Tik-61.246 Digital Signal Processing and Filtering

2nd Mid Term Exam 13.12.2000 at 9-12. Halls A, B, and C.

You may use a (graphical) calculator and a mathematical reference book. Storing additional material into the calculator's memory is strictly forbidden.

- 1. (2p) Are the following statements right or wrong? Correct answer: +0.5 p, no answer: 0 p, wrong answer: -0.5 p; the point total is still between 0 and 2 points.
 - a) An allpass filter always has linear phase.
 - b) The order of the filter $H(z) = \frac{p_0 + p_1 z^{-1} + p_2 z^{-2}}{1 + d_1 z^{-1} + d_2 z^{-2}}$ is 4.
 - c) Gibbs phenomenon refers to the oscillatory behavior of the magnitude responses of FIR filters which can be reduced by selecting a suitable window function.
 - d) Quantizing the coefficients of an IIR filter causes error which can affect the stability of the filter.
- 2. (4p) Transform the filter structure in the figure below to a canonic (w.r.t. delay units) filter structure having the same transfer function.

3. (6p) Consider an analog lowpass filter whose transfer function in s-domain is

$$H_{LP}(s) = 1/(s+1)$$

- a) Derive the corresponding digital transfer function $H_i(z)$ designed with the impulse-invariant method.
- b) Derive the corresponding digital transfer function $H_b(z)$ designed with bilinear transform. Suppose that the frequency distortion has already been compensated for.
- c) What are the differences between these two methods?
- 4. (6p) The sampling frequency of a discrete-time signal x[n] is to be lowered to two thirds of the original sampling frequency ω_s . The interesting band of the signal (bandlimited signal) is between $[0, \frac{\omega_s}{4}]$.

Design the required system and sketch the signal in the frequency domain after each component. Determine also the highest possible cut-off frequency ω_r of the aliasing suppression filter.

 $\text{Laplace transforms:} \quad H_{LP}(s) = \frac{1}{s+1} \quad \Leftrightarrow \quad h_{LP}(t) = \left\{ \begin{array}{ll} 0 & , & t < 0 \\ e^{-t} & , & t \geq 0 \end{array} \right.$

Bilinear transform: $s = \frac{1 - z^{-1}}{1 + z^{-1}}$