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Dimensions of a Supervised Learner

Model

g(x | θ)

Loss Function

E (θ | X ) =
1

N

N∑
t=1

L
(
r t , g(xt | θ)

)
.

Optimization Procedure

θ ← arg min
θ

E (θ | X ).
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Model Selection and Generalization
Schematic illustration of the empirical vs. generalization error

model complexity

er
ro

r

test set
training set

training set size
er

ro
r

test set
training set

empirical error = error on training set
generalization error = error on test set
We see empirical error, but want to minimize the error on new
data.
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Validation

Question 1

What is the correct model complexity?

Question 2

What is the generalization error?

To answer the Question 1 divide the data into training and
validation sets. Choose model complexity that has the
smallest error on the validation set.
To answer the Question 2 divide the data into training and
test sets. The generalization error is approximately the error
on the test set.
To answer both questions the data should be divided into
training, validation and test sets.
There are more efficient methods, such as cross-validation.
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Model Selection and Generalization

Learning is ill-posed problem: data is not sufficient to find
unique/correct solution.

Inductive bias is needed; we need assumptions about the
hypothesis class (model family) H.

Generalization: how well model performs on new data.

Overfitting: H more complex than C or f .

Underfitting: H less complex than C or f .

Triple trade-off (Diettrich 2003):

complexity of H;
amount of training data; and
generalization error on new data.
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Kai Puolamäki T-61.3050



AB

Supervised Learning
Bayesian Decision Theory

Bayesian Networks

Probabilities
Classification
Utility Theory

Basic of Probability

You should know basics of probability (Mat-1.2600/2620 or
Appendix A of Alpaydin (2004)).

Probability can be interpreted as a frequency or degree of
belief.

Sample space S : the set of all possible outcomes.

Event E ⊆ S : one possible set of outcomes.

Probability measure P satisfies:

P(S) = 1.
0 ≤ P(E ) ≤ 1 for all E ⊆ S .
E ⊆ S ∧ F ⊆ S ∧ E ∩ F = ∅ ⇒ P(E ∪ F ) = P(E ) + P(F ).

Kai Puolamäki T-61.3050



AB

Supervised Learning
Bayesian Decision Theory

Bayesian Networks

Probabilities
Classification
Utility Theory

Rules of Probability

Interpret E , F as random variables getting values of e, f (coin
tossing example: E can get a value of e ∈ {heads, tails}, F
can get a value of coin landing in f ∈ {table,floor}).
P(E ,F ) = P(F ,E ): probability of both E and F happening.

P(E ) =
∑

F P(E ,F ) (sum rule, marginalization)

P(E ,F ) = P(F | E )P(E ) (product rule, conditional
probability)

Consequence: P(F | E ) = P(E | F )P(F )/P(E ) (Bayes’
formula)

We say E and F are independent if P(E ,F ) = P(E )P(F ) (for
all e and f ).

We say E and F are conditionally independent given G if
P(E ,F | G ) = P(E | G )P(F | G ), or equivalently
P(E | F ,G ) = P(E | G ).
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Fruits in Boxes

P(B = r ,F = a) = nRA/n =
1/6.

P(B = r) =∑
x∈{a,o} P(B = r ,F = x) =

nRA/n + nRO/n = nR/n =
2/3.

P(F = o | B = r) =
nRO/nR = 3/4.

P(B = r | F = o) = P(F =
o | B = r)P(B = r)/P(F =
o) = 3

4 ×
8
12 ×

12
7 = 6

7 .

apples oranges Σ
red box nRA = 2 nRO = 6 nR = 8
blue box nBA = 3 nBO = 1 nB = 4

Σ nA = 5 nO = 7 n = 12

Table: Count of fruits in two boxes.
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Fruits in Boxes

B and F are random variables which can take two values (r or
b; a or o, respectively).

We computed probabilities of events of drawing one fruit in
random such that the probability of drawing each fruit is
1/12, independent of the box or type.

We viewed the probabilities as frequencies.

When all prior information (e.g., counts of the fruits in the
boxes) is not known the probabilities turn into degrees of
belief (it may be still easier to think them as frequencies,
though).
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Estimating Probability

In real life, estimating the probabilities of various events from
a sample is difficult.

For the purposes of today, we mostly assume that someone
gives us the probabilities.

Today we can estimate the probabilities with sample
frequencies.

Example: Someone is tossing a 0–1 coin that gives X = 1 with
probability P(X = 1) = p and X = 0 with probability
P(X = 0) = 1− p (Bernoulli distribution). We notice he got
n1 ones and n0 zeroes in a sample of N = n1 + n0 tosses.
Based on this sample, we can estimate p with p̂ = n1/N.
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Using Probabilities Classification
Coin Tossing

Someone is tossing a 0–1 coin that gives X = 1 (heads) with
probability P(X = 1) = p and X = 0 (tails) with probability
P(X = 0) = 1− p (Bernoulli distribution).

Task: make a classifier for the next toss.

Prediction: Choose X = 1 (heads) if p ≥ 1/2, X = 0
(tails) otherwise.
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Using Probabilities in Classification
Credit Scoring

Task: classify a customer high risk
(C = 1) or low risk (C = 0) based on
her income (x1) and savings (x2).

Assume P(C | x1, x2) is known.

Prediction:

choose
{

C = 1 if P(C = 1 | x1, x2) ≥ 1
2 ,

C = 0 otherwise.

or equivalently

choose
{

C = 1 if P(C = 1 | x1, x2) ≥ P(C = 0 | x1, x2),
C = 0 otherwise.!"#$%&"'()$"*'+)&','-./012!3'4556'73$&)2%#$8)3'$)'90#:83"'!"0&383;'< =:"'97='>&"**'?@ABAC
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Figure 1.1 of Alpaydin
(2004).
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Bayes’ Rule

posterior =
likelihood× prior

evidence
,

or

P(C | x) =
P(x | C )× P(C )

P(x)
.

The likelihood P(x | C = 1) is the probability that a high
risk customer (C = 1) has the associated observed value x.
(This is usually easy to compute.)

The prior probability P(C = 1) is the probability of observing
C = 1 (before x is known).

The evidence P(x) is the marginal probability that an
observation x is seen, regardless of the value of C . (This is
usually difficult to compute directly.)
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Bayes’ Rule

posterior =
likelihood× prior

evidence
,

or

P(C | x) =
P(x | C )× P(C )

P(x)
.

Using the sum and product rules we obtain:

P(C = 0) + P(C = 1) = 1.

P(C = 0 | x) + P(C = 1 | x) = 1.

P(x) = P(x | C = 1)P(C = 1) + P(x | C = 0)P(C = 0).
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Bayes’ Rule
Classification to K classes

P(Ci | x) =
P(x | Ci )P(Ci )

P(x)
=

P(x | Ci )P(Ci )∑K
k=1 P(x | Ck)P(Ck)

P(Ck) ≥ 0 and
∑K

k=1 P(Ck) = 1.
Naive Bayes Classifier: choose Ck where
k = arg maxk P(Ck | x).
A customer is associated with vector x such that
P(x | C = 1) = 0.002 and P(x | C = 0) = 0.001.
20% of the customers are high risk (C = 1), we therefore
set the prior probabilities to P(C = 1) = 0.2 and
P(C = 0) = 0.8.
Inserting in equation we obtain P(C = 1 | x) = 0.33 and
P(C = 0 | x) = 0.67, we therefore classify the customer as
low risk (C = 0).

Kai Puolamäki T-61.3050
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Risks and Losses

Often, the cost of errors differs. For example, a wrong
decision to grant credit may be much more costly than a
wrong decision not to grant credit.

Decision theory: how to make optimal decisions, given all
available information.

At each time, you can choose one action αi .

Action αi causes loss λik when the state is Ck .

λ C = 0 C = 1

α0 = grant credit EUR 0 EUR 1000
α1 = don′t grant credit EUR 100 EUR 0

Expected risk: R(αi | x) = E [λik ] =
∑K

k=1 λikP(Ck | x).
Choose αi where i = arg mini R(αi | x).

Kai Puolamäki T-61.3050



AB

Supervised Learning
Bayesian Decision Theory

Bayesian Networks

Probabilities
Classification
Utility Theory

Risks and Losses
0/1 loss

0/1 loss:

λik =

{
0 i = k
1 i 6= k

R(αi | x) =
K∑

k=1

λikP(Ck | x)

=
∑
k 6=i

P(Ck | x)

= 1− P(Ci | x).

For minimum risk, choose the most probable class.

Kai Puolamäki T-61.3050



AB

Supervised Learning
Bayesian Decision Theory

Bayesian Networks

Probabilities
Classification
Utility Theory

Risks and Losses
0/1 loss with reject

Assume mis-classification has a cost of 1 (0/1 loss).

Assume (almost) certain classification (e.g., by a human
expert) has a cost of λ.

Define additional action reject αK+1 and loss by

λik =


0 i = k
λ i = K + 1
1 otherwise

.

R(αK+1 | x) =
∑K

k=1 λP(Ck | x) = λ.

R(αi | x) =
∑

k 6=i P(Ck | x) = 1− P(Ci | x).

Choose
{

Ck if k = arg maxk P(Ck | x) and P(Ck | x) ≥ 1− λ
reject otherwise

Kai Puolamäki T-61.3050
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Discriminant Functions

Discriminant function: choose αi

where i = arg maxk gk(x), where

gk(x) =


−R(αk | x)
P(Ck | x)

p(x | Ck)P(Ck)

K decision regions R1, . . . , RK :

Ri =

{
x | i = arg max

k
gk(x)

}
.

x� 2
�

x�
1�

C�
1�

C�
3�

C�
2�

reject�

Figure 3.1: Example of decision regions and decision

boundaries. From: E. Alpaydın. 2004. Introduction

to Machine Learning. c©The MIT Press.

16

Figure 3.1 of Alpaydin (2004).
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Discriminant Functions
K=2 classes

Dichtotomizer (K = 2) vs. Polychotomizer (K > 2)

g(x) = g1(x)− g2(x): choose C1 if g(x) ≥ 0, C2 otherwise.

Log odds:

g(x) = log
P(C1 | x)
P(C2 | x)

.

Kai Puolamäki T-61.3050
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Utility Theory

In utility theory, one usually tries to maximize expected utility
(instead of minimize risk).

Utility of αi when state is k: Uik

EU(αi | x) = E [Uik ] =
∑
k

UikP(Ck | x).

Choose αi where i = arg maxi EU(αi | x).
(Choosing Uik = δik log P(Ck | x) makes utility equal to
information and leads to probabilistic modeling.)

Kai Puolamäki T-61.3050
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Utility Theory
Value of information

Utility of using x only is EU(x) = maxi EU(αi | x).
Utility of using x and new feature z is
EU(x, z) = maxi EU(αi | x, z).

z is useful if EU(x, z) > EU(x).

You should probably measure z if the expected gain in utility,
EU(x, z)− EU(x) exceeds the measurement costs.
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Decision Theory in Court

Classification problem guilty vs. not guilty.
Typically, DNA evidence has small match probabilities. How
should it be combined with other evidence?
Sentencing innocent should have a higher loss.
R v. Denis John Adams.

Instructions to the Jury?

Suppose the match probability is 1 in 20 million. That means that in Britain
(population about 60 million) there will be on average about 2 or 3 people, and
certainly no more than 6 or 7, whose DNA matches that found at the crime
scene, in addition to the accused. Now your job, as a member of the jury, is to
decide on the basis of the other evidence, whether or not you are satisfied that
it is the person on trial who is guilty, rather than one of the few other people
with matching DNA. We don’t know anything about the other matching
people. They are likely to be distributed all across the country and may have
been nowhere near the crime scene at the time of the crime. Others may be
ruled out as being the wrong sex or the wrong age group.
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Kai Puolamäki T-61.3050



AB

Supervised Learning
Bayesian Decision Theory

Bayesian Networks

Basics
Inference
Finding a Network

Graphical Models

Graphical models are diagrammatic representations of
probability distributions.
Advantages:

The structure is more apparent in graphical representation.
Properties of the model, such as conditional independence, are
easy to see.
Complex computations are reduced to graphical manipulations.

Variations:
Bayesian networks (belief networks, probabilistic networks)
[today]
Markov random fields
Factor graphs

Applications:
Construction of probabilistic models
Biological networks (see T-61.6070 Modeling of biological
networks)
. . .

Kai Puolamäki T-61.3050
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Bayesian Networks
Motivation

How to efficiently represent joint probability distributions such
as P(Sky ,AirTemp, . . . ,Forecast,EnjoySport) (useful in
computing Aldo’s sport preferences
P(EnjoySport | Sky , . . . ,Forecast))

xt r(xt)
t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1

Table: Aldo’s observed sport experiences in different weather conditions.

Kai Puolamäki T-61.3050
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Bayesian Networks
Examples

Example 1:

C

A B

P(A,B,C ) =
P(A | C )P(B | C )P(C ).

Example 2:

B

A

C

P(A,B,C ) =
P(A | B,C )P(B | C )P(C ).

Kai Puolamäki T-61.3050
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Bayesian Networks

Bayesian network is a directed acyclic graph (DAG) that describes
a joint distribution over the vertices X1,. . . ,Xd such that

P(X1, . . . ,Xd) =
d∏

i=1

P(Xi | parents(Xi )),

where parents(Xi ) are the set of vertices from which there is an
edge to Xi .

Example 1: P(A,B,C ) = P(A | C )P(B | C )P(C ).

Product rule:
P(A,B,C ) = P(A,B | C )P(C ) = P(A | B,C )P(B | C )P(C ).

Generally:
P(X1, . . . ,Xd) = P(Xd | X1, . . . ,Xd−1) . . .P(X2 | X1)P(X1).

Example 2: All joint distributions P(X1, . . . ,Xd) can be
represented by a graph with d(d − 1)/2 edges.

Kai Puolamäki T-61.3050
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Causes and Bayes’ Rule
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Figure 3.2 of Alpaydin
(2004).

P(W , R) = P(W |
R)P(R)

Diagnostic inference: Knowing that grass is
wet, what is the probability that rain is the
cause?

P(R | W ) =
P(W | R)P(R)

P(W )

=
P(W | R)P(R)

P(W | R)P(R) + P(W |∼ R)P(∼ R)

=
0.9× 0.4

0.9× 0.4 + 0.2× 0.6
= 0.75
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Causal vs. Diagnostic Inference
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Bayesian Network: Causes
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Bayesian Networks: Local Structure
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Bayesian Networks: Inference

P(C ,S ,R,W ,F ) = P(F | R)P(W | R,S)P(R | C )P(S |
C )P(C ).
P(C ,F ) =

∑
S

∑
R

∑
W P(C ,S ,R,W ,F ).

P(F | C ) = P(C ,F )/P(C ).
More generally: To do inference in Bayesian networks one has
to marginalize over variables.
For example: P(X1) =

∑
X2

. . .
∑

Xd
P(X1, . . . ,Xd).

If we have Boolean arguments the sum has O(2d−1) terms.
This is inefficient!
Generally, marginalization is a NP-hard problem.
If Bayesian Network is a tree: Sum-Product Algorithm
If Bayesian Network is “close” to a tree: Junction Tree
Algorithm
Otherwise: approximate methods (variational approximation,
MCMC etc.)
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Sum-Product Algorithm

Idea: sum of products is difficult to compute. Product of sums
is easy to compute, if sums have been re-arranged smartly.

Example: disconnected Bayesian network with d vertices,
computing P(X1).

sum of products: P(X1) =
∑

X2
. . .

∑
Xd

P(X1) . . .P(Xd).
product of sums:
P(X1) = P(X1)

(∑
X2

P(X2)
)
. . .

(∑
Xd

P(Xd)
)

= P(X1).

Sum-Product Algorithm works if the Bayesian Network is
directed tree.

For details, see e.g., Bishop (2006).
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Sum-Product Algorithm
Example

D

A B C

P(A,B,C ,D) = P(A | D)P(B | D)P(C | D)P(D)

Task: compute P̃(D) =
∑

A

∑
B

∑
C P(A,B,C ,D).
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Sum-Product Algorithm
Example

D

A B C

P(A|D)

A

P(B|D)

B

P(C|D)

C

P(D)

D

P(A,B,C ,D) = P(A | D)P(B | D)P(C | D)P(D)

Factor graph is composed of vertices (ellipses) and factors
(squares), describing the factors of the joint probability.
The Sum-Product Algorithm re-arranges the product (check!):

P̃(D) =

 X
A

P(A | D)

! X
B

P(B | D)

! X
C

P(C | D)

!
P(D)

=
X

A

X
B

X
C

P(A, B, C , D). (1)
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Observations

Bayesian network forms a partial order of the vertices. To find
(one) total ordering of vertices: remove a vertex with no
outgoing edges (zero out-degree) from the network and
output the vertex. Iterate until the network is empty. (This
way you can also check that the network is DAG.)

If all variables are Boolean, storing a full Bayesian network of
d vertices — or full joint distribution — as a look-up table
takes O(2d) bytes.

If the highest number of incoming edges (in-degree) is k, then
storing a Bayesian network of d vertices as a look-up table
takes O(d2k+1) bytes.

When computing marginals, disconnected parts of the network
do not contribute.

We can marginalize over unknown (hidden) variables.
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Bayesian Network: Classification
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Naive Bayes’ Classifier
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Outline

1 Supervised Learning
Elements of a Learner
Generalization

2 Bayesian Decision Theory
Probabilities
Classification
Utility Theory

3 Bayesian Networks
Basics
Inference
Finding a Network
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Finding a Network

Often, the network structure is given by an expert.

In probabilistic modeling, the network structure defines the
structure of the model.

Finding an optimal Bayesian network structure is NP-hard
(given some complexity criterion, described in later lectures).
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Finding a Network

Full Bayesian network of d vertices and d(d − 1)/2 edges
describes the training set fully and the test set probably poorly.

As before, in finding the network structure, we must control
the complexity so that the the model generalizes.

Usually one must resort to approximate solutions to find the
network structure (e.g., deal package in R).

A feasible exact algorithm exists for up to d = 32 variables,
with a running time of o(d22d−2).

See Silander et al. (2006) A Simple Optimal Approach for
Finding the Globally Optimal Bayesian Network Structure. In
Proc 22nd UAI. (pdf)
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Finding a Network

Sky

Forecast

EnjoySport

AirTemp Humidity Wind

Water

Network found by Bene at http://b-course.hiit.fi/bene

t Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same 1
2 Sunny Warm High Strong Warm Same 1
3 Rainy Cold High Strong Warm Change 0
4 Sunny Warm High Strong Cool Change 1
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Conclusion

Next lecture on 2 October: Parametric Methods, Alpaydin
(2004) Ch 4.

Problem session on 28 September: last week’s (2/2007) and
this week’s problem sheets (3/2007).
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