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Introduction

 Input-output relation of an LTI system can be
realized using different computational

Digital Filter algorithms

* Basic realization forms of FIR and IR digital

Structures filters are considered

« Mitra’s book covers also various more
sophisticated realizations of digital filters, e.g.
lattice structures, allpass sections, and state
space structures, not discussed in this course
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Time-Domain Characterizations Basic Building Blocks
Convolution Sum: y[n]= 3 h[k]x[n —k] . x[n] ~,
2 . Adder: o T x4 0]

Linear Constant Coefficient Difference Equation:

N M « Multiplier: x[n] —-DL ax[n]

yInl=->d,yIn—K1+>_ pxn—K]

kzl 0 « Unit delay: x[n] % xn-1]
State-Space Equations:

s[n+1] = As[n] + Bx[n] « Branch node: XN X[n]

y[n] = Cs[n]+dx[n] (]
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Basic Operations Analysis of Block Diagrams

Addition / Subtraction N « Example: Analyze the cascaded lattice structure
Multiplication (constant coefficient) shown below where the z-dependence of signal
* Delay (memory) variables are not shown for brevity

Example: First-order digital filter

4 =X- . W, =W -3, :
B w, = Wy =X -a$, !r‘\l:—» A h 1 'The Slgnal
Po values in the
x[n] >
delay outputs
7
) , are:
x[n-1] ’\ <t 5, E' W, 5 L Y
Y =BW; +7S, T Wy =S +eW, Sy =2"W,
y[n]= pox[n]+ px[n-1]—d,y[n-1] Sy =27,
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Analysis of Block Diagrams Analysis of Block Diagrams
* Substituting the values of delay elements in the » Combining the last two equations we get
first four equations we get etz
WIZX_O‘Z%I\N3 W32271VV2 +&W, 3 1+5271 !
Wy =W, — 8271, Y =W, -7z W, « Substituting the above equation in the first

and fourth equation gives
Wi=X-azW;, Y =BW,+yzW;
we finally arrive at
H(z)= Y ﬂ+(ﬂ5+yg)z +7z

* Solving W, from the second equation we get
W, =W, /(1+8271)
and solving W, from the third equation we get

Wy = (e+ 27 )W, 1+(0+ae)z +az™?
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The Delay-Free Loop Problem The Delay-Free Loop Problem
A block diagram containing delay-free loops is ) ]
physically non-realizable * Solving for y[n]: y[n]= w[n]+ AB vin]
- Example:  y[n] = B{A(w[n]+ y[n])+vIn]} wir] -e o
wln]+y[n] fL j SZ A
wln] + un] B
@ @ A yin] + V]
yin] < v[n]

ﬁ> Delay-free loop realization
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Equivalent Structures Basic FIR Digital Filter Structures

» Two digital filter structures are defined to be ) : )

equivalent if they have the same transfer « Transfer function of a causal FIR filter of length M:

. M-1

function H(z)= Y h[klz*
» Generation of an equivalent structure via the k=0

transpose operation: H(z) is a polynomial in z1 of degree M-1

1) Reverse all paths,

2) Replace pick-off (branching) nodes by adders,
and vice versa,

3) Interchange the input and output nodes

-
« Input-output relation is given by: y[n]=>_h[k]x[n—K]
k=0

« The output y[n] is the weighted sum of the input
x[n] and and its M-1previous values

The original structure and the transposed « The weights are the the values of the unit impulse

structure have the same transfer function response h[n]

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 1 © 2007 Olli Simula T-61.3010 Digital Signal Processing; 12
Mitra 3rd Edition: Chapter 8 Mitra 3rd Edition: Chapter 8

Mitra 3rd Edition: Chapter 8;
© 2007 Olli Simula 2



T-61.3010 Digital Signal Processing and
Filtering

11.1.2007

» The products h[k]x[n-k] are accumulated to
form the output y[n]

» The structure is called a tapped delay line or
a transversal filter
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Direct Form FIR Filter Structure

x[n-1] x[n-2] x[n-3] x[n-4]

Transposed Direct Form FIR
Filter Structure

B
VAN EIVAN h[ﬂ% h[lllf h[0]%

x[n]

« Both direct form structures are canonic with
respect to delays

« Direct form FIR structures are computationally
efficient when using modern signal processors
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Polyphase Realization

» Polyphase decomposition of the FIR transfer

filter
H(z) = h[0]+h[1]z* + h[2]z 2 + h[3]z® + h[4]z™*

+h[5]z° +h[6]z° +h[7]z" +h[8]z"®

terms, one containing the even-indexed

indexed coefficients
H (2) = (h[0] + h{2]z ™ +h[4]z ™ +h[6]z " + h[8]z*)
+27*(h[1]+h[3]z % + h[5]z* + h[7]z )
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function results in a parallel structure of an FIR

coefficients and the other containing the odd-

« Expressing the above equation as a sum of two

Polyphase Realization
 Using the notations

E,(z) = h[0]+h[2]z™* +h[4]z ™ + h[6]z"* + h[8]z ™

E,(2) =[]+ h[3]z* +h[5]z 2 + 7]z

H(z) can be written as: ‘ H(z) = E,(z*) + 27'E,(z%)
« Similarly, by grouping the terms differently, the
transfer function can be rewritten as
H(2) =E,(2°)+ 2 'E(2°) + 2 °E,(2°)
where  Eq(2) =h[0]+h[3]z " +h[6]z
E,(z) = h[1]+h[4]z* +h[7]z"*
E,(z)=h[3]+h[5]z" + h[8]z
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Polyphase Decomposition

form

L-1
H(@)=) 72 "E,(z")
m=0
[M/L]
with  h[n]=0, for n>M
* The subfilters E,(z") are also FIR filters
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where E (2)= D h[Ln+m] z", 0<m<L-1
n=0

« In general, an L-branch polyphase decomposition
of the transfer function H(z) of order M-1 is of the

Polyphase Realization

« A realization of the transfer function H(z) based
on the polyphase decomposition is called a
polyphase realization

@
Polyphase realizations of an FIR transfer function:
Four-branch (a), three-branch (b), and two-branch (c) structures
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Linear-Phase FIR Structures Linear-Phase FIR Structures

« Linear-phase FIR filter of length M is
characterized by the symmetric impulse response

h[n]=h[M —1-n]
« An antisymmetric impulse response condition
h[n]=-h[M -1-n]

results in a constant group delay and “almost
linear-phase” property

e Length M is odd (M=7)
H(z) = h[oJ+2° )+ h[t](z * + %)
+h[2l(z 7+ 2 )+ hi3lz

Symmetry of the impulse response coefficients can Th[O] fh[” Y"[Z]
be used to reduce the number of multiplications D )
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Linear-Phase FIR Structures Basic IIR Filter Structures

« Length M is even (M=8) . The transfer functigq is rational_

« Direct forms: Coefficients are directly the transfer
H(z2)= h[O](1+ 277)+ h[l](f1 + 276) function coefficients
+h[2)(z % +27%)+ h3)(z* +2°) H(z) =@ _ Pt Pllj+ sz + Paf
D(z) 1+dz7+d,z"+d,z
E‘l D D | ¢ Considering the numerator and denominator
separately
w _ _ _
Hl(z)=%=l°(z)= Po+ P27+ Pz 7+ gz
Y@ _ 1 _ 1
Hz(Z)_W(z) D(z) 1+dzt+d,z%+d,z°
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Basic IIR Filter Structures Direct Form |
W(2) « Considering the basic cascade realization
X(2) — H,(z) > — H)(2) Y@ results in Direct form | :
1
H(z)=P(z)-——
(2)=P(2) o)
F,
x[n] yInl

* H,(2) realizes the zeros and H,(z) realizes the
poles of the transfer function H(z)

Zeros Poles
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Direct Form I Canonic Structure
. C.hanging the order of blocks in cascade results in  The number of delays can be reduced by noticing
direct form II that the same signal value w,[n] is stored into
H(@2)=P(2)—==—="P@ both delay lines
D( ) D(Z)

P— yn]
2
)

x| —4
q_
q_

Xl —e
G_
G_

Canonic Direct Form Il Structure Additional Direct Form | Structures

x[n] —G
G.
q_

> Canonic structure with respect to delays
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Direct Form Il Structures Cascade Realizations
« Factoring the numerator and denominator
(- ROR@P)
D,(2)D,(2)D4(2)

« Various alternatives in pairing the poles and zeros
Aiz) Bia| | A@ P, B | A
e xE W m ) Dz iz}
Aol lrol | LACH AT :
Dy(z) Dyiz) Liz H kiz)
Direct Form Il and Direct Form Il transposed rol faa] [A© l o] [A@

Dyiz) h(z) hizh Dyiz)
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Cascade Realizations

 Various alternatives in ordering the sections

Fiz) Pz} Pz} Piz) Pz Bz

— L2y E e 1 o =L
Iyiz) 0,(z) Dy(z) iz Dy(z) Dy2)
iz Pz Fizh Pz Pz (=

A JRo L JREL A0 JROL T RE |
iz iz ki) Dz nyiz) Dyz)
Rl Bz Biz) Pz P(z) Bz

— —— ¥ —* = —H - f—y —= ¥ e b
iz (2 D,z n(2) XE) iz

« Different realizations behave differently under
finite wordlength constraints

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 31
Mitra 3rd Edition: Chapter 8

First and Second Order Blocks
in Cascade

¢ Usually the polynomials are factored into a
product of first and second order polynomials

H(Z):H(Mj

Lozt a2

« For a first-order section o, =£,=0

« Realizing complex conjugate poles and zeros with
second order blocks results in real coefficients

© 2007 Olli Simula T-61.3010 Digital Signal Processing; 32
Mitra 3rd Edition: Chapter 8

First and Second Order Blocks
in Cascade
« Example: Third order transfer function
1+ﬂuz*][uﬁuzﬂﬁuz’zJ

-1 -1 -2
I+a27 \1+o,27 +apt

H(z)= pu[

» General structure:

- Hl(z) ™ Hz(z) "“'HHle(Z)*’
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Parallel Realizations

« Parallel realizations are obtained by making use
of the partial fraction expansion of the transfer
function

a1 S
H(Z):}’u‘*'Z( Yok 7l 72} H(Z):§U+Z[ Oy 2 +0y2 J

1
ltay 2™ +ayz

-1 -2
P c\ 1+ a2 +ayz

Parallel Parallel
form | form I
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Parallel Realizations

* General structure: H,(2)

H,(2)

Hy/2(2)

« Easy to realize:
« No choices in section ordering and
« No choices in pole and zero pairing
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State-Space Structures

filter can be described by |s,[n+1]| |a, a,|s[nl| |b,
the state-space equations: sIn]
1

s,[n]

« A second-order IIR digital [SJMH}{% aﬂ}[sl[n]}{bl}x[n]

yinl=[e, Cz{ }dx[n]

wa  Large number of
arithmetic operations
needed (when
compared to direct
form second order
blocks)
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Digital Oscillators

» There are applications where a digital oscillator
or frequency synthesizer is required to generate
a discrete-time sinusoid of programmable
frequency g,

A second-order recursive digital filter with poles
on the unit circle is “marginally stable”

« With non-zero initial conditions, it ideally
produces a sinusoidal output

» The frequency a, of the sinusoid is determined
by the angle of the unit-circle poles
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Recursive Quadrature Oscillators

» A quadrature oscillator generates two sinusoidal
outputs of the same frequency and amplitude but
the phase differs by 90°

]_‘ N:* Acos(w,n)
1 2 [I™ hr s ap .
= i - Asin(wyn)
[27]
© 2007 Olli Simula T-61.3010 Digital Signal Processing; 38

Mitra 3rd Edition: Chapter 8

Digital Sine-Cosine Generator

» Consider two causal impulse responses
hy[n]= Acos(eyn) u[n]
h,[n]= Asin(a,n) u[n]
» The corresponding system functions (without
gain A) are

H,(2) = 1-(cosw,)z™

1-2(coswy)z ™ +2°
B (sinmwy)z*
1-2(cosawy)zt +2°

2

H,(2)

2
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Digital Sine-Cosine Generator

A two-output recursive structure below has the
system functions H,(z) and H,(z)

h,[n]= Acos(a,n)

h,[n]= Asin(wyn)
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Digital Sine-Cosine Generator

» Solving the signal values from the structure

I

J W][?‘]EI_.J . yl[n]:Wl[n]—cos(wo)wl[n—l]
g

]
~wz[n]-w1[n11

w,[n]= 2cos(ey)w,[n —1]- w, [n 1]+ x[n]
—> w[n]=2cos(e,)w;[n —1]-w;[n - 2]+ x|n]
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Digital Sine-Cosine Generator

* Using the z-transform and solving W,(z)
W, (z) = 2c0s(wy) 2 W, (2) — 272W, (2) + X (2)

= W,@)fL-2cos(wy)zt +272] = X(2)
 Taking the z-transform of the outputs gives
Y, (2) =W, (2) - cos(m,) 2 W, (2)
Y, (2) =sin(@,)2 "W, (2)
* Substituting W, (z) into the above equations
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Digital Sine-Cosine Generator Digital Sine-Cosine Generator
* Equations for Y,(z) and Y,(z) are now * Substituting now x[n]=Ad[n] we notice that X(z)=A
B 4] 1-cos(wy)z » The expressions for the outputs Y,(z) and Y,(z)
(2= @}t ~cos(e)z”] T1-2cos(wp)z 422 () are now
. _ B sin(e,)z ™ _ _ 1-cos(w,)z™
Y,(2) =sin(ep)z W, (2) T Zoostay 7 Yl(z)fAHl(z)fAW
* Solving the system functions H,(z) and H,(z) gives Y, (2) = AH,(2) = A sin(@,)z "
2 2 1-2cos(wy)z t+ 272
H,(2) = Yi(z) _ 1-cos(wp)z”
! X(2) 1-2cos(my)zt+127? » The oscillator outputs are obtained, e.g., from the
Y,(2) sin(w,)z™" inverse z-transform tables
H.(2)= (D) 1—2cos(m)z s 22
(z) 1-2cos(my)z™ +12
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