIR filter obtained by minimizing ’ The general form 9f frequency response of a causal
the peak absolute value of linear-phase FIR filter of length 2M+1:
H(e!”)=e Me’H(w)

&=maxE (o)
o<R where the amplitude response H(w) is a real

is usually called the equiripple FIR filter function of @
+ After ¢is minimized, the weighted error function » Weighted error function is given by
E(w) exhibits an equiripple behavior in the E (@) =W (0)[H (@) - D(®)]

frequency range R
where D(w) is the desired amplitude response and

W(w) is a positive weighting function
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Design of Equiripple

: : Design of Equiripple
L -Ph FIR Filt
near-rhase Hers Linear-Phase FIR Filters

» Parks-McClellan Algorithm

Based on iteratively adjusting the coefficients of * Forfilter design,

H(w) until the peak absolute value of E(w) is
minimized D(w) =
+ If peak absolute value of E(w) in a band
o, S W < @, is &, then the absolute error satisfies

1, in the passband
0, in the stopband

* H(w) is required to satisfy the above desired
response with a ripple of +g, in the passband and

B ¢ . .
\H () - D(a))\ <% g <o<a, a ripple of ¢, in the stopband
W (@),
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Design of Equiripple
Linear-Phase FIR Filters

» Thus, weighting function can be chosen either as

W 1, in the passband
(@=15,/5,. inthestopband
or
O /5p, in the passband
W(w)= .
1, in thestopband
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