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Cross-validation: most robust if there is enough data.

Related:

Bayesian model selection: use prior and Bayes’ formula.
Regularization: add penalty term for complex models (can be
obtained, for example, from prior).
Minimum description length (MDL): can be viewed as MAP
estimate. [Basic idea good to know, details not required in this
course.]

Structural risk minimization (SRM): used, for example, in
support vector machines (SVM). [Not required to know in this
course.]

The latter do not strictly require a validation set.

There is no single best way for small amounts of data (your
prior assumptions matter).
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Cross-validation

Separate data into training and validation sets.

Learn using training set.

Use error on validation set to select a model.

You need a test set also if you want an unbiased estimate of
error on new data.

Question: what is a sufficient size for the validation set?0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 4.7: In the same setting as that of figure 4.5,

training and validation sets (each containing 50

instances) are generated. (a) Training data and

fitted polynomials of order from 1 to 8. (b) Training

and validation errors as a function of the polynomial

order. The “elbow” is at 3. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.

31

Figure 4.7 of Alpaydin (2004).
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Cross-validation

Assumption: training data X = {(r t , x t)}N
t=1 has been

sampled iid from some (usually unknown) distribution F ,
(r t , x t) ∼ F .

In cross-validation, training data is split in random in training
set of size N − n and validation set of size n. Effectively then
also the validation set is sampled iid from F .

Classifier h(x) is trained using the training set.

Generalization error E : probability of misclassification for a
new data point (r , x) ∼ F , E = EF [I (r 6= h(x))].

Fraction of misclassified items in the validation set, EVALID ,
can be used as an estimate of the generalization error E .

EVALID is an unbiased estimator of E .

The variance of the estimator EVALID is
Var(EVALID) =

√
E(1− E)/n ≤ 1/(2

√
n).

Kai Puolamäki T-61.3050



AB

Model Selection
Multivariate Methods

Summary
Cross-validation
Bayesian Model Selection

Cross-validation

Classifier h(x) is trained using the training set.

Fraction of misclassified items in the validation set, EVALID ,
can be used as an estimate of the generalization error E .

If we select model that has the smallest EVALID it is no longer
unbiased estimate of the generalization error.

To get an unbiased estimate of the generalization error we
must split the data into three parts (training, validation and
test sets).
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Bayesian Model Selection

Define prior probability over models, p(model).

p(model | data) =
p(data | model)p(model)

p(data)

Equivalent to regularization, when prior favors simpler models.

MAP: choose model which maximizes

L = log p(data | model) + log p(model)

(Notice: we again take logs of probabilities for computational
convenience; log of posterior has the same maximum as the
original posterior. Evidence p(data) is constant with respect
to the model, we can therefore drop it.)
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Regularization

Augment the cost by a term which penalizes more complex
models: E (θ | X ) → E ′(θ | X ) = E (θ | X ) + λ× complexity.

Example 1, Bayesian linear regression: define a Gaussian prior
for the model parameters θ = (w0,w1): p(w0) ∼ N(0, 1/λ),
p(w1) ∼ N(0, 1/λ). The old ML function reads (if the error
has an unit variance)

LML(θ | X ) = −1

2

N∑
t=1

[
r t − w0 − w1x

t
]2

+ . . .

The MAP estimate gives an additional term

LMAP(θ | X ) = LML(θ | X )− 1

2
λ

(
w2

0 + w2
1

)
.

This is an example of regularization (the prior favours models
with small w0, w1).
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Regularization

Example 2, Akaike Information Criterion (AIC): Penalize for
more parameters and choose model that maximizes:

L(θ | X ) = LML(θ | X )−M,

where M is the number of adjustable parameters in the model.

Example 3, Bayesian Information Criterion (BIC): Penalize for
more parameters and choose model which maximizes:

L(θ | X ) = LML(θ | X )− 1

2
M log N,

where M is the number of adjustable parameters in the model
and N is the size of the sample X .

AIC and BIC have some theoretical justification, however,
they are very approximate. They are useful because of their
simplicity. They tend to favour (too) simple models.
Weird intro: http://www.cs.cmu.edu/∼zhuxj/courseproject/aicbic/
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Regression Using Regularization

Do Bayesian regression with
σ2 = 1 with the similar data
as in the 2nd lecture, use
MAP solution with Gaussian
prior over parameters.

−LMAP =

1

2

7∑
t=1

[
y t − g(x t | w)

]2
+

1

2
λwTw .

g(x | w) =
5∑

i=0

wix
i .
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Regression Using Regularization

Do Bayesian regression with σ2 = 1 with the same
data as in the 2nd lecture, use ML solutions and
AIC and BIC regularization:

k ETRAIN ETEST −LAIC −LBIC

0 0.580 0.541 3.03 3.00
1 0.077 0.294 2.26 2.21
2 0.076 0.275 3.26 3.18
3 0.057 0.057 4.19 4.09
4 0.046 0.562 5.16 5.02
5 0.035 4.637 6.12 5.96
6 0 106 7.00 6.81

N = 7 , M = k + 1 , −LAIC = N
2
ETRAIN + M ,

−LBIC = N
2
ETRAIN + 1

2
M log N,

g(x | w0, . . . , wk) =
Pk

i=0 wix
i ,

ETRAIN = − 2
N
LML = 1

N

PN
t=1

ˆ
r t − g(x t | w)

˜2
.
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Minimum Description Length (MDL)

Minimum Description Length (MDL): a good model is such
that it can be used to give the data the shortest description.

Kolmogorov complexity: shortest description of the data.

Idea:

Model can be described using L(M) bits.
Data can be described using L(D | M) bits, when the model is
known.
Total description length L = L(M) + L(D | M) (approx.
Kolmogorov complexity).
Occam’s razor: prefer the shortest description/hypothesis,
choose model with smallest L.

The data could in principle be compressed to L bits.

(In model selection we do not usually need explicit
compression, just the description lengths.)
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Minimum Description Length (MDL)

MAP estimate finds a model that minimizes

−L = − log2 p(data | model)− log2 p(model)

− log2 p(model): number of bits it takes to describe the
model.

− log2 p(data | model): number of bits it takes to describe
the data, if the model is known.

−L: the description length of the data.

MAP estimate can be seen as finding a shortest description of
the data (that is, the best compression of the data).
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Minimum Description Length (MDL)
Coding lengths

Information theory: the optimal (shortest expected coding
length) code for an event with probability p is − log2 p bits.

Example (Huffman coding; in model selection we do not
usually need to construct the coding):

Let the probabilities of four letters be P(A) = 1
2 , P(B) = 1

4 ,
P(C ) = 1

8 , P(D) = 1
8 .

Optimal coding: A → 0, B → 10, C → 110, D → 111.
For example, ADAB would be coded as 0111010 (7 bits).
Expected coding length
L = 1

2 × 1 + 1
4 × 2 + 1

8 × 3 + 1
8 × 3 = 1.75 bits per number.

“Compression ratio” 1.75/2 = 0.875 as compared to the naive
coding of each letter with 2 bits (e.g., A = 00, B = 01,
C = 10, D = 11).
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Minimum Description Length (MDL)
Coding lengths

An integer in {0, . . . , n} can be expressed using log2 (n + 1)
bits.

Example: To express an integer in {0, . . . , 15} using binary
numbers you need log2 16 = 4 bits.

Usually we do not need to find explicit coding in model
selection, knowing the coding length is enough.
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Minimum Description Length (MDL)
Example: modeling binary sequence

Data: an ordered sequence D of N binary numbers.
Model 1: Code the sequence as such.

Coding length of the model L(M1) = 0 bits.
Coding length of the data L(D | M1) = N bits.
Total coding length L1 = L(M1) + L(D | M1) = N bits.

Model 2: Use the frequency of ones for better coding.
The model is the number of ones n1 which is a integer in
[0,N]. It can be expressed using L(M2) = log2 (N + 1) bits.

There are

(
N
n1

)
possible binary sequences of length N

having n1 ones. A sequence can be expressed using

L(D | M2) = log2

(
N
n1

)
bits when n1 is known.

Total coding length

L2 = L(M2) + L(D | M2) = log2 (N + 1) + log2

(
N
n1

)
bits.
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Minimum Description Length (MDL)
Example: modeling binary sequence

Example 1: D = 0111010010, N = 10.

L1 = 10 bits. (Choose 1.)

L2 = log2 (10 + 1) + log2

(
10
5

)
= 3.4 + 8.0 = 11.4 bits.

Example 2: D = 0001000010, N = 10.

L1 = 10 bits.

L2 = log2 (10 + 1) + log2

(
10
2

)
= 3.4 + 5.5 = 8.9 bits.

(Choose 2.)

Example 3: D = 0000000000, N = 10.

L1 = 10 bits.

L2 = log2 (10 + 1) + log2

(
10
0

)
= 3.4 + 0 = 3.4 bits.

(Choose 2.)

Kai Puolamäki T-61.3050
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Structural Risk Minimization (SRM)

According to the PAC theory, with probability 1− δ,

ETEST ≤ ETRAIN +

√√√√VC(H)
(
log 2N

VC(H) + 1
)
− log δ

4

N
,

where N is the size of the training data, VC(H) is the
VC-dimension of the hypothesis class and ETEST is the
expected error on new data and ETRAIN is the error on the
training set, respectively.

SRM: Choose hypothesis class (for example, the degree of a
polynomial) such that the bound on ETEST is minimized.

Often used to train the Support Vector Machines (SVM).

(Vapnik (1995) contains more discussion of the SRM inductive
principle; it won’t be discussed in this course in more detail.)
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Remainder of the lecture on the blackboard.
For slides see Alpaydin’s site:
http://www.cmpe.boun.edu.tr/∼ethem/i2ml/slides/v1-1/
i2ml-chap5-v1-1.pdf
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