
AB

Learning a Class from Examples
Noise and Regression

Conclusion

T-61.3050 Machine Learning: Basic Principles
Supervised Learning

Kai Puolamäki
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Learning a Class from Examples

What follows is some theory of classification into two classes.

We assume there is no noise (results can be generalized to
noise, though).

What you should learn:

Learning can be seen as pruning out possible hypothesis.
Learning is generalization (we want to predict classes of new
examples).
Learning is impossible if the hypothesis space is too large (in
other words: we need some prior information, we need to
select a model family)
The complexity of the hypothesis space (model family) can be
characterized using the VC dimension.
More complex model, bigger the training data needed.
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Independent and Identically Distributed (iid) Data

We assume that we have a training data X that contains N
data points drawn independently from the identical
distribution.
In other words: ordering of the data points does not matter.
Usually a good approximation.
Notable exception: time series.
Example: today’s temperature is not independent of the
yesterday’s temperature, in fact, there is a strong correlation.

Outside temperature in Otaniemi from http://outside.hut.fi/.

Kai Puolamäki T-61.3050

http://outside.hut.fi/


AB

Learning a Class from Examples
Noise and Regression

Conclusion

Introduction
Aldo and Family Car
PAC Learning and VC Dimension

Outline

1 Learning a Class from Examples
Introduction
Aldo and Family Car
PAC Learning and VC Dimension

2 Noise and Regression
Noise
Regression
Validation

3 Conclusion
About Supervised Learning
Better Basis Functions
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Does Aldo Enjoy Sport?

Question: Does Aldo enjoy sport, given weather conditions?

Assumption: we have sufficient information (6 weather
attributes) that fully determine Aldo’s enjoyment of sports (no
“noise”, Aldo is deterministic).

xt r(xt)
t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1

Table: Aldo’s observed sport experiences in different weather conditions.
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Does Aldo Enjoy Sport?
Hypothesis Class

Hypothesis h is a function from weather attributes x to {0, 1}.
Hypothesis class H is the chosen set of hypothesis.
The goal of the learner is to find a hypothesis h ∈ H such
that h(x) = r(x) for every possible x.
One possible hypothesis class in Aldo’s case is a vector of six
weather attributes. For each attribute, the hypothesis will be
either:

?: any value is acceptable for this attribute.
single value (e.g., “Warm”): required value for this attribute.
∅: no value is acceptable.

If an instance x satisfies the constraints then h classifies this
as a positive example, h(x) = 1.
Example: Aldo enjoys the sport only on cold days with high
humidity (independent of other attributes), this would be
represented with (?,Cold ,High, ?, ?, ?).

Kai Puolamäki T-61.3050
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Does Aldo Enjoy Sport?
General and Specific Hypothesis

Definition

Let h and g be hypothesis on X . h is more general than or equal
to g (written h � g) if and only if

∀x ∈ X : g(x) = 1⇒ h(x) = 1.

Examples:

The most general hypothesis is represented by (?, ?, ?, ?, ?, ?)
(every day is a positive example).

The most specific hypothesis is represented by (∅, ∅, ∅, ∅, ∅, ∅)
(no day is a positive example).

h = (Sunny , ?, ?, ?, ?, ?) is more general than
g = (Sunny , ?, ?,Strong , ?, ?), or h � g .

Kai Puolamäki T-61.3050
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Does Aldo Enjoy Sport?
Consistent hypothesis

Definition (Consistent Hypothesis)

A hypothesis h is consistent with a set of training examples X if
and only if h(x) = r(x) for each example (x, r) ∈ X .

Definition (Version Space)

The version space is the set of all hypothesis that are consistent
with the training examples.

Kai Puolamäki T-61.3050
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Does Aldo Enjoy Sport?
Maximally general and specific hypothesis

Question 1: What are the most general hypothesis that are
consistent with the training data (4 days of observation of
Aldo)? (general boundary G )

Question 2: What are the most specific hypothesis that are
consistent with the training data? (specific boundary S)

Theorem (Version Space Representation Theorem)

Let G and S the most general and most specific hypothesis that
are consistent with the training data. Then all hypothesis that are
consistent with the training data (version space) are given by

{h ∈ H | (∃s ∈ S) (∃g ∈ G ) : g � h � s} .

Kai Puolamäki T-61.3050
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Does Aldo Enjoy Sport?
All consistent hypothesis

AB

Learning a Class from Examples

Does Aldo Enjoy Sport?
All consistent hypothesis

G = {(Sunny , ?, ?, ?, ?, ?), (?, Warm, ?, ?, ?, ?)}

(Sunny , ?, ?, Strong , ?, ?) (Sunny , Warm, ?, ?, ?, ?) (?, Warm, ?, Strong , ?, ?)

S = {(Sunny , Warm, ?, Strong , ?, ?)}

Kai Puolamäki T-61.3050

xt r(xt)
t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1

See Mitchell (1997) and Candidate-Elimination algorithm for details.
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Does Aldo Enjoy Sport?

One of the consistent hypothesis could be the “truth”. For
others we get some error:

Definition (Error of Hypothesis)

E (h | X ) =
1

N

N∑
t=1

1
(
h(xt) 6= r t

)
Given enough training samples, we might be able to end up
with only one consistent hypothesis.
Given enough training samples, we might end up with no
consistent hypothesis if:

If none of the hypothesis in the hypothesis class is correct.
(For example, if Aldo would enjoy sport only if (sky is sunny
and wind is strong) or (sky is rainy and wind is light).)
If there is noise (e.g., some positive examples are incorrectly
observed as negative examples).

Kai Puolamäki T-61.3050
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Does Aldo Enjoy Sport?
Inductive bias

If none of the hypothesis in the hypothesis class is correct we
might end up with no consistent hypothesis.

“Solution”: include all possible hypothesis into the hypothesis
class! In the Aldo’s case, there are 226

= 1.8× 1019 possible
hypothesis (number of boolean functions with 6 inputs).

This does not work (even if we could compute): we could not
say anything of the unseen cases.

Inductive bias: we must restrict the allowed hypothesis to be
able to generalize (predict classes of new instances).

The selection of hypothesis space is called model selection.

Underfitting: the hypothesis space is too simple.

Overfitting: the hypothesis space is too complex.

Kai Puolamäki T-61.3050
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A Family Car

Question 1: Is car x a family car, given car properties?

Question 2: What do people expect from a family car?

Car properties: x = (price, engine power).
Hypothesis: h(x) = 1 if car is a family car.

Kai Puolamäki T-61.3050
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A Family Car
Training set
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Figure 2.1: Training set for the class of a “family

car.” Each data point corresponds to one example

car and the coordinates of the point indicate the

price and engine power of that car. ‘+’ denotes a

positive example of the class (a family car), and ‘−’

denotes a negative example (not a family car); it is

another type of car. From: E. Alpaydın. 2004.

Introduction to Machine Learning. c©The MIT Press.

6

Figure 2.1 of Alpaydin (2004).

X =
{
xt , r t

}N

t=1

r =

{
1 if x is positive
0 if x is negative

x =

(
x1

x2

)

Kai Puolamäki T-61.3050
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A Family Car
True class
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Figure 2.2: Example of a hypothesis class. The class

of family car is a rectangle in the price-engine power

space. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.

7

Figure 2.2 of Alpaydin (2004).

r(x) =


1 p1 ≤ price ≤ p2 ∧ e1 ≤ engine power ≤ e2

0 otherwise

Kai Puolamäki T-61.3050
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A Family Car
Hypothesis class H
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Figure 2.4: S is the most specific hypothesis and G is

the most general hypothesis. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.

9

Figure 2.4 of Alpaydin (2004).

Error of h in X :

E (h | X ) =
1

N

N∑
t=1

1
(
h(xt) 6= r t

)
.

h ∈ H between S and G is consistent
and make up the version space (error in
X is zero). Notice that if S and G are
close the error on new data will be
small!

The hypothesis class H is the set of all rectangles.

The cars between the most general (G ) and most specific (S)
hypothesis may be classified incorrectly. C is the correct
hypothesis.

Kai Puolamäki T-61.3050
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What did we learn from Aldo and Family Cars?

We must choose some hypothesis to be able to predict
anything (unless we observe all possible data values). (model
selection)

This causes inductive bias (the choice of hypothesis space
affects your results).

All consistent hypothesis can be found between the most
general and most specific hypothesis.

There may be no consistent hypothesis due to too simple
hypothesis space (underfitting) or noise. These must be taken
into account in practical applications.

Kai Puolamäki T-61.3050
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Probably Approximately Correct (PAC) Learning

How many training examples N should we have, such that
with probability of at least 1− δ, any consistent hypothesis h
has error at most ε?

Kai Puolamäki T-61.3050
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Probably Approximately Correct (PAC) Learning

Theorem

The probability that version space has no hypothesis with error
greater than ε is at most |H|e−εN .(Assume finite hypothesis class
H.)

Proof.

The probability that a hypothesis that has an error greater than ε
is consistent with one randomly drawn example is at most 1− ε.
Therefore, the probability that this hypothesis is consistent with N
independently drawn examples is at most (1− ε)N . There are at
most |H| hypothesis that have an error greater than ε. The
probability that there is at least one hypothesis in the version space
with an error greater than ε is at most |H|(1− ε)N ≤ |H|e−εN .

It follows that |H|e−εN ≤ δ, or N ≥ 1
ε (ln |H|+ ln (1/δ)).

Kai Puolamäki T-61.3050
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Probably Approximately Correct (PAC) Learning

Theorem (Probably Approximately Correct (PAC) Learning)

We should have N training examples to have an probability of at
least 1− δ that any consistent hypothesis h has error at most ε,
where

N ≥ 1

ε

(
ln |H|+ ln

1

δ

)
If we accept that the best hypothesis might have a non-zero
training error (often case in practice) the limit becomes

N ≥ 1

ε2

(
ln |H|+ ln

1

δ

)
,

where the obtained error will be with probability 1− δ no more
than E (hbest | X ) + ε, where E (hbest | X ) is the error of the best
hypothesis.

Kai Puolamäki T-61.3050
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Vapnik-Chervonekis (VC) Dimension

N points can be labelled
r t = 0/1 in 2N ways.

H shatters N points if there
exists h ∈ H consistent for
all 2N labellings.

Definition (VC Dimension)

VC Dimension is the largest
number N of points that can be
shattered by H.

x
� 2
�

x�
1�

Figure 2.5: An axis-aligned rectangle can shatter

four points. Only rectangles covering two points are

shown. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.

10

Rectangles can shatter four points,
VC = 4. Figure 2.5 of Alpaydin
(2004).

Kai Puolamäki T-61.3050
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PAC Bound using VC Dimension

Theorem

We should have N training examples to have an probability of at
least 1− δ that any consistent h has error at most ε, where

N ≥ 1

ε

(
4 log2

2

δ
+ 8VC (H) log2

13

ε

)
.

We can use the VC dimension instead of ln |H| as a measure
of model complexity.

Lesson: larger VC dimension, more complex model, more
training samples are needed.

(See Mitchell (1997), chapter 7, for details.)

Kai Puolamäki T-61.3050
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What Did We Learn of PAC Learning and VC Dimension?

Hypothesis class complexity (or model complexity) can be
evaluated using the VC dimension.

More complex model, more data you need to learn (learning is
ability to describe the true hypothesis with a given
confidence).

PAC bounds are extremely conservative, in practice (when we
also have noise) we usually need significantly smaller data sets.

Kai Puolamäki T-61.3050
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Noise and Model Complexity

Noise is unwanted anomaly of data.

Because of the noise, we may never reach
zero error.

Noise may be caused by:

Errors in measurements of input
attributes or class labels.
Unknown or ignored (hidden or latent)
attributes.

Noise is best treated probabilistically
(next lectures).

Why to use simpler model:

simpler to use
easier to train
easier to explain
generalizes better

x
� 2
�

x�
1�

h�
1�

h�
2�

Figure 2.7: When there is noise, there is not a simple

boundary between the positive and negative

instances, and zero misclassification error may not be

possible with a simple hypothesis. A rectangle is a

simple hypothesis with four parameters defining the

corners. An arbitrary closed form can be drawn by

piecewise functions with a larger number of control

points. From: E. Alpaydın. 2004. Introduction to

Machine Learning. c©The MIT Press.

12

Figure 2.7 of Alpaydin
(2004).
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Regression

 x: milage

 y
: 

p
ri

ce

Figure 2.9: Linear, second-order, and sixth-order

polynomials are fitted to the same set of points. The

highest order gives a perfect fit but given this much

data, it is very unlikely that the real curve is so

shaped. The second order seems better than the

linear fit in capturing the trend in the training data.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.

14

Figure 2.9 of Alpaydin (2004).
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Regression

Classification is the prediction of a 0–1 class, given attributes.

Regression is the prediction of a real number, given attributes.
(Usually with noise.)

The training set is given by X = {xt , r t}Nt=1, where r t ∈ R.

We imagine that the r t are given by some function
r t = f (xt , zt), where zt are some unknown hidden variables.

The role of hypothesis is taken by the model g(x). We would
like to find a model such that g(xt) ≈ r t for all items in the
training set.

Usually, we want to minimize a quadratic error function,

E (g | X ) =
1

N

N∑
t=1

(
r t − g(xt)

)2
.

Kai Puolamäki T-61.3050
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Linear Regression

The simplest case is linear regressor: g(x) = w0 + w1x.

Optimization task: find w0 and w1 such that the error
E (g | X ) = 1

N

∑N
t=1 (r t − (w0 + w1xt))2 is minimized.

Analytic solution:

w1 =

∑
t x tr t − xrN∑
t (x t)2 − Nx2

,

w0 = r − w1x ,

where x =
∑

t xt/N and r =
∑

t r t/N.

Kai Puolamäki T-61.3050
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Linear Regression
Toy data

Toy data: we have generated 100
data points using sin(X/π) in
interval [−1, 1], added with
Gaussian random noise.

We randomly selected 7 data
points to act as the training data
(shown in black).

Solution: g(x) = 0.12 + 1.37x.

Error on training data:
E (g | X ) = 0.0032.

Error on the remaining 93 points:
0.21 (much larger than on training
data!)
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Linear Basis Functions

We can generalize linear regression using k basis functions φi (x),

g(x) =
k∑

i=0

wiφi (x),

where usually φ0(x) = 1.

A common choice: φi (x) = xi (polynomial basis).

φi (x
t) can be computed beforehand and wi can be solved

using linear algebra.

In practice, there are lots of good software packages available
that do the solving for you.

Clearly, a high degree polynomial can represent a lower degree
polynomial as a special case.

Higher degree polynomial means larger hypothesis space or
model family.

Kai Puolamäki T-61.3050
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Polynomial Regressors
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Polynomial Regressors
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Polynomial Regressors
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Kai Puolamäki T-61.3050



AB

Learning a Class from Examples
Noise and Regression

Conclusion

Noise
Regression
Validation

Polynomial Regressors

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

sin((X ππ))
degree 6 polynomial
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ETRAIN is the error in the training data. It decreases as model
complexity increases.
ETEST is the error on the remaining 93 data points (“test
set”). It has minimum at k = 3.

k ETRAIN ETEST g(x | w0, . . . , wk) =
Pk

i=0 wiX
i

0 0.580 0.541 −0.14
1 0.077 0.294 +0.12 + 1.37X
2 0.076 0.275 +0.17 + 1.33X − 0.18X 2

3 0.057 0.057 +0.17 + 2.22X − 0.35X 2 − 2.00X 3

4 0.046 0.562 +0.02 + 2.67X + 2.23X 2 − 3.19X 3 − 4.73X 4

5 0.035 4.637 +0.21 + 3.28X − 2.70X 2 − 11.88X 3 + 5.24X 4 + 15.82X 5

6 0 106 −5.86 + 57X + 186X 2 − 875X 3 − 1490X 4

+1634X 5 + 2412X 6

Table: Polynomial regressors.
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N ETRAIN ETEST

7 0.0131 1.2187
10 0.0141 0.0821
15 0.0202 0.0761
20 0.0300 0.0511
25 0.0328 0.0507
30 0.0318 0.0573
35 0.0380 0.0494
40 0.0405 0.0484
45 0.0400 0.0476
50 0.0388 0.0473

Table: Effect of the size of the
training data, k = 5.
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Validation

Error on training set:

Decreases as model becomes more complex.
Increases as number of data points grows.

We want to minimize generalization error or error on test set:

Has a minimum at certain model complexity.
Decreases and approaches training set error as number of data
points grows.

How to minimize error on test set when we have no access to
test set?
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Validation

To estimate generalization error, we need data unseen during
training. We split the data in random as

training set (50%)
validation set (25%)
test set (25%)

Train models of different complexities on training set. Pick a
model complexity that gives smallest validation set error.

Train model on combined training and validation set. Report
test set error.
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Validation
Example

We are given 20 points from our sinusoidal curve data set.

Divide the data in random to training (10), validation (5) and
test (5) sets.

Train regressors of different complexities on training set:

k ETRAIN EVALID
0 0.492 0.644
1 0.091 0.125
2 0.090 0.137
3 0.044 0.041
4 0.044 0.049
5 0.042 0.142
6 0.030 18.820
7 0.025 181.850
8 0.024 34.014

9 0 109

Validation set error is minimized for the degree 3 polynomial
(k = 3). Pick degree 3 polynomial.
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Validation
Example

Train degree 3 polynomial on 15 points (training+validation
set) and report the results on the test set:

k ETRAIN+VALID ETEST

3 0.0378 0.0594

If we would like to make predictions we should train on all 20
points (training+validation+test set). We know that the error
on new data points should be approximately at most 0.0594.

Training with all 20 points in fact gives slightly smaller error
(0.0557) on 80 newly sampled data points.
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Model Selection and Generalization

Learning is ill-posed problem: data is not sufficient to find
unique/correct solution.

Inductive bias is needed; we need assumptions about the
hypothesis class (model family) H.

Generalization: how well model performs on new data.

Overfitting: H more complex than C or f .

Underfitting: H less complex than C or f .

Triple trade-off (Diettrich 2003):

complexity of H;
amount of training data; and
generalization error on new data.
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Dimensions of a Supervised Learner

1 Model: g(x | θ).
2 Loss function: E (θ | X ) = 1

N

∑N
t=1 L (r t , g(xt | θ)).

3 Optimization procedure: θ ← arg minθ E (θ | X ).
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Polynomial Basis
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Chebyshev Polynomials of the First Kind
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X

T
n((X

))

T0((X))
T1((X))
T2((X))
T3((X))
T4((X))
T5((X))

T0(X ) = 1 T3(X ) = 4X 3 − 3X

T1(X ) = X T4(X ) = 8X 4 − 8X 2 + 1

T2(X ) = 2X 2 − 1 T5(X ) = 16X 5 − 20X 3 + 5X
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Chebyshev Polynomials of the First Kind

Chebyshev Polynomials are orthogonal polynomials in
X ∈ [−1, 1].

Def.: Tn(cos θ) = cos nθ, n ∈ {0, 1, . . .}.
Recurrence relation: Tn+2(x) = 2xTn+1(x)− Tn(x).
Chebyshev Polynomials are useful in numerical analysis:

max Tn(x) = +1, minTn(x) = −1. (X n basis also satisfies this
in X ∈ [−1, 1].)
The maxima and minima are spread reasonably uniformly over
[−1, 1]. (Comparing, in X n basis the maxima and minima are
only in X = −1 and X = +1.)
In least squares regression, the Chebyshev basis is analytically
equivalent but numerically much more robust than the
commonly used X n basis especially for larger (> 10) degrees.

T0(X ) = 1; T1(X ) = X ; T2(X ) = 2X 2 − 1; T3(X ) = 4X 3 − 3X ;

T4(X ) = 8X 4 − 8X 2 + 1; T5(X ) = 16X 5 − 20X 3 + 5X ; . . .
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k ETRAIN ETEST g(x | w0, . . . , wk) =
Pk

i=0 wiTi (X )

0 0.580 0.541 −0.14T0(X )
1 0.077 0.294 +0.12T0(X ) + 1.37T1(X )
2 0.076 0.275 +0.08T0(X ) + 1.33T1(X )− 0.09T2(X )
3 0.057 0.057 −0.01T0(X ) + 0.72T1(X )− 0.18T2(X )− 0.50T3(X )
4 0.046 0.562 −0.64T0(X ) + 0.28T1(X )− 1.25T2(X )− 0.80T3(X )

−0.59T4(X )
5 0.035 4.637 +0.83T0(X ) + 4.26T1(X ) + 1.27T2(X ) + 1.97T3(X )

+0.65T4(X ) + 0.99T5(X )
6 0 106 +282.4T0(X ) + 422.6T1(X ) + 478.9T2(X ) + 291.8T3(X )

+266.0T4(X ) + 102.1T5(X ) + 75.3T6(X )

Table: Chebyshev regressors; compare the magnitude of the terms to the
X n basis.

T0(X ) = 1 T3(X ) = 4X 3 − 3X
T1(X ) = X T4(X ) = 8X 4 − 8X 2 + 1
T2(X ) = 2X 2 − 1 T5(X ) = 16X 5 − 20X 3 + 5X

T6(X ) = 32X 6 − 48X 4 + 18X 2 − 1

Table: Chebyshev Polynomials of the First Kind.
Kai Puolamäki T-61.3050
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Conclusion

No problem session this week, next problem session on 28
September.

This week’s problem sheet contains a small data analysis task
(for 28 September). [Will be in the web later today, hopefully.]

Next lecture on 25 September: Bayesian Decision Theory,
Alpaydin (2004) Ch 3.
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