T-61.3050 Machine Learning: Basic Principles Bayesian Networks

Kai Puolamäki

Laboratory of Computer and Information Science (CIS)
Department of Computer Science and Engineering Helsinki University of Technology (TKK)

Autumn 2007

Outline

(1) Bayesian Networks

- Reminders
- Inference
- Finding the Structure of the Network
(2) Probabilistic Inference
- Bernoulli Process
- Posterior Probabilities
(3) Estimating Parameters
- Estimates from Posterior
- Bias and Variance
- Conclusion

Rules of Probability

- $P(E, F)=P(F, E)$: probability of both E and F happening.
- $P(E)=\sum_{F} P(E, F)$ (sum rule, marginalization)
- $P(E, F)=P(F \mid E) P(E)$ (product rule, conditional probability)
- Consequence: $P(F \mid E)=P(E \mid F) P(F) / P(E)$ (Bayes' formula)
- We say E and F are independent if $P(E, F)=P(E) P(F)$ (for all E and F).
- We say E and F are conditionally independent given G if $P(E, F \mid G)=P(E \mid G) P(F \mid G)$, or equivalently $P(E \mid F, G)=P(E \mid G)$.

Bayesian Networks

Bayesian network is a directed acyclic graph (DAG) that describes a joint distribution over the vertices X_{1}, \ldots, X_{d} such that

$$
P\left(X_{1}, \ldots, X_{d}\right)=\prod_{i=1}^{d} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

where parents $\left(X_{i}\right)$ are the set of vertices from which there is an edge to X_{i}.

$$
P(A, B, C)=P(A \mid C) P(B \mid C) P(C)
$$

(A and B are conditionally independent given C.)

Outline

(1) Bayesian Networks

- Reminders
- Inference
- Finding the Structure of the Network
(2) Probabilistic Inference
- Bernoulli Process
- Posterior Probabilities

3 Estimating Parameters

- Estimates from Posterior
- Bias and Variance
- Conclusion

Inference in Bayesian Networks

- When structure of the

Bayesian network and the probability factors are known, one usually wants to do inference by computing conditional probabilities.

- This can be done with the help of the sum and product rules.
- Example: probability of the cat being on roof if it is cloudy, $P(F \mid C)$?

Figure 3.5 of Alpaydin (2004).

Inference in Bayesian Networks

- Example: probability of the cat being on roof if it is cloudy, $P(F \mid C)$?
- S, R and W are unknown or hidden variables.
- F and C are observed variables. Conventionally, we denote the observed variables by gray nodes (see figure on the right).
- We use the product rule
$P(F \mid C)=P(F, C) / P(C)$, where $P(C)=\sum_{F} P(F, C)$.
- We must sum over or marginalize over hidden variables S, R and $W: P(F, C)=$ $\sum_{S} \sum_{R} \sum_{W} P(C, S, R, W, F)$.

$$
\begin{gathered}
P(C, S, R, W, F)= \\
P(F \mid R) P(W \mid \\
S, R) P(S \mid C) P(R \mid \\
C) P(C)
\end{gathered}
$$

Inference in Bayesian Networks

$$
\begin{aligned}
& P(F, C)= \\
& P(C, S, R, W, F)+P(C,-S, R, W, F) \\
& +P(C, S,-R, W, F)+P(C,-S,-R, W, F) \\
& +P(C, S, R,-W, F)+P(C,-S, R,-W, F) \\
& +P(C, S,-R,-W, F)+P(C,-S,-R,-W, F)
\end{aligned}
$$

- We obtain similar formula for $P(F,-C)$, $P(-F, C)$ and $P(-F,-C)$.
- Notice: we have used shorthand F to denote $F=1$ and $-F$ to denote $F=0$.
- In principle, we know the numeric value of each joint distribution, hence we can compute the probabilities.

Inference in Bayesian Networks

- There are 2^{5} terms in the sums.
- Generally: marginalization is NP-hard, the most staightforward approach would involve a computation of $O\left(2^{d}\right)$ terms.
- We can often do better by smartly re-arranging the sums and products. Behold:
- Do the marginalization over W first: $P(C, S, R, F)=\sum_{W} P(F \mid R) P(W$ $S, R) P(S \mid C) P(R \mid C) P(C)=P(F \mid$ R) $\sum_{W}[P(W \mid S, R)] P(S \mid C) P(R \mid$ C) $P(C)=P(F \mid R) P(S \mid C) P(R \mid$ C) $P(C)$.

$P(C, S, R, W, F)=$ $P(F \mid R) P(W \mid$
$S, R) P(S \mid C) P(R \mid$
C) $P(C)$

Inference in Bayesian Networks

- Now we can marginalize over S easily:

$$
\begin{aligned}
& P(C, R, F)=\sum_{S} P(F \mid R) P(S \mid C) P(R \mid \\
& C) P(C)=P(F \mid R) \sum_{S}[P(S \mid C)] P(R \mid \\
& C) P(C)=P(F \mid R) P(R \mid C) P(C) .
\end{aligned}
$$

- We must still marginalize over R :
$P(C, F)=P(F \mid R) P(R \mid$
C) $P(C)+P(F \mid-R) P(-R \mid C) P(C)=$
$0.1 \times 0.8 \times 0.5+0.7 \times 0.2 \times 0.5=0.11$.
- $P(C,-F)=P(-F \mid R) P(R \mid$
C) $P(C)+P(-F \mid-R) P(-R \mid C) P(C)=$
$0.9 \times 0.8 \times 0.5+0.3 \times 0.2 \times 0.5=0.39$.
- $P(C)=P(C, F)+P(C,-F)=0.5$.
- $P(F \mid C)=P(C, F) / P(C)=0.22$.
- $P(-F \mid C)=P(C,-F) / P(C)=0.78$.

$$
\begin{gathered}
P(C, S, R, W, F)= \\
P(F \mid R) P(W \mid \\
S, R) P(S \mid C) P(R \mid \\
C) P(C)
\end{gathered}
$$

Bayesian Networks: Inference

- To do inference in Bayesian networks one has to marginalize over variables.
- For example: $P\left(X_{1}\right)=\sum_{X_{2}} \ldots \sum_{X_{d}} P\left(X_{1}, \ldots, X_{d}\right)$.
- If we have Boolean arguments the sum has $O\left(2^{d}\right)$ terms. This is inefficient!
- Generally, marginalization is a NP-hard problem.
- If Bayesian Network is a tree: Sum-Product Algorithm (a special case being Belief Propagation).
- If Bayesian Network is "close" to a tree: Junction Tree Algorithm.
- Otherwise: approximate methods (variational approximation, MCMC etc.)

Sum-Product Algorithm

- Idea: sum of products is difficult to compute. Product of sums is easy to compute, if sums have been re-arranged smartly.
- Example: disconnected Bayesian network with d vertices, computing $P\left(X_{1}\right)$.
- sum of products: $P\left(X_{1}\right)=\sum_{X_{2}} \ldots \sum_{X_{d}} P\left(X_{1}\right) \ldots P\left(X_{d}\right)$.
- product of sums:

$$
P\left(X_{1}\right)=P\left(X_{1}\right)\left(\sum_{X_{2}} P\left(X_{2}\right)\right) \ldots\left(\sum_{X_{d}} P\left(X_{d}\right)\right)=P\left(X_{1}\right) .
$$

- Sum-Product Algorithm works if the Bayesian Network is directed tree.
- For details, see e.g., Bishop (2006).

Sum-Product Algorithm

Task: compute $\tilde{P}(D)=\sum_{A} \sum_{B} \sum_{C} P(A, B, C, D)$.

Sum-Product Algorithm
 Example

- Factor graph is composed of vertices (ellipses) and factors (squares), describing the factors of the joint probability.
- The Sum-Product Algorithm re-arranges the product (check!):

$$
\begin{align*}
\tilde{P}(D) & =\left(\sum_{A} P(A \mid D)\right)\left(\sum_{B} P(B \mid D)\right)\left(\sum_{C} P(C \mid D)\right) P(D) \\
& =\sum_{A} \sum_{B} \sum_{C} P(A, B, C, D) . \tag{1}
\end{align*}
$$

Observations

- Bayesian network forms a partial order of the vertices. To find (one) total ordering of vertices: remove a vertex with no outgoing edges (zero out-degree) from the network and output the vertex. Iterate until the network is empty. (This way you can also check that the network is DAG.)
- If all variables are Boolean, storing a full Bayesian network of d vertices - or full joint distribution - as a look-up table takes $O\left(2^{d}\right)$ bytes.
- If the highest number of incoming edges (in-degree) is k, then storing a Bayesian network of d vertices as a look-up table takes $O\left(d 2^{k}\right)$ bytes.
- When computing marginals, disconnected parts of the network do not contribute.
- Conditional independence is "easy" to see.

Bayesian Network: Classification

Alpaydin (2004) Ch 3 / slides

Naive Bayes' Classifier

Figure 3.7 Alpaydin (2004).

- X^{i} are conditionally independent given C.
- $P(\mathcal{X}, C)=P\left(x^{1} \mid C\right) P\left(x^{2} \mid C\right) \ldots P\left(x^{d} \mid C\right) P(C)$.

Naive Bayes' Classifier

Equivalently:

- Plate is used as a shorthand notation for repetition. The number of repetitions is in the bottom right corner.
- Gray nodes denote observed variables.

Outline

(1) Bayesian Networks

- Reminders
- Inference
- Finding the Structure of the Network
(2) Probabilistic Inference
- Bernoulli Process
- Posterior Probabilities

3 Estimating Parameters

- Estimates from Posterior
- Bias and Variance
- Conclusion

Finding the Structure of the Network

- Often, the network structure is given by an expert.
- In probabilistic modeling, the network structure defines the structure of the model.
- Finding an optimal Bayesian network structure is NP-hard
- Idea: Go through all possible network structures M and compute the likelihood of data \mathcal{X} given the network structure $P(\mathcal{X} \mid M)$.
- Choose the network complexity appropriately.
- Choose network that, for a given network complexity, gives the best likelihood.
- The Bayesian approach: choose structure M that maximizes $P(M \mid \mathcal{X}) \propto P(\mathcal{X} \mid M) P(M)$, where $P(M)$ is a prior probability for network structure M (more complex networks should have smaller prior probability).

Finding a Network

- Full Bayesian network of d vertices and $d(d-1) / 2$ edges describes the training set fully and the test set probably poorly.
- As before, in finding the network structure, we must control the complexity so that the the model generalizes.
- Usually one must resort to approximate solutions to find the network structure (e.g., DEAL package in R).
- A feasible exact algorithm exists for up to $d=32$ variables, with a running time of $o\left(d^{2} 2^{d-2}\right)$.
- See Silander et al. (2006) A Simple Optimal Approach for Finding the Globally Optimal Bayesian Network Structure. In Proc 22nd UAI. (pdf)

Finding a Network

Network found by Bene at http://b-course.hiit.fi/bene

t	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	1
2	Sunny	Warm	High	Strong	Warm	Same	1
3	Rainy	Cold	High	Strong	Warm	Change	0
4	Sunny	Warm	High	Strong	Cool	Change	1

Outline

(1) Bayesian Networks

- Reminders
- Inference
- Finding the Structure of the Network
(2) Probabilistic Inference
- Bernoulli Process
- Posterior Probabilities

3 Estimating Parameters

- Estimates from Posterior
- Bias and Variance
- Conclusion

Boys or Girls?

Figure: Sex ratio by country population aged below 15. Blue represents more women, red more men than the world average of 1.06 males/female. Image from Wikimedia Commons, author Dbachmann, GFDLv1.2.

Bernoulli Process

- The world average probability that a newborn child is a boy $(X=1)$ is about $\theta=0.512$ [probability of a girl $(X=0)$ is then $1-\theta=0.488]$.
- Bernoulli process:

$$
P(X=x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \quad, \quad x \in\{0,1\} .
$$

- Assume we observe the genders of N newborn children, $\mathcal{X}=\left\{x^{t}\right\}_{t=1}^{N}$. What is the sex ratio?
- Joint distribution:

$$
P\left(x^{1}, \ldots, x^{N}, \theta\right)=P\left(x^{1} \mid \theta\right) \ldots P\left(x^{N} \mid \theta\right) P(\theta)
$$

Equivalently:

- Notice we must fix some prior for $\theta, P(\theta)$.

Outline

(1) Bayesian Networks

- Reminders
- Inference
- Finding the Structure of the Network
(2) Probabilistic Inference
- Bernoulli Process
- Posterior Probabilities

3 Estimating Parameters

- Estimates from Posterior
- Bias and Variance
- Conclusion

Comparing Models

- The likelihood ratio (Bayes factor) is defined by

$$
B F\left(\theta_{2} ; \theta_{1}\right)=\frac{P\left(\mathcal{X} \mid \theta_{2}\right)}{P\left(\mathcal{X} \mid \theta_{1}\right)}
$$

- If we believe before seeing any data that the probability of model θ_{1} is $P\left(\theta_{1}\right)$ and of model θ_{2} is $P\left(\theta_{2}\right)$ then the ratio of their posterior probabilities is given by

$$
\frac{P\left(\theta_{2} \mid \mathcal{X}\right)}{P\left(\theta_{1} \mid \mathcal{X}\right)}=\frac{P\left(\theta_{2}\right)}{P\left(\theta_{1}\right)} \times B F\left(\theta_{1} ; \theta_{2}\right)
$$

- This ratio allows us to compare our degrees of beliefs into two models.
- Posterior probability density allows us to compare our degrees of beliefs between infinite number of models after observing the data.

Discrete vs. Continuous Random Variables

- The Bernoulli parameter θ is a real number in $[0,1]$.
- Previously we considered binary ($0 / 1$) random variables.
- Generalization to multinomial random variables that can have values $1,2, \ldots, K$ is straightforward.
- Generalization to continuous random variable: divide the interval $[0,1]$ to K equally sized intervals of width $\Delta \theta=1 / K$. Define probability density $p(\theta)$ such that the probability of θ being in interval $S_{i}=[(i-1) \Delta \theta, i \Delta \theta], i \in\{1, \ldots, K\}$, is $P\left(\theta \in S_{i}\right)=p\left(\theta^{\prime}\right) \Delta \theta$, where θ^{\prime} is some point in S_{i}.
- At limit $\Delta \theta \rightarrow 0$:

$$
E_{P(\theta)}[f(\theta)]=\sum_{\theta} P(\theta) f(\theta) \longrightarrow E_{p(\theta)}[f(\theta)]=\int d \theta p(\theta) f(\theta) .
$$

Discrete vs. Continuous Random Variables

- $P(\theta \in[(i-1) \Delta \theta, i \Delta \theta])=p\left(\theta^{\prime}\right) \Delta \theta$.
- At limit $\Delta \theta \rightarrow 0$:

$$
E_{P(\theta)}[f(\theta)]=\sum_{\theta} P(\theta) f(\theta) \longrightarrow E_{p(\theta)}[f(\theta)]=\int d \theta p(\theta) f(\theta) .
$$

Estimating the Sex Ratio

- Task: estimate the Bernoulli parameter θ, given N observations of the genders of newborns in an unnamed country.
- Assume the "true" Bernoulli parameter to be estimated in the unnamed country is $\theta=0.55$, the global average being 51.2%.
- Posterior probability density after seeing N newborns in $\mathcal{X}=\left\{x^{t}\right\}_{t=1}^{N}:$

$$
\begin{aligned}
p(\theta \mid \mathcal{X}) & =\frac{p(\mathcal{X} \mid \theta) p(\theta)}{p(\mathcal{X})} \\
& \propto p(\theta) \prod_{t=1}^{N}\left[\theta^{x^{t}}(1-\theta)^{1-x^{t}}\right]
\end{aligned}
$$

Estimating the Sex Ratio

What is our degree of belief in the gender ratio, before seeing any data (prior probability density $p(\theta))$?

- Very agnostic view: $p(\theta)=1$ (flat prior).
- Something similar than elsewhere (empirical prior).
- Conspiracy theory prior: all newborns are almost all boys or all girls (boundary prior).

"True" $\theta=0.55$ is shown by the red dotted line. The densities have been scaled to have a maximum of one.

Estimating the Sex Ratio

Posterior probability density

$$
\mathrm{N}=0
$$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=1$

Estimating the Sex Ratio

Posterior probability density

$$
\mathrm{N}=2
$$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=3$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=4$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=8$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=16$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=32$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=64$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=128$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=256$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=512$

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=1024$

Estimating the Sex Ratio

Posterior probability density

N=2048

Estimating the Sex Ratio

Posterior probability density

$\mathrm{N}=4096$

Observations

- With few data points the results are strongly dependent on the prior assumptions (inductive bias).
- As the number of data points grow, the results converge to the same answer.
- The conspiracy theory fades out quickly as we notice that there are both male and female babies.
- The only zero posterior probability is on hypothesis $\theta=0$ and $\theta=1$.
- It takes quite a lot observations to pin the result down to a reasonable accuracy.
- The posterior probability can be very small number. Therefore, we usually work with logs of probabilities.

Outline

(1) Bayesian Networks

- Reminders
- Inference
- Finding the Structure of the Network
(2) Probabilistic Inference
- Bernoulli Process
- Posterior Probabilities

3 Estimating Parameters

- Estimates from Posterior
- Bias and Variance
- Conclusion

Predictions from the Posterior

- The posterior represents our best knowledge.
- Predictor for new data point:

$$
p(x \mid \mathcal{X})=E_{p(\theta \mid \mathcal{X})}[p(x \mid \theta)]=\int d \theta p(x \mid \theta) p(\theta \mid \mathcal{X}) .
$$

- The calculation of the integral may be infeasible.
- Solution: estimate θ by $\hat{\theta}$ and use the predictor

$$
p(x \mid \mathcal{X}) \approx p(x \mid \hat{\theta})
$$

Estimations from the Posterior

Definition (Maximum
 Likelihood Estimate)

$\hat{\theta}_{M L}=\arg \max _{\theta} \log p(\mathcal{X} \mid \theta)$.

Definition (Maximum a Posteriori Estimate)

$\hat{\theta}_{M A P}=\arg \max _{\theta} \log p(\theta \mid \mathcal{X})$.
(With flat prior MAP
Estimate reduces to the

Maximum a Posteriori Estimate ($\mathrm{N}=8$)

Bernoulli Density

- Two states, $x \in\{0,1\}$, one parameter $\theta \in[0,1]$.

$$
\begin{gathered}
P(X=x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \\
P(\mathcal{X} \mid \theta)=\prod_{t=1}^{N} \theta^{x^{t}}(1-\theta)^{1-x^{t}} \\
\mathcal{L}=\log P(\mathcal{X} \mid \theta)=\sum_{t} x^{t} \log \theta+\left(N-\sum_{t} x^{t}\right) \log (1-\theta) \\
\frac{\partial \mathcal{L}}{\partial \theta}=0 \Rightarrow \hat{\theta}_{M L}=\frac{1}{N} \sum_{t} x^{t}
\end{gathered}
$$

Multinomial Density

- K states, $x \in\{1, \ldots, K\}, K$ real parameters $\theta_{i} \geq 0$ with constraint $\sum_{k=1}^{K} \theta_{k}=1$.
- One observation is an integer k in $\{1, \ldots, K\}$ and it is represented by $x_{i}=\delta_{i k}$.

$$
\begin{gathered}
P(X=i \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{x_{k}} . \\
P(\mathcal{X} \mid \theta)=\prod_{t=1}^{N} \prod_{k=1}^{K} \theta_{k}^{x_{k}^{t}} . \\
\mathcal{L}=\log P(\mathcal{X} \mid \theta)=\sum_{t=1}^{N} \sum_{k=1}^{K} x_{k}^{t} \log \theta_{k} . \\
\frac{\partial \mathcal{L}}{\partial \theta_{k}}=0 \Rightarrow \hat{\theta}_{k M L}=\frac{1}{N} \sum_{t} x_{k}^{t} .
\end{gathered}
$$

Gaussian Density

- A real number x is Gaussian (normal) distributed with mean μ and variance σ^{2} or $x \sim N\left(\mu, \sigma^{2}\right)$ if its density function is

$$
\begin{aligned}
p\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) . \\
\mathcal{L} & =\log P\left(\mathcal{X} \mid \mu, \sigma^{2}\right)
\end{aligned}
$$

$$
=-\frac{N}{2} \log (2 \pi)-N \log \sigma-\frac{\sum_{t=1}^{N}\left(x^{t}-\mu\right)^{2}}{2 \sigma^{2}} .
$$

$$
M L:\left\{\begin{array}{l}
m=\frac{1}{N} \sum_{t=1}^{N} x^{t} \\
s^{2}=\frac{1}{N} \sum_{t=1}^{N}\left(x^{t}-m\right)^{2}
\end{array}\right.
$$

Outline

(1) Bayesian Networks

- Reminders
- Inference
- Finding the Structure of the Network
(2) Probabilistic Inference
- Bernoulli Process
- Posterior Probabilities
(3) Estimating Parameters
- Estimates from Posterior
- Bias and Variance
- Conclusion

Bias and Variance

- Setup: unknown parameter θ is estimated by $d(\mathcal{X})$ based on a sample \mathcal{X}.
- Example: estimate σ^{2} by $d=s^{2}$.
- Bias: $b_{\theta}(d)=E[d]-\theta$.
- Variance: $E\left[(d-E[d])^{2}\right]$.
- Mean square error of the estimator $r(d, \theta)$:

Figure 4.1 of Alpaydin (2004).

$$
\begin{aligned}
r(d, \theta) & =E\left[(d-\theta)^{2}\right] \\
& =(E[d]-\theta)^{2}+E\left[(d-E[d])^{2}\right] \\
& =\text { Bias }^{2}+\text { Variance. }
\end{aligned}
$$

Bias and Variance

Unbiased estimator of variance

- Estimator is unbiased if $b_{\theta}(d)=0$.
- Assume \mathcal{X} is sampled from a Gaussian distribution.
- Estimate σ^{2} by $s^{2}: s^{2}=\frac{1}{N} \sum_{t}\left(x^{t}-m\right)^{2}$.
- We obtain:

$$
E_{p\left(x \mid \mu, \sigma^{2}\right)}\left[s^{2}\right]=\frac{N-1}{N} \sigma^{2} .
$$

- s^{2} is not unbiased estimator, but $\frac{N}{N-1} s^{2}$ is:

$$
\hat{\sigma}^{2}=\frac{1}{N-1} \sum_{t=1}^{N}\left(x^{t}-m\right)^{2}
$$

- s^{2} is however asymptotically unbiased (that is, bias vanishes when $N \rightarrow \infty)$.

Bayes' Estimator

- Bayes' estimator:

$$
\hat{\theta}_{\text {Bayes }}=E_{p(\theta \mid \mathcal{X})}[\theta]=\int d \theta \theta p(\theta \mid \mathcal{X})
$$

- Example: $x^{t} \sim N\left(\theta, \sigma_{0}^{2}\right), t \in\{1, \ldots, N\}$, and $\theta \sim N\left(\mu, \sigma^{2}\right)$, where μ, σ^{2} and σ_{0}^{2} are known constants. Task: estimate θ.

$$
\begin{aligned}
p(\mathcal{X} \mid \theta) & =\frac{1}{\left(2 \pi \sigma_{0}^{2}\right)^{N / 2}} \exp \left(-\frac{\sum_{t}\left(x^{t}-\theta\right)^{2}}{2 \sigma_{0}^{2}}\right), \\
p(\theta) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(\theta-\mu)^{2}}{2 \sigma^{2}}\right) .
\end{aligned}
$$

- It can be shown that $p(\theta \mid \mathcal{X})$ is Gaussian
 distributed with

$$
\hat{\theta}_{\text {Bayes }}=E_{p(\theta \mid \mathcal{X})}[\theta]=\frac{N / \sigma_{0}^{2}}{N / \sigma_{0}^{2}+1 / \sigma^{2}} m+\frac{1 / \sigma^{2}}{N / \sigma_{0}^{2}+1 / \sigma^{2}} \mu
$$

Outline

(1) Bayesian Networks

- Reminders
- Inference
- Finding the Structure of the Network
(2) Probabilistic Inference
- Bernoulli Process
- Posterior Probabilities
(3) Estimating Parameters
- Estimates from Posterior
- Bias and Variance
- Conclusion

About Estimators

- Point estimates collapse information contained in the posterior distribution into one point.
- Advantages of point estimates:
- Computations are easier: no need to do the integral.
- Point estimate may be more interpretable.
- Point estimates may be good enough. (If the model is approximate anyway it may make no sense to compute the integral exactly.)
- Alternative to point estimates: do the integral analytically or using approximate methods (MCMC, variational methods etc.).
- One should always use test set to validate the results. The best estimate is the one performing best in the validation/test set.

Conclusion

- Next lecture: More about Model Selection (Alpaydin (2004) Ch 4)
- Problem session on 5 October.

