T-61.3050 Machine Learning: Basic Principles Multivariate Methods

Kai Puolamäki

Laboratory of Computer and Information Science (CIS) Department of Computer Science and Engineering Helsinki University of Technology (TKK)

Autumn 2007

Summary Cross-validation Bayesian Model Selection

2

Outline

• Summary

Cross-validation

• Bayesian Model Selection

Model Selection Multivariate Methods Summary Cross-validation Bayesian Model Selection

- Cross-validation: most robust if there is enough data.
- Related:
 - Bayesian model selection: use prior and Bayes' formula.
 - Regularization: add penalty term for complex models (can be obtained, for example, from prior).
 - Minimum description length (MDL): can be viewed as MAP estimate. [Basic idea good to know, details not required in this course.]
- Structural risk minimization (SRM): used, for example, in support vector machines (SVM). [Not required to know in this course.]
- The latter do not strictly require a validation set.
- There is no single best way for small amounts of data (your prior assumptions matter).

Summary Cross-validation Bayesian Model Selection

2

Outline

• Summary

Cross-validation

• Bayesian Model Selection

Cross-validation

- Separate data into training and validation sets.
- Learn using training set.
- Use error on validation set to select a model.
- You need a test set also if you want an unbiased estimate of error on new data.
- Question: what is a sufficient size for the validation set?

Cross-validation

- Assumption: training data X = {(r^t, x^t)}^N_{t=1} has been sampled iid from some (usually unknown) distribution F, (r^t, x^t) ∼ F.
- In cross-validation, training data is split in random in training set of size N n and validation set of size n. Effectively then also the validation set is sampled iid from F.
- Classifier h(x) is trained using the training set.
- Generalization error *E*: probability of misclassification for a new data point (*r*, *x*) ~ *F*, *E* = *E*_{*F*} [*I*(*r* ≠ *h*(*x*))].
- Fraction of misclassified items in the validation set, E_{VALID} , can be used as an estimate of the generalization error \mathcal{E} .
- E_{VALID} is an unbiased estimator of \mathcal{E} .
- The variance of the estimator E_{VALID} is $Var(E_{VALID}) = \sqrt{\mathcal{E}(1-\mathcal{E})/n} \le 1/(2\sqrt{n}).$

Cross-validation

- Classifier h(x) is trained using the training set.
- Fraction of misclassified items in the validation set, E_{VALID} , can be used as an estimate of the generalization error \mathcal{E} .
- If we select model that has the smallest E_{VALID} it is no longer unbiased estimate of the generalization error.
- To get an unbiased estimate of the generalization error we must split the data into three parts (training, validation and test sets).

Summary Cross-validation Bayesian Model Selection

2

Outline

• Summary

- Cross-validation
- Bayesian Model Selection

Bayesian Model Selection

• Define prior probability over models, p(model).

$$p(\text{model} \mid \text{data}) = rac{p(\text{data} \mid \text{model})p(\text{model})}{p(\text{data})}$$

- Equivalent to regularization, when prior favors simpler models.
- MAP: choose model which maximizes

 $\mathcal{L} = \log p(\text{data} \mid \text{model}) + \log p(\text{model})$

(Notice: we again take logs of probabilities for computational convenience; log of posterior has the same maximum as the original posterior. Evidence p(data) is constant with respect to the model, we can therefore drop it.)

Summary Cross-validation Bayesian Model Selection

Regularization

- Augment the cost by a term which penalizes more complex models: E(θ | X) → E'(θ | X) = E(θ | X) + λ × complexity.
- Example 1, Bayesian linear regression: define a Gaussian prior for the model parameters θ = (w₀, w₁): p(w₀) ~ N(0, 1/λ), p(w₁) ~ N(0, 1/λ). The old ML function reads (if the error has an unit variance)

$$\mathcal{L}_{ML}(\theta \mid \mathcal{X}) = -\frac{1}{2} \sum_{t=1}^{N} \left[r^t - w_0 - w_1 x^t \right]^2 + \dots$$

The MAP estimate gives an additional term

$$\mathcal{L}_{MAP}(\theta \mid \mathcal{X}) = \mathcal{L}_{ML}(\theta \mid \mathcal{X}) - \frac{1}{2}\lambda \left(w_0^2 + w_1^2\right).$$

This is an example of regularization (the prior favours models with small w_0 , w_1).

Cross-validation Bayesian Model Selection

Regularization

• Example 2, Akaike Information Criterion (AIC): Penalize for more parameters and choose model that maximizes:

$$\mathcal{L}(\theta \mid \mathcal{X}) = \mathcal{L}_{ML}(\theta \mid \mathcal{X}) - \boldsymbol{M},$$

where *M* is the number of adjustable parameters in the model.
Example 3, Bayesian Information Criterion (BIC): Penalize for more parameters and choose model which maximizes:

$$\mathcal{L}(\theta \mid \mathcal{X}) = \mathcal{L}_{ML}(\theta \mid \mathcal{X}) - \frac{1}{2}M \log N,$$

where M is the number of adjustable parameters in the model and N is the size of the sample \mathcal{X} .

- AIC and BIC have some theoretical justification, however, they are very approximate. They are useful because of their simplicity. They tend to favour (too) simple models.
- Weird intro: http://www.cs.cmu.edu/~zhuxj/courseproject/aicbic/

Summary Cross-validation Bayesian Model Selection

Regression Using Regularization

• Do Bayesian regression with $\sigma^2 = 1$ with the similar data as in the 2nd lecture, use MAP solution with Gaussian prior over parameters.

$$-\mathcal{L}_{MAP} =$$

$$\frac{1}{2}\sum_{t=1}^{7}\left[y^{t}-g(x^{t}\mid\overline{w})\right]^{2}+\frac{1}{2}\lambda\overline{w}^{T}\overline{w}.$$

$$g(x \mid \overline{w}) = \sum_{i=0}^{5} w_i x^i.$$

degree 5 polynomial with regulator

Summary Cross-validation Bayesian Model Selection

Regression Using Regularization

Do Bayesian regression with $\sigma^2 = 1$ with the same data as in the 2nd lecture, use ML solutions and AIC and BIC regularization:

k	ETRAIN	E_{TEST}	$-\mathcal{L}_{AIC}$	$-\mathcal{L}_{BIC}$	
0	0.580	0.541	3.03	3.00	
1	0.077	0.294	2.26	2.21	
2	0.076	0.275	3.26	3.18	
3	0.057	0.057	4.19	4.09	
4	0.046	0.562	5.16	5.02	
5	0.035	4.637	6.12	5.96	
6	0	10 ⁶	7.00	6.81	
$N = 7$, $M = k + 1$, $-\mathcal{L}_{AIC} = \frac{N}{2} E_{TRAIN} + M$,					
$-\mathcal{L}_{BIC} = rac{N}{2} E_{TRAIN} + rac{1}{2} M \log N,$					
$g(x \mid w_0, \ldots, w_k) = \sum_{i=0}^k w_i x^i,$					
$E_{TRAIN} = -\frac{2}{N}\mathcal{L}_{ML} = \frac{1}{N}\sum_{t=1}^{N} \left[r^t - g(x^t \mid w)\right]^2.$					

- Minimum Description Length (MDL): a good model is such that it can be used to give the data the shortest description.
- Kolmogorov complexity: shortest description of the data.
- Idea:
 - Model can be described using L(M) bits.
 - Data can be described using $L(D \mid M)$ bits, when the model is known.
 - Total description length $L = L(M) + L(D \mid M)$ (approx. Kolmogorov complexity).
 - Occam's razor: prefer the shortest description/hypothesis, choose model with smallest *L*.
- The data could in principle be compressed to L bits.
- (In model selection we do not usually need explicit compression, just the description lengths.)

• MAP estimate finds a model that minimizes

$$-\mathcal{L} = -\log_2 p(\text{data} \mid \text{model}) - \log_2 p(\text{model})$$

- -log₂ p(model): number of bits it takes to describe the model.
- -log₂ p(data | model): number of bits it takes to describe the data, if the model is known.
- $-\mathcal{L}$: the description length of the data.
- MAP estimate can be seen as finding a shortest description of the data (that is, the best compression of the data).

- Information theory: the optimal (shortest expected coding length) code for an event with probability p is - log₂ p bits.
- Example (Huffman coding; in model selection we do not usually need to construct the coding):
 - Let the probabilities of four letters be $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$, $P(C) = \frac{1}{8}$, $P(D) = \frac{1}{8}$.
 - Optimal coding: $A \rightarrow 0$, $B \rightarrow 10$, $C \rightarrow 110$, $D \rightarrow 111$.
 - For example, ADAB would be coded as 0111010 (7 bits).
 - Expected coding length

 $L = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = 1.75$ bits per number. "Compression ratio" 1.75/2 = 0.875 as compared to the naive coding of each letter with 2 bits (e.g., A = 00, B = 01, C = 10, D = 11).

イロト イポト イヨト イヨト

Summary Cross-validation Bayesian Model Selection

Minimum Description Length (MDL) Coding lengths

- An integer in {0,..., n} can be expressed using log₂ (n + 1) bits.
- Example: To express an integer in $\{0, \dots, 15\}$ using binary numbers you need $\log_2 16 = 4$ bits.
- Usually we do not need to find explicit coding in model selection, knowing the coding length is enough.

Example: modeling binary sequence

- Data: an ordered sequence D of N binary numbers.
- Model 1: Code the sequence as such.
 - Coding length of the model $L(M_1) = 0$ bits.
 - Coding length of the data $L(D \mid M_1) = N$ bits.
 - Total coding length $L_1 = L(M_1) + L(D \mid M_1) = N$ bits.
- Model 2: Use the frequency of ones for better coding.
 - The model is the number of ones n_1 which is a integer in [0, N]. It can be expressed using $L(M_2) = \log_2(N+1)$ bits.
 - There are $\begin{pmatrix} N \\ n_1 \end{pmatrix}$ possible binary sequences of length N having n_1 ones. A sequence can be expressed using $L(D \mid M_2) = \log_2 \begin{pmatrix} N \\ n_1 \end{pmatrix}$ bits when n_1 is known.
 - Total coding length

 $L_2 = L(M_2) + L(D \mid M_2) = \log_2(N+1) + \log_2\left(\frac{N}{2^{n_1}}\right) \text{ bits. }$

Example: modeling binary sequence

- Example 1: D = 0111010010, N = 10.
 - $L_1 = 10$ bits. (Choose 1.) • $L_2 = \log_2(10+1) + \log_2\begin{pmatrix}10\\5\end{pmatrix} = 3.4 + 8.0 = 11.4$ bits.
- Example 2: D = 0001000010, N = 10.

•
$$L_1 = 10$$
 bits.
• $L_2 = \log_2(10+1) + \log_2\begin{pmatrix} 10\\ 2 \end{pmatrix} = 3.4 + 5.5 = 8.9$ bits.
(Choose 2.)

• Example 3: D = 0000000000, N = 10.

•
$$L_1 = 10$$
 bits.
• $L_2 = \log_2(10+1) + \log_2\begin{pmatrix} 10\\ 0 \end{pmatrix} = 3.4 + 0 = 3.4$ bits.
(Choose 2.)

Structural Risk Minimization (SRM)

 $\bullet\,$ According to the PAC theory, with probability $1-\delta,$

$$E_{TEST} \leq E_{TRAIN} + \sqrt{rac{\mathcal{VC}(H)\left(\lograc{2N}{\mathcal{VC}(H)} + 1
ight) - \lograc{\delta}{4}}{N}},$$

where N is the size of the training data, $\mathcal{VC}(H)$ is the VC-dimension of the hypothesis class and E_{TEST} is the expected error on new data and E_{TRAIN} is the error on the training set, respectively.

- SRM: Choose hypothesis class (for example, the degree of a polynomial) such that the bound on E_{TEST} is minimized.
- Often used to train the Support Vector Machines (SVM).
- (Vapnik (1995) contains more discussion of the SRM inductive principle; it won't be discussed in this course in more detail.)

Remainder of the lecture on the blackboard. For slides see Alpaydin's site: http://www.cmpe.boun.edu.tr/~ethem/i2ml/slides/v1-1/ i2ml-chap5-v1-1.pdf