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Model Selection Cross-validation

Bayes Model Selection

Cross-validation: most robust if there is enough data.
Related:

e Bayesian model selection: use prior and Bayes' formula.

o Regularization: add penalty term for complex models (can be
obtained, for example, from prior).

o Minimum description length (MDL): can be viewed as MAP
estimate. [Basic idea good to know, details not required in this
course.]

Structural risk minimization (SRM): used, for example, in
support vector machines (SVM). [Not required to know in this
course.]

The latter do not strictly require a validation set.

@ There is no single best way for small amounts of data (your
prior assumptions matter).
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Model Selection

Bayesian Model Selection

Cross-validation

Separate data into training and validation sets.

Learn using training set.

Use error on validation set to select a model.

You need a test set also if you want an unbiased estimate of
error on new data.

Question: what is a sufficient size for the validation set?

(b) Error vs polynomial order

25 Validation

Figure 4.7 of Alpaydin (2004). \
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Cross-validation

o Assumption: training data X = {(rf, x*)}!¥_; has been
sampled iid from some (usually unknown) distribution F,
(rf,x*) ~ F.

@ In cross-validation, training data is split in random in training
set of size N — n and validation set of size n. Effectively then
also the validation set is sampled iid from F.

o Classifier h(x) is trained using the training set.

@ Generalization error £: probability of misclassification for a
new data point (r,x) ~ F, &= Eg[I(r # h(x))].

@ Fraction of misclassified items in the validation set, Eva;p,
can be used as an estimate of the generalization error €.

@ Eyarp is an unbiased estimator of £.

@ The variance of the estimator Eyap is
Var(Evarip) = VE(1 —&)/n < 1/(2\/5) v



Model Selection

odel Selection

Cross-validation

o Classifier h(x) is trained using the training set.

@ Fraction of misclassified items in the validation set, Eva;p,
can be used as an estimate of the generalization error £.

o If we select model that has the smallest Eyayp it is no longer
unbiased estimate of the generalization error.

@ To get an unbiased estimate of the generalization error we
must split the data into three parts (training, validation and
test sets).
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Bayesian Model Selection

Define prior probability over models, p(model).

p(data | model)p(model)

1 =
p(model | data) p(data)

Equivalent to regularization, when prior favors simpler models.

@ MAP: choose model which maximizes

L = log p(data | model) + log p(model)

(Notice: we again take logs of probabilities for computational
convenience; log of posterior has the same maximum as the
original posterior. Evidence p(data) is constant with respect
to the model, we can therefore drop it.)
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Regularization

@ Augment the cost by a term which penalizes more complex
models: E(f | X) — E'(6 | X) = E(6 | X) + X x complexity.

@ Example 1, Bayesian linear regression: define a Gaussian prior
for the model parameters § = (wp, wi): p(wp) ~ N(0,1/X),
p(wi) ~ N(0,1/X). The old ML function reads (if the error
has an unit variance)

2
r —Wo—Wlxt] + ...

MHZ

»CMLQIX

t:l

The MAP estimate gives an additional term
1
Lmap(0 | X) = Lo (0] X) = S (Wg + wi).

This is an example of regularization (the prior favours models
with small wy, wy).
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Regularization

e Example 2, Akaike Information Criterion (AIC): Penalize for
more parameters and choose model that maximizes:

LO|X)=L(0]X)— M,

where M is the number of adjustable parameters in the model.
e Example 3, Bayesian Information Criterion (BIC): Penalize for
more parameters and choose model which maximizes:

1
LO]X) =L (0] X) — S Mlog N,

where M is the number of adjustable parameters in the model
and N is the size of the sample X.

@ AIC and BIC have some theoretical justification, however,
they are very approximate. They are useful because of their
simplicity. They tend to favour (too) simple models.

@ Weird intro: http://www.cs.cmu.edu/~zhuxj/courseproject/aicbic/
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Regression Using Regularization

@ Do Bayesian regression with

2 — 1 W|th the S|m||ar data degree 5 polynomial with regulator
as in the 2nd lecture, use G st
MAP solution with Gaussian T
. - A=l
prior over parameters. v |
—Lmap = . 2 A
7 o | we N
1 > 1. _ + e R P
= E x| W)+ AW W T
2 2 e
t=1 U SN
5 T |
_ . i -1.0 -0.5
glx | W) =) wx }
i=0
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Regression Using Regularization

Do Bayesian regression with o2 = 1 with the same
data as in the 2nd lecture, use ML solutions and
AIC and BIC regularization:

Etrav Etest | —Laic  —Lsic
0.580 0.541 3.03 3.00
0.077 0.294 2.26 2.21
0.076  0.275 3.26 3.18
0.057 0.057 4.19 4.09
0.046 0.562 5.16 5.02
0.035 4.637 6.12 5.96

0 10° 7.00 6.81
N=7, M=k+1, *LAIC:%ETRAIN+M5
—Leic = Y Erramn + Mlog N,
glx | wo,. .., wi) = S0 wix',

Etrav = — 2 L = %Z?’:I [rf —g(x* | W)]z-

DO A WN = OX

X
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Minimum Description Length (MDL)

@ Minimum Description Length (MDL): a good model is such
that it can be used to give the data the shortest description.

Kolmogorov complexity: shortest description of the data.

@ ldea:

o Model can be described using L(M) bits.

o Data can be described using L(D | M) bits, when the model is
known.

o Total description length L = L(M) + L(D | M) (approx.
Kolmogorov complexity).

o Occam's razor: prefer the shortest description/hypothesis,
choose model with smallest L.

The data could in principle be compressed to L bits.

(In model selection we do not usually need explicit
compression, just the description lengths.) ¢
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Minimum Description Length (MDL)

@ MAP estimate finds a model that minimizes
—L = —log, p(data | model) — log, p(model)

o —log, p(model): number of bits it takes to describe the
model.

e —log, p(data | model): number of bits it takes to describe
the data, if the model is known.

@ —/L: the description length of the data.

@ MAP estimate can be seen as finding a shortest description of
the data (that is, the best compression of the data).
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Minimum Description Length (MDL)

Coding lengths

@ Information theory: the optimal (shortest expected coding
length) code for an event with probability p is — log, p bits.

e Example (Huffman coding; in model selection we do not
usually need to construct the coding):

o Let the probabilities of four letters be P(A) = %, P(B) = 1,
P(C) =3, P(D) = §.

e Optimal coding: A— 0, B— 10, C — 110, D — 111.

o For example, ADAB would be coded as 0111010 (7 bits).

e Expected coding length
Lz%xl—i—% ><2+% ><3—|—%><3:1.75 bits per number.
“Compression ratio” 1.75/2 = 0.875 as compared to the naive
coding of each letter with 2 bits (e.g., A= 00, B =01,
C =10, D=11).
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Minimum Description Length (MDL)

Coding lengths

@ An integer in {0,...,n} can be expressed using log, (n + 1)
bits.

e Example: To express an integer in {0,...,15} using binary
numbers you need log, 16 = 4 bits.

@ Usually we do not need to find explicit coding in model
selection, knowing the coding length is enough.
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Minimum Description Length (MDL)

Example: modeling binary sequence

@ Data: an ordered sequence D of N binary numbers.
@ Model 1: Code the sequence as such.
o Coding length of the model L(M;) = 0 bits.
o Coding length of the data L(D | My) = N bits.
o Total coding length Ly = L(M;) + L(D | My) = N bits.
@ Model 2: Use the frequency of ones for better coding.
e The model is the number of ones n; which is a integer in
[0, N]. It can be expressed using L(M,) = log, (N + 1) bits.

o There are ( ,I7V ) possible binary sequences of length N
1

having n; ones. A sequence can be expressed using
L(D | M) = log, ( ,I7V ) bits when ny is known.
1
e Total coding length
N .
Ly = L(My) + L(D | Ma) = log, (N + 1) + log, ( ny ) bits. .
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Minimum Description Length (MDL)

Example: modeling binary sequence

@ Example 1: D = 0111010010, N = 10.
o Ly =10 bits. (Choose 1.)
10

o Ly =log, (10 + 1) + log, ( 5
e Example 2: D = 0001000010, N = 10.

) = 3.4+ 8.0 = 11.4 bits.

e [y =10 bits.
o Ly = log, (10 + 1) + log, < 120 ) = 3.4+ 55 = 8.9 bits.
(Choose 2.)
e Example 3: D = 0000000000, N = 10.
o Ly = 10 bits.
o Ly =log, (10 + 1) + log, ( 100 ) = 3.4+ 0 = 3.4 bits.
(Choose 2.) ¢
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Structural Risk Minimization (SRM)

@ According to the PAC theory, with probability 1 — §,

VC(H) (log 207y +1) — log §
N )

Etest < ETrAIN +

where N is the size of the training data, VC(H) is the
VC-dimension of the hypothesis class and Etgst is the
expected error on new data and E7grasy is the error on the
training set, respectively.

@ SRM: Choose hypothesis class (for example, the degree of a
polynomial) such that the bound on Etgst is minimized.

e Often used to train the Support Vector Machines (SVM).

e (Vapnik (1995) contains more discussion of the SRM inductive
principle; it won't be discussed in this course in more detail.) x
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Multivariate Methods

Remainder of the lecture on the blackboard.

For slides see Alpaydin's site:
http://www.cmpe.boun.edu.tr/~ethem/i2ml/slides/v1i-1/
i2ml-chapb-vi-1.pdf
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