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Introduction

* In this chapter, finite-length transforms are
discussed

* In practice, it is often convenient to map a finite-
length sequence from time domain into a finite-
length sequence of the same length in the
frequency domain

* The samples of the forward transform are unique
and represented as a linear combination of the
samples of the time domain sequence

* The samples of the inverse transform are obtained
similarly from the samples of the transform domain
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Introduction

« In some applications, a very long-length time
domain sequence is broken up into a set of short-
length sequences and a finite-length transform is
applied to each short-length sequence

» The transformed sequences are processed in the
transform domain

» Time domain equivalents are produced using the
inverse transform

» The processed short-length sequences are
grouped together in the time domain to form the
final long-length sequence
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Orthogonal Transforms

» Let x[n] denote a length-N time domain sequence
with X[k] denoting the coefficients of its N-point
orthogonal transform

+ A general form of the orthogonal transform pair is
of the form
N-1

X[k1=Y xnly"[k.n], 0<k<N-1

n=0

X[klwlk,n], 0<n<N-1
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Orthogonal Transforms

* In the transform pair, the basis sequences
yk,n] are also length-N sequences in both
domains

« In the class of finite-dimensional transforms, the
basis sequences satisfy the condition
I, I=k

= _
w2l v [m]:{o, .

» Basis sequences yfk,n] satisfying the above
condition are said to be orthogonal to each other
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Orthogonal Transforms

* An important consequence of the orthogonality
of the basis sequence is the energy
preservation property of the transform

» The energy Z:;OI x[n] ‘2 of the time domain
sequence x[n] can be computed in the
transform domain

» The energy can be written as

N-1

”g]x[n] P =5 o] x ]

n=
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Orthogonal Transforms

» Let us express x[n] in terms of its transform
domain representation
N

Sl - 3 &5 xl el <

-1
n=0

—> :hll:x[k(NZéx*[n]w[k,n]};,ix[k] X'[K]
—> g‘x[n] ‘2 :ﬁg‘x[k] ‘2

which is known as the Parseval’s relation
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The Discrete Fourier Transform

* In the following, the discrete Fourier transform,
DFT, is defined
* The inverse transformation, IDFT is developed
» Some important properties of the DFT are
discussed
» DFT has several important applications:
— Numerical calculation of the Fourier transform
in an efficient way
— Implementation of linear convolution using
finite-length sequences
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Definition of the DFT

» Discrete Fourier transform (DFT) of the
length-N sequence x[n] is defined by
N-1
X[k]= xnle P*"N | 0<k <N -1
n=0
» The basis sequences are: y/[k,n]: e
which are complex exponential sequences

* As a result, DFT coefficients X[k] are complex
numbers, even if x[n] are real

* It can be easily shown that the basis sequences
el2#N - gre orthogonal

—j2akn/N
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Discrete Fourier Transform (DFT)

« Common notation with DFT: W, = e27N

* DFT can now be written as follows:
N-1
XK1= Y. xnI W, ", k=0..,N-1

n=0

* Inverse Discrete Fourier Transform (IDFT):
1N @
x[n]:—ZX[k] W, ™, n=0,,.,N-1
N k=0

» X[k] and x[n] are both sequences of finite-length N
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Discrete Fourier Transform Pair

* The analysis equation:

N-1
X[k]= Y X[ W, k=0]1..,N-1
n=0

* The synthesis equation:

N-1
xnl=—> X[kIW, ™, n=0,..,N-1
k=0

z|~

DFT
* DFT pairis denoted as:  x[n] ¢« X[k]
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Relation Between the Discrete-Time
Fourier Transform and the DFT

« The DTFT X(el®) of the length-N sequence x[n]
defined for 0<n<N-1 is given by:
0 N-1

X(@')= xn] e "= "xn] e )"
N=—x0 n=0
« By uniformly sampling X(ei®) at N equally spaced
frequencies @ = 27k/N, 0<k<N-1, on the w-axis
between 0<k<2rz
X (&) =Y xn]e ™M 0<k<N-1

0=27k/N  p—_
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Relation Between the Discrete-Time
Fourier Transform and the DFT

* The N-point DFT sequence X[K] is precisely the
set of frequency samples of the Fourier transform
X(ei®) of the length-N sequence x[n] at N equally
spaced frequencies, @, = 27k/N, 0<k<N-1

* Hence, the DFT X[k] represents a frequency
domain representation of the sequence x[n]

» Since the computation of the DFT samples
involve a finite sum, for time domain sequences
with finite sample values, the DFT always exists
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Numerical Computation of the
Fourier Transform Using the DFT

» The DFT provides a practical approach to the
numerical computation of the Fourier transform
of a finite-length sequence

« Let X(ei®) be the Fourier transform of a length-N
sequence x[n]

» We wish to evaluate X(ei®) at a dense grid of
frequencies o, =27k/M, 0<k<M-1, where M>>N:

0

N-1
X ()= Zx[n] g lan =Zx[n] - i2akn/M

N=—x n=0
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Numerical Computation of the

Fourier Transform Using the DFT

» Define a new sequence x,[n] obtained from x[n]
by augmenting with M-N zero-valued samples

« fnl= x[n], 0<n<N-1
[N= 0, N<n<M-1

* Making use of x,[n] we obtain

B M-l B
X (elwk )= er[n] e—jann/M
n=0
which is an M-point DFT X,[k] of the length-M
sequence X,[n]
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Example 5.5:

» Compute the N-point DFT of the length-16
sequence x[n]=cos(671/16) of angular frequency
@,=0.3757

» The 16-point DFT of x[n] is (Example 5.2)

8, fork=3andk=13
- .
0, otherwise

« Since the Fourier transform X(ei®) is a continuous
function of @, we can plot it more accurately by
computing the DFT of the sequence x[n] at a
dense grid of frequencies using MATLAB
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Example 5.5: x[n]=cos(62n/16)

"« 16-point DFT
denoted by '0’

* 512-point DFT

18
{ ‘deno’ted by
"~ Normalized
T ~ | frequency
i VY N with2z=1;
B s S T R AL R
ST 3/16 =0.1875
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Sampling the Fourier Transform

» The discrete Fourier transform DFT can also be
obtained by sampling the discrete-time Fourier
transform DTFT, X(ei®), uniformly on the @ -axis
between 0 < w<2n, at @ = 2nk/N, k=0,1,... N-1

X[k]= X (e1®)

w=27k/N

N-1 .
= x[nje N k=0,1,..,N -1
n=0

» X[k] is now a finite-length sequence of length N
like the time domain sequence x[n]

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 18
Mitra 3rd Edition: Chapter 5




T-61.3010 Digital Signal Processing and 3.2.2009
Filtering

Operations on Finite-Length . :
P 9 Circular Shift of a Sequence
Sequences
* Like the Fourier transform, the DFT also satisfies + Several DFT properties and theorems involve
a number of properties that are useful in signal shifting in the time domain and in the frequency
processing domain
» Some of the properties are essentially identical to + The operation of shifting of a finite-length
those of the Fourier transform, while some others sequence in time domain is referred to as
are different circular time-shifting
+ Differences between two important properties are « In frequency domain the corresponding operation
discussed: is referred to as circular frequency-shifting
— Shifting and
— Convolution
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Circular Shift of a Sequence Circular Shift of a Sequence
* Let 0.1, ..., N be a set of N positive integers and
 Consider length-N sequences defined for the let m be any integer
range O<ns=N-1 « The integer r obtained by evaluating m modulo N is
+ Such sequences have zero for n<0 and n=N called the residue and it is an integer with a value
- Shifting such a sequence x[n] for any arbitrary between 0 and N-1
integer n,, the resulting sequence x;[n]=x[n-n,] is » The modulo operation is denoted as
no longer defined for the range 0<nsN-1 (m), =mmoduloN
* It is necessary to define a shift operation that will _ B
keep the shifted sequence in the range 0<n=N-1 If we Iet. r= <m>N then r=m+IN .
. . . . where | is an integer to make m+IN a number in the
* This is achieved using the modulo operation
range 0<n=<N-1
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Circular Shift of a Sequence Representation of a Finite-Length

_ _ _ _ Sequence
* Using the modulo operation, the circular shift of a
length-N sequence x[n] can be defined using the + Consider a general sequence x[n] that is of
equation finite-length, i.e., for some integers N, and N,,
X [n]: x[(n _ no>N] x[n] = 0 outside the range -N, <n<N,
x(n]

where x[n] is also length-N sequence
The concept of circular shift of a finite-length Hmmm
sequence corresponds to "rotation” of the
sequence within the interval 0<n<N-1

N, 0 N, n

* The shifting operation of finite-length sequences
can be represented via periodic sequences
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Representation of Aperiodic Signals

* A periodic sequence, x,[n], is formed from the
aperiodic sequence with x[n] as one period

R
il _mhm IS

* As N approaches infinity, x,[n] = x[n] for any finite
value n
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Circular Time-Shift of a Sequence

« Shifting of a finite sequence corresponds to
rotation

"ol
x[(n-1),]
il m il

3 n
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Circular Convolution

» Consider two length-N sequences, g[n] and h[n]
» Their linear convolution is a sequence of length
2N-1

N-1
yu[n]=> g[mhin-m], n=0,1,...2N -1
m=0
« In order to calculate the above linear convolution

both length-N sequences have been zero-padded
to extend their length to 2N-1
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Circular Convolution

* A convolution-like operation resulting in a length-N
sequence Y[n], called a circular convolution is
defined as i

ye[nl=Y" gimih(n—m), ]
m=0

» The above operation is often referred to as an
N-point circular convolution

* Due to length-N sequences, the N—point circular
convolution is denoted as

yeIn] = ginI®) hin] = h{n)(®) gIn]
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Application of Circular Convolution

* The N-point circular convolution does not
correspond to the linear convolution of two
length-N sequences

* The circular convolution can, however, be used to
compute the linear convolution correctly:

— The linear convolution of two finite-length
sequences of length N and M results in a
sequence of length N+M-1

— The circular convolution must be computed for
the length N+M-1 by zero-padding the original
sequences
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Classification of
Finite-Length Sequences

* For a finite-length sequence defined for 0<n<N-1,
all definitions of symmetry do not apply

» The definitions of symmetry in the case of finite-
length sequences are given such that the
symmetric and antisymmetric parts of length-N
sequence are also of length N and defined for the
same range of values of the time index n
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Classification Based on
Geometric Symmetry

* Geometric symmetry is an important property in
DSP, i.e., in the properties of FIR filters
» Alength-N symmetric sequence x[n] satisfies
the condition
X[n] = X[N-1-n]
« Alength-N antisymmetric sequence x[n] satisfies
the condition
X[n] = -X[N-1-n]

©2009 Olli Simula T-61.3010 Digital Signal Processing; 31
Mitra 3rd Edition: Chapter

3.2.2009

Geometric Symmetry of Sequences

: x[n] ;
S S 1 B + N 1 S B
I T

(a) Type 1,N=9 ™. _{b) Type 2, N=10

Positive {*["]
symmetry

Negative x[n] ‘ Xan>
symmetry }r AR . *r vl
1 1 : ] { 1 il ]
(c) Type 3, N=9 (d) Type 4, N=10
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Type 1 Symmetry with Odd Length

* Type 1 symmetric sequence, with N=9, is
x[n]=x[0]+ x[1]+ x[2]+ x[3]+ x[4]+ x[5] + x[6]+ x[7] + x[8]

* The Fourier transform is

X (ej‘”): x[0]+ X[t + x[2e712¢ + x[3] 713 + x[4]e 714

+x[sk5¢ + X616 + x[7]e 717 + x[8]e 1%

* Now, X[01=x[8], X[ 11=x[7], X[2]=X[6], X[3]=X[5]

X (e””): x[O](l + e’“"”)+ x[l](e’i‘” + e’”’”)

+ x[2](e’”’“ +e’“’"‘)+ x[3](e’”"‘ + e’js"‘)+ x|4fi4

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 33
Mitra 3rd Edition: Chapter 5

Type 1: Symmetry with Odd Length

« Taking e1*® as a common factor in each group of
terms

X (€)= xole (e +e 1 )4 X[ 14 (e + &)
x4 (e + e 2 )+ w3l e + e )+ x4l
X (e¥)=e o’ +e 1 )+ [t +e )
+x2Je +e e x3e + e )+ x(4]}

|::> X (e lo ): e 1 2x[0]cos(4@) + 2x[1]cos(3w)

+2x[2]cos(2m) + 2x[3]cos(@) + x[4]}
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Type 1: Symmetry with Odd Length

» Notice that the quantity inside the braces, {}, is
a real function of w and can assume positive or
negative values in the range 0<a=rx

* The of the sequence is given by (w)=—4w+
where Sis either 0 or 7, and hence the phase is
a linear function of w

* In general, for Type 1 linear-phase sequence of
length-N

) ) (N-1)/2
X (e“”): e’””’”‘”’z{x[%h 2 Z X[t — n]cos((un)}
n=1
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Type 2: Symmetry with Even Length

+ Similarly, the Fourier transform of Type 2
symmetric sequence, with N=8, can be written

X (e i ): gi70/2 {2x[0]cos(%) + 2X[1]COS(’%)
+2x2]cos(32) + 2x[3]cos(2)}
where the phase is given by 9(w)=-22+ 8

* In general, for Type 2 linear-phase sequence of
length-N
. . N/2
X(e““):e"‘“’”” 2{22X[%—ﬂ]cos(w(n—%))}
n=1
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Type 3: Antisymmetry with Odd Length

» The Fourier transform of Type 3 antisymmetric
sequence, with N=9, is (notice that x[4]=0)
X(e3)= ol R+ {2 2+ ool il
+x[5]e1 4 X[6 76 + x[7 77 + x[8]e 1%
* Now, x[0]=-x[8], X[1]=-X[7], X[2]=-X[6], X[3]=-X[5] and x[4]=0
X (ej“): x[O](l _ e—jxm)+ X[l](efjw —e’””’)
+ X[z](efiza) 79—1'601)+ x[3](e’i3“ 7e—j5m)
X (eim>= oo {X[O](EH‘” 76—14w)+ x[l](e”‘” 76713,0)
+ x[2](e12'“ _eij(u)_*_ X[3](ejm _e—jm)}
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Type 3: Antisymmetry with Odd Length
* Multiplying by j=ei#2 and 2, we obtain
X (ej‘”): g JHwgin2 %Zx[o]zij(e jao _ e’“‘“)+ 2x[l]2ij(e"3“ - e’”‘“)
+2x[2)3; (120 e i)+ 2031 (e —eie )}
which results in
X (e1) =i/ oy[0]sin(40) + 2x[1 Jsin(3o)
+2x[2]sin(2w) + 2x[3]sin(@)}
The phase is now 9(w)=74w+%+/3
* The antisymmetry introduces a phase shift of 7/2
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Type 3 and 4: Antisymmetry with Odd
and Even Length

* In general, the Fourier transform of Type 3 linear-
phase antisymmetric sequence of odd length-N is

) ) (N-1)/2
X (e’“’): jeriNhe 2{2 ZX[% - n]sin(a)n)}
n=l

« Similarly, the Fourier transform of Type 4 linear-
phase antisymmetric sequence of even length-N is

. . N/2
X(eJ(a): jefJ(N—l)(u/z{sz[%_ n]sin(a)(n—% )}
n=1
* In both cases, j=ei”2 introduces a phase shift of /2
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Discrete Fourier Transform Theorems

» The important theorems hold for DFT with time
domain sequences length-N and their DFTs of
length-N , e.g.,

— Linearity
— Circular time-shifting
— Circular frequency-shifting
— Circular convolution
— Modulation
— Parseval’s theorem
» The proofs are straightforward using the definitions
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Linear Convolution of Two
Finite-Length Sequences

« Let g[n] and h[n] be two finite-length sequences
of lengths N and M, respectively

* The objective is to implement their linear
convolution
y.[n]=gln]®n[n]

* The length of the sequence y, [n] is L=N+M-1

» The linear convolution can be obtained using the
circular convolution with the correct length equal
tolL
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Linear Convolution of Two
Finite-Length Sequences

+ Define two length-L sequences g,[n] and h,[n] by
appending g[n] and h[n] with zero-valued
samples

foln] o<n<N-1
ge[n]f{ 0, N<n<L-1

h[n], o<n<m -1
hE[n]:{ 0, M<n<L-1

* Then,
y.[n]=ycIn]=g.[n] Ohe[n]
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Linear Convolution of Two
Finite-Length Sequences Using the DFT
» The linear convolution of two finite-length

sequences g[n] and h[n] can be implemented
using the DFTs of length L=N+M-1 as follows

g[n] |Zero-padding|ge[N] (N +M —1)-]

with .
Length-N|(M —1) zeros point DFT (N+M -1 YL
h[n] [Zero-padding |h[n] [(N=M =D~ point IDFT

point DFT Length-(N + M —1)

with
Length-M [(N —1) zeros
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Data Sequence of Unknown Length

* Problem: Filtering of a data sequence of unknown,
or infinite length with an FIR filter, with impulse
response, h[n], of length M using the DFT

hinly

;”“TLI_I

.?%HILHHWHTMHHHLI'L"IWHHTW .
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Linear Convolution of
Finite-Length Sequences

« Filtering of a data sequence of unknown (infinite)
length with an FIR filter, with impulse response,
h[n], of length M can be implemented via circular
convolution, i.e., using the DFT

» The data sequence x[n] is first segmented into
finite-length sections of length-L

» Two methods to implement the linear convolution

* Overlap-add method
 Overlap-save method
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Overlap-Add Method

» The causal data sequence x[n] is first segmented
into segments of length L

» The original sequence x[n] can now be written as
x[n]= i Xp[n—mL]
m=0

where

] xn+mL], os<n<L-1
mL 0, otherwise
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Overlap-Add Method

o

unknown length

« Original
. ﬂrr'd"“ﬂmlﬁxuuuuuﬂ e enth

.« » Non-overlapping

length-L
i segments of x[n]
A ;rITﬂme ..+ Adding the
& segments gives
T . " X[“]=me[“—mL]
X lllul“ul m=0
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Overlap-Add Method

» Substituting the segmented form of x[n] into the
convolution sum

y[n]:Mjh[k]x[n_k]:gh[k]ixm[n_k_mq

k=0 m=0

o (M-1 ©

:Z[Zh[k]xm[n—k—mL]]zZym[n—mL]

m=0\ k=0 m=0
where y,[n]=h[n]® x,[n]

» The linear convolutions of h[n] and the segments
of x,,[n], which all are all of length-N, (N=M+L-1)
are thus added

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 48

Mitra 3rd Edition: Chapter 5

Mitra 3rd Edition: Chapter 5;
© 2009 Olli Simula



T-61.3010 Digital Signal Processing and

3.2.2009

Overlap-Add Method

Yoln]= xgfndiBinin
* The linear length-N
‘m"[']‘l mr’"”'— . g

convolutions of h[n]

and x,[n]
yi[n]= welrkEmn) —
» The overlapping
’lI II.U ~ " parts of the linear
convolutions are
Yalnl= wgtnd@ning

i added
- — J.U_q_‘; J.I[m._.. "

P y[n]—zznym[n—mL]
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Overlap-Save Method

It is possible to implement the linear convolution
also by performing circular convolutions of length
shorter than (M+L-1)

In this case, it is necessary to segment the original
sequence x[n] is into overlapping blocks x,[n],

The terms of the circular convolution of h[n] with
X[n] that correspond to the terms obtained by a
linear convolution of h[n] and x,[n]

The other, incorrect, terms of the circular
convolution are thrown away
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Overlap Save Method

.,ﬂmkuuﬂlwﬂilﬂﬂh

O‘. lel]H « Overlapping length-N

! segments of x,[n]

'W,H,mﬂllﬂ .
!mn

« Original sequence,
x[n], of unknown

l“‘u[[[ﬂ”f“ll“ " length

« Circular convolution is
implemented with
length N

"*nmlur'-'
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Overlap-Save Method

wylnt

* The length-N

0' woltllleny  Hrt . circular convolutions
i of length-M impulse
] lr,':n'r ] response, h[n], and

i the blocks x,[n] of
fe " length-N

The incorrect M-1
first terms in each
circular convolution
are rejected
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Summary

* The discrete Fourier transform, DFT, of a finite-
length sequence was discussed

» The length of the transform coefficient sequence,
i.e., the length of the DFT, is the same as the
length of the discrete-time sequence

» The DFT is widely used in a number of digital
signal processing applications

« In practice, the DFT can be efficiently
implemented using the Fast Fourier Transform
(FFT) algorithm
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