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Finite-Length 
Di t  T f5 Discrete Transform5

Introduction
• In this chapter, finite-length transforms are 

discussed 
• In practice, it is often convenient to map a finite-

length sequence from time domain into a finite-
length sequence of the same length in the 
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g q g
frequency domain

• The samples of the forward transform are unique 
and represented as a linear combination of the 
samples of the time domain sequence

• The samples of the inverse transform are obtained 
similarly from the samples of the transform domain

Introduction
• In some applications, a very long-length time 

domain sequence is broken up into a set of short-
length sequences and a finite-length transform is 
applied to each short-length sequence

• The transformed sequences are processed in the 
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q p
transform domain

• Time domain equivalents are produced using the 
inverse transform

• The processed short-length sequences are 
grouped together in the time domain to form the 
final long-length sequence

• Let x[n] denote a length-N time domain sequence 
with X[k] denoting the coefficients of its N-point 
orthogonal transform

• A general form of the orthogonal transform pair is 
of the form

Orthogonal Transforms
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of the form
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• In the transform pair, the basis sequences
ψ[k,n] are also length-N sequences in both 
domains

• In the class of finite-dimensional transforms, the 
basis sequences satisfy the condition

Orthogonal Transforms
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basis sequences satisfy the condition  
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• Basis sequences ψ[k,n] satisfying the above 
condition are said to be orthogonal to each other

• An important consequence of the orthogonality 
of the basis sequence is the energy 
preservation property of the transform

• The energy                   of the time domain 
b d i h

Orthogonal Transforms
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sequence x[n] can be computed in the 
transform domain

• The energy can be written as
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• Let us express x[n] in terms of its transform 
domain representation

Orthogonal Transforms
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which is known as the Parseval’s relation
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The Discrete Fourier Transform
• In the following, the discrete Fourier transform, 

DFT, is defined
• The inverse transformation, IDFT is developed
• Some important properties of the DFT are 

discussed
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discussed
• DFT has several important applications:

– Numerical calculation of the Fourier transform 
in an efficient way

– Implementation of linear convolution using 
finite-length sequences

Definition of the DFT
• Discrete Fourier transform (DFT) of the 

length-N sequence x[n] is defined by

The basis sequences are:
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• The basis sequences are:
which are complex exponential sequences 

• As a result, DFT coefficients X[k] are complex 
numbers, even if x[n] are real

• It can be easily shown that the basis sequences 
ej2πkn/N are orthogonal

[ ] jenk,ψ =

Discrete Fourier Transform (DFT)
• Common notation with DFT:  WN = e-j2π/N

• DFT can now be written as follows:
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• Inverse Discrete Fourier Transform (IDFT):
0n
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• X[k] and x[n] are both sequences of finite-length N

Discrete Fourier Transform Pair
• The analysis equation:

Th h i i
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• The synthesis equation:
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• DFT pair is denoted as: ][][ kXnx
DFT

↔

Relation Between the Discrete-Time 
Fourier Transform and the DFT

• The DTFT X(ejω) of the length-N sequence x[n]
defined for 0≤n≤N-1 is given by:
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• By uniformly sampling X(ejω) at N equally spaced 
frequencies ωk = 2πk/N, 0≤k≤N-1, on the ω-axis 
between 0≤k≤2π
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Relation Between the Discrete-Time 
Fourier Transform and the DFT

• The N-point DFT sequence X[k] is precisely the 
set of frequency samples of the Fourier transform 
X(ejω) of the length-N sequence x[n] at N equally 
spaced frequencies, ωk = 2πk/N, 0≤k≤N-1
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p q k

• Hence, the DFT X[k] represents a frequency 
domain representation of the sequence x[n]

• Since the computation of the DFT samples 
involve a finite sum, for time domain sequences 
with finite sample values, the DFT always exists

Numerical Computation of the 
Fourier Transform Using the DFT

• The DFT provides a practical approach to the 
numerical computation of the Fourier transform 
of a finite-length sequence 

• Let X(ejω) be the Fourier transform of a length-N
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( ) g
sequence x[n]

• We wish to evaluate X(ejω) at a dense grid of 
frequencies ωk = 2πk/M, 0≤k≤M-1, where M>>N:
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Numerical Computation of the 
Fourier Transform Using the DFT

• Define a new sequence xe[n] obtained from x[n]
by augmenting with M-N zero-valued samples
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• Making use of xe[n] we obtain

which is an M-point DFT  Xe[k] of the length-M
sequence xe[n]

Example 5.5:
• Compute the N-point DFT of the length-16

sequence x[n]=cos(6πn/16) of angular frequency 
ω0=0.375π

• The 16-point DFT of x[n] is (Example 5.2)

[ ] ⎨
⎧ ==  and  for 133,8 kk

kX
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• Since the Fourier transform X(ejω) is a continuous 
function of ω, we can plot it more accurately by 
computing the DFT of the sequence x[n] at a 
dense grid of frequencies using MATLAB

Example 5.5:

• 16-point DFT 
denoted by ’o’

• 512-point DFT 
denoted by

x[n]=cos(6πn/16)
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denoted by
’       ’

• Normalized 
frequency 
with 2π = 1;

3/16 = 0.1875

Sampling the Fourier Transform
• The discrete Fourier transform DFT can also be 

obtained by sampling the discrete-time Fourier 
transform DTFT, X(ejω), uniformly on the ω -axis 
between 0 < ω < 2π, at  ωk= 2πk/N,  k=0,1,... ,N-1

jeXkX )(][ ω
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• X[k] is now a finite-length sequence of length N
like the time domain sequence x[n] 
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Operations on Finite-Length 
Sequences

• Like the Fourier transform, the DFT also satisfies 
a number of properties that are useful in signal 
processing

• Some of the properties are essentially identical to 
those of the Fourier transform while some others
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those of the Fourier transform, while some others 
are different

• Differences between two important properties are 
discussed:
– Shifting and 
– Convolution

Circular Shift of a Sequence

• Several DFT properties and theorems involve 
shifting in the time domain and in the frequency 
domain

• The operation of shifting of a finite-length 
i ti d i i f d t

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 5

20

sequence in time domain is referred to as 
circular time-shifting 

• In frequency domain the corresponding operation 
is referred to as circular frequency-shifting

Circular Shift of a Sequence

• Consider length-N sequences defined for the 
range 0≤n≤N-1 

• Such sequences have zero for n<0 and n≥N
• Shifting such a sequence x[n] for any arbitrary

© 2009 Olli Simula T-61.3010 Digital Signal Processing; 
Mitra 3rd Edition: Chapter 5

21

• Shifting such a sequence x[n] for any arbitrary 
integer n0, the resulting sequence x1[n]=x[n-n0] is 
no longer defined for the range 0≤n≤N-1 

• It is necessary to define a shift operation that will 
keep the shifted sequence in the range 0≤n≤N-1

• This is achieved using the modulo operation

Circular Shift of a Sequence
• Let 0,1, ..., N be a set of N positive integers and 

let m be any integer
• The integer r obtained by evaluating m modulo N is 

called the residue and it is an integer with a value 
between 0 and N-1
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between 0 and N 1
• The modulo operation is denoted as 

• If we let                , then 
where l is an integer to make m+lN a number in the 
range 0≤n≤N-1 

Nmm N  modulo =

Nmr = lNmr +=

Circular Shift of a Sequence
• Using the modulo operation, the circular shift of a 

length-N sequence x[n] can be defined using the 
equation

[ ] [ ]
NC nnxnx 0−=
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where x[n] is also length-N sequence 
• The concept of circular shift of a finite-length 

sequence corresponds to ”rotation” of the 
sequence within the interval 0≤n≤N-1 

• Consider a general sequence x[n] that is of 
finite-length, i.e., for some integers N1 and N2, 
x[n] = 0 outside the range -N1 < n < N2

Representation of a Finite-Length 
Sequence

][nx
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][nx

0 nN2-N1

• The shifting operation of finite-length sequences 
can be represented via periodic sequences
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• A periodic sequence, xp[n], is formed from the 
aperiodic sequence with x[n] as one period

Representation of Aperiodic Signals

][nx
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• As N approaches infinity, xp[n] = x[n] for any finite 
value n

0 nN2-N1
][nxp

0 nN2-N1 N-N

• Shifting of a finite sequence corresponds to 
rotation

Circular Time-Shift of a Sequence

][nx
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Circular Convolution
• Consider two length-N sequences, g[n] and h[n]
• Their linear convolution is a sequence of length 

2N-1
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• In order to calculate the above linear convolution 
both length-N sequences have been zero-padded 
to extend their length to 2N-1

=0m

Circular Convolution
• A convolution-like operation resulting in a length-N

sequence yC[n], called a circular convolution is 
defined as

∑
−

=

−=
1

0

][][][
N

m
NC mnhmgny
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• The above operation is often referred to as an 
N-point circular convolution

• Due to length-N sequences, the N–point circular 
convolution is denoted as 

yC[n] = g[n] h[n] = h[n] N N g[n]

Application of Circular Convolution
• The N-point circular convolution does not 

correspond to the linear convolution of two 
length-N sequences

• The circular convolution can, however, be used to 
compute the linear convolution correctly: 
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p y
– The linear convolution of two finite-length 

sequences of length N and M results in a 
sequence of length N+M-1

– The circular convolution must be computed for 
the length N+M-1 by zero-padding the original 
sequences 

Classification of  
Finite-Length Sequences

• For a finite-length sequence defined for  0≤n≤N-1, 
all definitions of symmetry do not apply

• The definitions of symmetry in the case of finite-
l th i h th t th
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length sequences are given such that the 
symmetric and antisymmetric parts of length-N
sequence are also of length N and defined for the 
same range of values of the time index n
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Classification Based on 
Geometric Symmetry

• Geometric symmetry is an important property in 
DSP, i.e., in the properties of FIR filters

• A length-N symmetric sequence x[n] satisfies 
the condition
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the condition
x[n] = x[N-1-n] 

• A length-N antisymmetric sequence x[n] satisfies 
the condition

x[n] = -x[N-1-n] 

Geometric Symmetry of Sequences

x[n]

n

x[n]

n

Positive 
symmetry

(a) Type 1 N=9 (b) Type 2 N=10
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x[n]

nn

x[n]Negative 
symmetry

(a) Type 1, N=9 (b) Type 2, N=10

(c) Type 3, N=9 (d) Type 4, N=10

Center of symmetry

Type 1 Symmetry with Odd Length
• Type 1 symmetric sequence, with N=9, is

• The Fourier transform is
( ) [ ] [ ] [ ] [ ] [ ] ωωωωω 432 43210 jjjjj exexexexxeX −−−− ++++=
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• Now,   x[0]=x[8], x[1]=x[7], x[2]=x[6], x[3]=x[5]
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Type 1: Symmetry with Odd Length
• Taking e-j4ω as a common factor in each group of 

terms
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Type 1: Symmetry with Odd Length
• Notice that the quantity inside the braces, { }, is 

a real function of ω and can assume positive or 
negative values in the range 0≤ω≤π

• The of the sequence is given by
h β i ith 0 d h th h i

( ) βωωθ +−= 4
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where β is either 0 or π, and hence the phase is 
a linear function of ω

• In general, for Type 1 linear-phase sequence of 
length-N
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Type 2: Symmetry with Even Length
• Similarly, the Fourier transform of Type 2 

symmetric sequence, with N=8, can be written
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where the phase is given by
• In general, for Type 2 linear-phase sequence of 

length-N

( ) βωθ ω +−= 2
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Type 3: Antisymmetry with Odd Length
• The Fourier transform of Type 3 antisymmetric 

sequence, with N=9, is (notice that x[4]=0)
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• Now, x[0]=-x[8], x[1]=-x[7], x[2]=-x[6], x[3]=-x[5] and x[4]=0
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Type 3: Antisymmetry with Odd Length
• Multiplying by j=ejπ/2 and 2, we obtain

which results in
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which results in

The phase is now
• The antisymmetry introduces a phase shift of π/2
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Type 3 and 4: Antisymmetry with Odd 
and Even Length 

• In general, the Fourier transform of Type 3 linear-
phase antisymmetric sequence of odd length-N is
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• Similarly, the Fourier transform of Type 4 linear-
phase antisymmetric sequence of even length-N is

• In both cases, j=ejπ/2 introduces a phase shift of π/2
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Discrete Fourier Transform Theorems
• The important theorems hold for DFT with time 

domain sequences length-N and their DFTs of 
length-N , e.g.,

– Linearity
Circular time shifting
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– Circular time-shifting
– Circular frequency-shifting
– Circular convolution
– Modulation
– Parseval’s theorem

• The proofs are straightforward using the definitions

Linear Convolution of Two
Finite-Length Sequences

• Let g[n] and h[n] be two finite-length sequences 
of lengths N and M, respectively

• The objective is to implement their linear 
convolution
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convolution 

• The length of the sequence yL[n] is L=N+M-1
• The linear convolution can be obtained using the 

circular convolution with the correct length equal 
to L

[ ] [ ] [ ]nhngnyL ∗=

Linear Convolution of Two
Finite-Length Sequences

• Define two length-L sequences ge[n] and he[n] by 
appending g[n] and h[n] with zero-valued 
samples

[ ] [ ]
⎨
⎧ −≤≤ 10, Nnng

ng
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[ ]
⎩
⎨ −≤≤

=
1,0 LnN

nge

[ ] [ ]
⎩
⎨
⎧

−≤≤
−≤≤

=
1,0
10,

LnM
Mnnh

nhe

• Then, 
[ ] [ ] [ ] [ ]nhLngnyny eeCL ==
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Linear Convolution of Two
Finite-Length Sequences Using the DFT
• The linear convolution of two finite-length 

sequences g[n] and h[n] can be implemented 
using the DFTs of length L=N+M-1 as follows  
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Zero-padding
with

zeros1)( −N point DFT

Zero-padding
with

zeros1)( −M
−−+ )( 1MN

point DFT
×

g[n]

h[n]

Length-N

][nge

][nhe −−+ )( 1MN

−−+ )( 1MN
point IDFT

][nyL

Length-M Length- )( 1−+ MN

Data Sequence of Unknown Length
• Problem: Filtering of a data sequence of unknown, 

or infinite length with an FIR filter, with impulse 
response, h[n], of length M using the DFT
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Linear Convolution of 
Finite-Length Sequences

• Filtering of a data sequence of unknown (infinite) 
length with an FIR filter, with impulse response, 
h[n], of length M can be implemented via circular 
convolution, i.e., using the DFT
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g
• The data sequence x[n] is first segmented into 

finite-length sections of length-L
• Two methods to implement the linear convolution

• Overlap-add method
• Overlap-save method

Overlap-Add Method
• The causal data sequence x[n] is first segmented 

into segments of length L
• The original sequence x[n] can now be written as

[ ] [ ]∑
∞

mLnxnx
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where

[ ] [ ]∑
=

−=
0m

m mLnxnx

[ ] [ ]
⎩
⎨
⎧ −≤≤+

=
otherwise,0

10, LnmLnx
nxm

Overlap-Add Method

• Original 
sequence,  x[n], of 
unknown length

• Non-overlapping 
length L
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length-L
segments of x[n]

• Adding the 
segments gives

[ ] [ ]∑
∞

=

−=
0m

m mLnxnx

Overlap-Add Method
• Substituting the segmented form of x[n] into the 

convolution sum

[ ] [ ] [ ] [ ] [ ]∑ ∑∑
−

=

∞

=

−

=

−−=−=
1

0 0

1

0

M

k m
m

M

k

mLknxkhknxkhny

∞∞ − ⎞⎛ 1M
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where  
• The linear convolutions of h[n] and the segments 

of xm[n], which all are all of length-N, (N=M+L-1) 
are thus added

[ ] [ ] [ ]∑∑ ∑
∞

=

∞

= =

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

00

1

0 m
m

m

M

k
m mLnymLknxkh
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Overlap-Add Method

• The linear length-N
convolutions of h[n]
and xm[n]

• The overlapping 
t f th li

[ ]=ny0

[ ]=ny1

+
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parts of the linear 
convolutions are 
added

[ ] [ ]∑
∞

=

−=
0m

m mLnyny

[ ]=ny2
+

Overlap-Save Method
• It is possible to implement the linear convolution 

also by performing circular convolutions of length 
shorter than (M+L-1)

• In this case, it is necessary to segment the original 
sequence x[n] is into overlapping blocks x [n]
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sequence x[n] is into overlapping blocks xm[n], 
• The terms of the circular convolution of h[n] with 

xm[n] that correspond to the terms obtained by a 
linear convolution of h[n] and xm[n] 

• The other, incorrect, terms of the circular 
convolution are thrown away

Overlap-Save Method
• Original sequence,  

x[n], of unknown 
length

• Overlapping length-N
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segments of xm[n]

• Circular convolution is 
implemented with 
length N

Overlap-Save Method

• The length-N
circular convolutions 
of length-M impulse 
response, h[n], and 
the blocks xm[n] of  
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m
length-N

• The incorrect M-1
first terms in each 
circular convolution 
are rejected

Summary
• The discrete Fourier transform, DFT, of a finite-

length sequence was discussed 
• The length of the transform coefficient sequence, 

i.e., the length of the DFT, is the same as the 
length of the discrete-time sequence
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length of the discrete time sequence
• The DFT is widely used in a number of digital 

signal processing applications
• In practice, the DFT can be efficiently 

implemented using the Fast Fourier Transform 
(FFT) algorithm 


