Tik-61.246 Digital Signal Processing and Filtering

1. Mid Term Exam 8.11.1999 at 12-15. Halls C, D, G.

1.	a)	Suppose that we have a system, whose input-output-relation is
		$y[n] = x[n] + nx[n-1]$. When feeding in $\delta[n]$ the system gives
		the output $h[n]$, see the table. Is the system LTI (linear and
		time/shiftinvariant). Explain. (1p) Is the system stable? Explain.
		(1p)

n	$\delta[n]$	h[n]
0	1	1
1	0	1
2	0	0
2 3 4	0	0
4	0	0

- b) Suppose that we have a FIR filter whose transfer function is $H(z) = 1 z^{-8}$. Calculate all zeros of H(z). (1p)
- 2. a) There is a block diagram in the figure 1 below. Derive the corresponding difference equation using x and y. (1p)

Figure 1: A block diagram for Problem 2.

- b) z-transform the difference equation and show the transfer function H(z) in its simplest form. (1p)
- c) Draw the pole-zero-diagram and answer whether the system is stable. (1p)
- 3. There are three pole-zero diagrams of three LTI systems in the figure 2. Answer for each subfigure i, ii, iii the following questions. (3×1p)
 - a) Draw the amplitude response of the system. Scale the maximum amplification to 1 (0 dB) and normalize the frequency axis to $0..\pi$ (half of the unit circle).
 - b) Is the filter FIR or IIR?
 - c) What is its order?
 - d) Is the system lowpass, highpass, bandpass, bandstop or allpass filter?

Figure 2: Pole-zero diagrams for Problem 3

4. The transfer function of a LTI-system is

$$H(z) = \frac{1 + z^{-2}}{1 - 0.6z^{-1} - 0.72z^{-2}} \ .$$

- a) Calculate the poles and zeros, and draw a pole-zero diagram. (1p)
- b) What is the region of convergence (ROC) for the causal system? (1p)
- c) What is the region of convergence (ROC) for the stable system? (1p)
- d) Calculate the impulse response h[n] for the causal system. (2p)
- e) For a stable LTI-system $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$. Is the causal system from question 4d also stable? Explain with the h[n]. (1p)

5. We have a signal

$$x_1(t) = \cos(2\pi f_1 t) + 2\cos(2\pi f_2 t) + 5\cos(2\pi f_3 t)$$
,

where $f_1 = 2$ kHz, $f_2 = 3$ kHz and $f_3 = 5$ kHz.

- a) Is the signal $x_1(t)$ periodic? If so, what is the basic period length T? (1p)
- b) Draw the absolute value of spectrum (magnitude spectrum) $|X_1(j\omega)|$ of signal $x_1(t)$ in frequency axis -10...10 kHz. (1p)
- c) Use an ideal lowpass filter

$$H(j\omega) = \begin{cases} 1, & f < 4 \text{kHz} \\ 0, & f \ge 4 \text{kHz} \end{cases}$$

and filter $X_2(j\omega) = H(j\omega)X_1(j\omega)$. Draw the absolute value of spectrum $|X_2(j\omega)|$ in frequency axis -10...10 kHz. (1p)

- d) Sample the filtered signal $x_2(t)$ with sampling frequency of $f_T=5$ kHz and draw the absolute value of spectrum $|X_2(e^{j\omega})|$ of the sequence $x_2[n]$ in frequency axis -10...10 kHz. (2p)
- e) Reconstruct a continuous signal $x_3(t)$ from the discrete sequence $x_2[n]$ and draw it in time axis 0 < t < 0.5 ms. What is the maximum value of $x_3(t)$? (1p)