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Introduction

« In time-domain, the input-output relation of a
linear and time-invariant (LTI) system is
characterized by the convolution

< An alternate description of a sequence in
terms of complex exponential sequences of
the form {ed*"} where w is the normalized
frequency variable

« The frequency domain representation of the
discrete-time sequences and discrete-time
LTI systems
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Continuous-Time Fourier

Transform
* Definition:
The CTFT of a continuous-time signal x,(¢) is
given by

X,(jQ) = I:x ()e "™ dt

« Often referred to as Fourier spectrum or
simply the spectrum of the continuous-time
signal

© 2009 Olli Simula T-61.3010 Digital Signal Processing;

Mitra 3rd Edition: Chapter 3

Continuous-Time Fourier

Transform
« Definition:
The inverse CTFT of a Fourier transform
X, () is given by

x,(0)= Zij”)(( jQ)e’™dQ
T J-o

» Often referred to as Fourier integral

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 4

Mitra 3rd Edition: Chapter 3

The Continuous-Time
Fourier Transform Pair

Analysis . y
equation: X, ()= J:wxa (e dt
Synthesis | ()= L [y, (j2)e"d0
equation: 27 4

A CTFT pair is CTFT

also denoted as:  x,(f) < X, (jQ)
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Continuous-Time Fourier Transform

* The Fourier transform or Fourier integral X,(j€J)
of x,(?) is also called the analysis equation

* The inverse Fourier transform equation is called
the synthesis equation

« For aperiodic signals, the complex exponentials
occur at a continuum of frequencies

» The transform X,(;2) of an aperiodic signal x ()
is commonly referred to as the spectrum of

x,(1)
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Continuous-Time Fourier Transform

« Variable Qis real and denotes the continuous-
time angular frequency in radians

¢ In general, the CTFT is a complex function of £2
intherange —w<Q<w
« It can be expressed in polar form as

X,(9Q) =X, (jQ)e’*
where
0,(Q) =arglX, ()
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Continuous-Time Fourier Transform
X,(jQ) =|X, (jQ)e’*

» The quantity |X,(j€)| is called the magnitude
spectrum

» The quantity 6,(€J) is called the phase
spectrum

« Both spectrums are real functions of ©2
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Example 3.1

The Fourier transform
of a causal complex
exponential

e ™, >0
x, ()=
/) {O, t<0

X, (jQ) = Ie’”’e’/n’dt
0

1

= , a>0
a+ jQ
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The Frequency Response of an LTI
Continuous-Time System

« The output response of y,(7) of an initially
relaxed linear, time-invariant continuous-time
system characterized by an impulse response
hy(r) for an input signal x,(f) is given by the
convolution integral

v 0=, =7, ()dz
 Applying CTFT to both sides
Y, (jQ)=H,(jQ)X,(jQ)
* H,(jQ) is the frequency response of the system
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The Discrete-Time
Fourier Transform

« The discrete-time Fourier transform (DTFT) of
a discrete-time sequence x[x] is a representation
of the sequence in terms of the complex
exponential sequence {e¢7*"} where w is the real
frequency variable

« The DTFT representation of a sequence, if it

exists, is unigue and the original sequence can
be computed from its DTFT by an inverse
transform operation
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The Discrete-Time Fourier Transform

» The discrete-time Fourier transform (DTFT)
X(e/®) of a sequence x[#] is defined by:

+o0

X(e™) = Zx[n]e”“’”

» The Fourier transforms of most practical
discrete-time sequences can be expressed in
terms of a sum of a convergent geometric series

* They can be summed in a simple closed form
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Example:

Consider a causal sequence:  x[n]=a"u[n], |a|<1

The Fourier transform X(¢/®) is obtained as:

X(e/w) — ian,u[n] efja)n =iane—/(w
n=0

n=-0n

D

n=0 l1-ce
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Discrete-Time Fourier Transform (DTFT)

¢ As can be seen from definition, DTFT X(¢/®) of a
sequence x[x] is a continuous function of @

 Unlike the continuous-time Fourier transform,
DTFT is a periodic function in @ with a period 27z

0 +00
X(ej(tu+2/zk)) _ ix[n]efj(uﬁbzk)n _ zx[n]e—ju)ne—jzmm

n=-on n=—0
+o0
=Y x[n]e”™ = X(e’”), forallvaluesof k
where e/27n =1
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Inverse Discrete-Time Fourier Transform
x[n] = L ].X(ef”’)ef””dw
C2r bl

* The inverse discrete-time Fourier transform can
be interpreted as a linear combination of
infinitesimally small complex exponential signals
of the form _L.~4., weighted by the complex
constant X(efwlﬁ over the angular frequency range
from —zto =
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The Discrete-Time
Fourier Transform (DTFT) Pair

Analysis equation, denoted by operator Hx[n]}:

X () = iox[n]e’/‘””

n=—om

Synthesis equation, denoted by operator F-{x[n]}:

1 . .
= J@Y ,Jon
x[n]= o jzﬁX(e Ye! P dw

Basic Properties of the DTFT
X(e”)= ix[n]e'j"’"

n=—x

* X(¢?) is a complex function the real variable o :
X(e") =X, () + jX,, (™)

X(e) =|X(e/)[e”", where (o) =arg{ X (e"*)}

* |X(¢/%)| is the magnitude function

e Qe is called the phase function
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Basic Properties of the DTFT
X(e’”) =[x (e’))e’"
* In many applications, the Fourier transform
X(e/®) is called the Fourier spectrum
¢ |X(¢®)] is called the magnitude spectrum and
¢ Hw)is the phase spectrum

« Itis usually assumed that the phase function
A w) is restricted to the principal value

—-n<b(w)<rx
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Commonly Used DTFT Pairs

Sequence DTFT

5] <> 1
1 o D 278(w+27k)
k=0

1

n > ———

wn] T

e’ o Y 275(0- o, + 27k)
k=—0
n l
a ,u[n] , (‘a‘ <l) © —
l-ae
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DTFT Properties

* There are a number of important properties of
the DTFT that are useful in signal processing
applications

* These are listed here without proof
» Their proofs are straightforward

* The applications of some of the properties are
illustrated
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Table 3.1: DTFT Properties:
Symmetry Relations

Sequence  Diserete-Time Fourler Transfarm

D x[n] A complex sequence
Capyright © 3008, 5,
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Table 3.2: DTFT Properties:
Symrmetry Relations

Sequence Diserete- Thins Fourier Transform

st gy ] and g ] domote the even and cdd posts of x[n], respectively.
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Important DTFT Theorems

« There are a number of important theorems of
the DTFT that are useful in analysis and
synthesis of discrete-time LTI systems

« Many algorithms in signal processing
applications are based on these theorems

» Their proofs are straightforward based on the
definitions

* Assume that:
g[n] :) G(e””) and hn] <i> H(e’“’)
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Table 3.4:General Properties of
DTFT

Type of Property Sequence  Discrete-Time Fourler Transform
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The Frequency Response of an
LTI Discrete-Time System

* Time-Domain:
An LTI discrete-time system is completely
characterized by its impulse response
sequence {A[n]}

e Transform-Domain:
Alternative representations of an LTI discrete-
time system using the DTFT (and the z-
transform)
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The Frequency Response - Definition

* An important property of an LTI system is that
for certain types of input signals, called
eigenfunctions, the output signal is the input
signal multiplied by a complex constant

» We consider one such eigenfunction, the
complex exponential sequence

* In general, for CT and DT systems:
— Continuous-time: &7 -> H(s) e’"
— Discrete-time: z" > H(z) "
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The Frequency Response

Superposition property:

The response of an LTI system to a linear
combination of complex exponential signals
can be determined by knowing its response
to a single complex exponential signal

The response of the LTI system to a complex
exponential input is considered

Frequency Response is a transform-domain
representation of the LTI discrete-time system
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Complex Exponential Input

il i = S ARk = Al ]

Input: An]=e’, —co<n<owo

Output: Wnl= Zh[k]d"’“*“
k=0

=/ ih[k]e'j “* = x{n) [ih[k]e" o ]

=—00 k=-o0
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The Frequency Response

Define:

HE”) = S Hnle ™

* H(e/®) is called the frequency response of the
LTI discrete-time system

o H(e”) is the DTFT of A[n]
» For a complex exponential input:

M= H(e)e™
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The Response to a Complex Exponential

* For afixed frequency a=ay: y[n]=H(*)e™"

 For a complex exponential input x[»] of angular
frequency a,, the output y[n] is a complex
exponential sequence of the same angular
frequency @, weighted by a complex constant
H(e’%)

« In general, the frequency response H(¢“) is a
function of the angular frequency and can be
evaluated at all input frequencies @

» H(e'®) completely characterizes the behavior of an
LTI discrete-time system in frequency domain
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The Frequency Response

* H(e?) is a complex function of o with a period 27

H(e"")=H, (") + jH,,(e"")
— ‘ H(e')|e’ "

where  O(w)=arg{H(e’)}
e |H(e®)| is called the magnitude response

* HAw)is called the phase response
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The Frequency Response

« In some cases, the magnitude function is
defined in decibels

G(e) =20log, | H(e™)
* G(w) is called the gain function

» The negative of the gain function,
A(®) = -G(w) is called the attenuation or

loss function

dB
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Frequency-Domain Characterization of
LTI Systems

« Input-output relation in frequency-domain
Y(e/w) — H(ejw)X(e/w) — ( Zh[kkf/‘/dc X(e/ﬂl)
k=

« Convolution in the time-domain transforms into
product in the frequency-domain

Y(ej(u)

X()

H(™) =

« The frequency response of an LTI discrete-time
system is the ratio of Y(el®) and X{(el®)
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Frequency Responses of LTI
FIR Discrete-Time Systems

« Input-output relation of the LTI FIR discrete-time

system N,
ylnl= D hlklxln—kl, N, <N,
k=N,
« Applying the discrete-time Fourier transform (DTFT)
results in the transform-domain input-output relation

N,
Y(e'”)= Zh[k] e/ ]X(e/”) =H(e™”) X (')

k=N,
where Y(e) and X{(el®) are the DTFTs of the output
and input sequences
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Frequency Responses of LTI
FIR Discrete-Time Systems

» The frequency response of the LTI FIR
discrete-time system is thus

H(ef‘” ) = i Hkle™/*

k=N,

« The frequency response of the LTI FIR discrete-
time system is a polynomial in ¢7®
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Frequency Responses of LTI
IIR Discrete-Time Systems

« Input-output relation of the LTI IR discrete-time
system

S dptn-H=3 podn—H]

» Applying the discrete-time Fourier transform
(DTFT) results in the transform-domain input-
output relation

N M
DY) = pe X ()
k=0 k=0
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Frequency Responses of LTI
IIR Discrete-Time Systems

* The frequency-domain relation can be written in
the form
N . . M .
[dee’f"* ]ﬂeﬂ")=[Zpke’f’*]X(ef”>
k=0 k=0

M —J
re)  Dome™
X Y g

« Solving the ratio  H(e/”)=
« The frequency response of the LTI IIR discrete-
time system is a polynomial in e7®
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Example: Simple IIR Discrete-Time System

« Consider the first order recursive or infinite impulse
response (lIR) filter
Mnl-an-1=xn], with |a|<1
« The frequency response of this system is obtained by
the Fourier transform
Y(e')-aY(e’)e’ = X (/)
Y(e’”) 1
X)) 1-oae™®

* Solving the ratio: ~ H(e/”) =

» The impulse response is:  i[n]=a" u[n]
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Response to a Causal Exponential
Sequence

« In practice, the excitation to an LTI discrete-time
system is usually a causal sequence applied at
some finite sample index n = n,

« The output for such an input when observed at
sample instants beginning at n = n, will consist of
a transient part along with a steady-state
component

» Assume that the input is a causal exponential
sequence applied at n =0, i.e., x[n] = e/*"y[n]
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Response to a Causal Exponential

Sequence
For n > 0, the output is obtained using the
convolution sum

ynl= ih[k] e"“"'“,u[n - k] = [Z":h[k] ek ]ej""'
k=0 k=0

as yn-k] =0 fork>n
Rewritinf the last expression of the equation

Zh[k] e/‘mlx}e/am _{ Zh[k] e/mk]emn
k=0

n]=

k=n+1

k=n+1

=H(e') /™ —[ > k] e ]ej’”" , n20
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Response to a Causal Exponential
Sequence

Anl=H@E) & —[ S A e ]ef’“" . 120

k=n+1
| —

/
Steady-state response  Transient response

Ve [n] = H(e,l'“)) ej”” Vi [n] = —[ Zh[k] e—jmk ]e;/(m
k=n+1
* The effect of the transient response on the
output is

| yulnl|=

o £

< Ak < Y i

k=n+1 k=0

Zh[k] o jotk=n)

k=n+1
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Response to a Causal Exponential

Sequence
| Il |= S e < Sk < Sl
k=n+1 k=n+l k=0

« For a causal and stable IIR LTI discrete-time
system, the impulse response is absolutely
summable

» As aresult the transient response y,[n] is a
bounded sequence

* Moreover,as n—o, » " |ik]|—>0

i k=n+1
the transient response decays to zero as n
gets very large
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Response to a Causal Exponential
Sequence

» In most practical cases, the transient
response becomes negligibly small after
some finite amount of time, and the system
can be assumed to be in a steady-state

» For a causal FIR LTI discrete-time system
with an impulse response of length N+1,
h[n]=0 for n > N and, thus, y,[n]=0 for n > N-1

* It should be noted that transients will occur
whenever an input is applied or changed
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The Concept of Filtering

« Adigital filter is a discrete-time system that passes
certain frequency components in an input sequence
without any distortion and blocks other frequency
components

« The key to the filtering process is the inverse
discrete-time Fourier transform which expresses an
arbitrary sequence as a linear weighted sum of an
infinite number of exponential (sinusoidal) sequences

« By appropriately choosing the frequency response
(or its magnitude) of the LTI digital filter the individual
sinusoidal components can be attenuated or

amplified independent of each other
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The Concept of Filtering

« Consider a real coefficient LTI discrete-time system
characterized by a magnitude function
5 {l 0Joka,

He/'[u
‘ ) 0, w.qoikr

* An input sequence
x[n] = Acos(wn)+ Bcos(w,n),
with O<w <o, <@, <7

is applied to the system
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The Concept of Filtering
» The output sequence is given by
= AH(e™)|cos(n+0(e))
+BH(e'™)|cos(,n+6(e,))
» Making use of |H(el?)| the output is
] = A H(e™) coseyn+ 6(e)
» The LTI system is a lowpass filter
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Response to a Sinusoidal Sequence

« Consider the sinusoidal input to an LTI discrete-
time system with the frequency response
H(e)=H(e*) e/ %)

x[n] =4 Cos(a)on + ¢)

yln]= A‘H(ej“‘D )\ cos(won + O(w,) + 4)

« The output signal y[r] has the same sinusoidal
waveform as the input x[r] with two differences
— The amplitude is multiplied by the constant value‘H(F
— The output has a phase lag by amount 6(w,)

Jon )
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Phase and Group Delays
« Let us rewrite the output to a sinusoidal input as

cos[a)o(n + 0(%)} + ¢J
Wy

cos(a)o (n -7, (a)o))+ ¢)

)

0

sl A )

= A[H(e"™)

where 7, (@,)=— is called the phase delay

« The output y[#] is a time-delayed version of the
input x[n]
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Example: Linear combination of sinusoidal signals
Consider the signal:  x(¢) :1+%COSZm+cos4m+§cosﬁm

The same sinusoidal components with phase shifts:

x()=1+= cos(Zm + ) +CoS(4t + o) +— cos(Gm +¢3)

’\/\M/\L’\ml"\/\f"\[\f‘ @ @=0,= 0=

(b) @,=4, ©,=8,
IM/\MAA/\M[\/VJ} anldd)3 inad
t
]
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Example: Linear combination of sinusoidal signals

x(t)= 1+%cos(2m +¢1) +Ccos(4nt + ) +§cos(6m +¢3)

) @,=6, ®,=-217,
AN ) @;=0.93 rad
t

(<]

(d) @=12 @,=41,
. : . @;=-7.02 rad

id} !
The resulting signals differ significantly for
different relative phases
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The Group Delay

When the input signal contains many sinusoidal
components with different frequencies that are not
harmonically related, each component will go
through different phase delays when processed by a
frequency-selective LTI discrete-time system

The delay is determined using a different parameter
called the group delay defined as

£ =—22)
dw

« Group delay has a physical interpretation in

calculating the responses of discrete-time systems
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The Group Delay

« Group delay function provides a measure of the
linearity of the phase response
__do()
(@)= dow

» For a moving average filter of length M, the phase
response is linear

Olw)=—"—w
() 2
and the group delay is constant
M-1
7, (@)= —
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