T-61.3050 Machine Learning: Basic Principles Linear Discrimination

Kai Puolamäki

Laboratory of Computer and Information Science (CIS) Department of Computer Science and Engineering Helsinki University of Technology (TKK)

Autumn 2007

Machine Learning Guest Lectures on 27 November

10–11 Juha Vesanto (Xtract): Data Mining in Practice How to make succesfull analytics/data mining in an industry/corporate environment. Principles and a case study.

11–12 Hannu Helminen (Google): Machine Learning Methods in Web Search

Google is using machine learning methods in the presence of erroneous user queries and documents of low quality. Differences between a traditional information retrieval corpora and the web, and implications of these differences for improving queries and modeling the web are discussed. Inferring meaning from context and using this additional context for query expansion improves the quality of search results.

See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/guestlecture

See http://www.cis.hut.fi/googletalk07/

Classification Trees Regression Trees

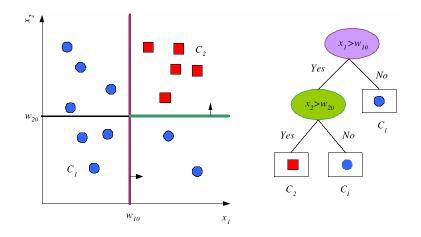
Outline

Decision Trees Classification Trees

- Regression Trees
- 2 Linear Discrimination
 - Naive Bayes Classifier (Again)
 - Logistic Regression
 - Logistic Regression vs. Naive Bayes
- Computing Sums and Products
 Floating Point Numbers

Classification Trees Regression Trees

Decision Trees



< (□) ▶

-2

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Decision Trees

- Each internal node tests an attribute.
- Each branch corresponds to set of attribute values.
- Each leaf node assigns a classification (classification tree) or a real number (regression tree).
- The tree is usually learned using a greedy algorithm built around *ID*3, such as *C*4.5. (The problem of finding optimal tree is generally NP-hard.)
- Advantages of trees:
 - Learning and classification is fast.
 - Trees are accurate in many domains.
 - Trees are easy to interpret as sets of decision rules.
- Often, trees should be used as a benchmark before more complicated algorithms are attempted.
- For alternative discussion, see Mitchell (1997), Ch 3.

ID3 algorithm for discrete attributes

```
ID3(\mathcal{X}) {Input: \mathcal{X} = \{(r^t, \mathbf{x}^t)\}_{t=1}^N, data set with binary attributes
r^t \in \{-1, +1\} and a vector of discrete variables \mathbf{x}^t. Output: T, classification
tree.}
Create root node for T
If all items in \mathcal{X} are positive (negative), return a single-node tree with label
"+" ("-")
Let A be attribute that "best" classifies the examples
for all values v of A do
   Let \mathcal{X}_v be subset of \mathcal{X} that have value v for A
  if \mathcal{X}_{v} is empty then
     Below the root of T, add a leaf node with most common label in \mathcal{X}
  else
     Below the root of T, add subtree ID3(\mathcal{X}_{v})
  end if
end for
return T
```

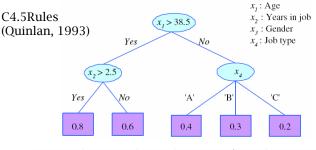
Classification Trees Regression Trees

Variations of ID3

- Impurity measures:
 - Entropy: $-p_+ \log_2 p_+ p_- \log_2 p_-$.
 - Gini index: $2p_+p_-$.
 - Misclassification error: $1 \max(p_+, p_-)$.
 - All vanish for $p_+ \in \{0,1\}$ and have a maximum at $p_+ = p_- = 1/2.$
- Continuous or ordered variables: sort x^t_A for some attribute A and find the best split x_A ≤ w vs. x_A > w.

Classification Trees Regression Trees

Rule Extraction from Trees



- R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8
- R2: IF (age>38.5) AND (years-in-job \leq 2.5) THEN y = 0.6

э

- R3: IF (age \leq 38.5) AND (job-type='A') THEN y = 0.4
- R4: IF (age \leq 38.5) AND (job-type='B') THEN y = 0.3
- R5: IF (age \leq 38.5) AND (job-type='C') THEN y = 0.2

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Classification Trees Regression Trees

Observations of ID3

- Inductive bias:
 - Preference on short trees.
 - Preference on trees with high information gain near root.
- Vanilla ID3 classifies the training data perfectly.
- Hence, in presence of noise, vanilla ID3 overfits.

Pruning

- How to avoid overfitting?
 - Prepruning: stop growing when data split is not statistically significant. For example: stop tree construction when node is smaller than a given limit, or impurity of a node is below a given limit θ_I . (faster)
 - Postpruning: grow the whole tree, then prune subtrees which overfit on the pruning (validation) set. (*more accurate*)

Pruning Postpruning

- Split data into training and pruning (validation) sets.
- Do until further pruning is harmful:
 - Evaluate impact on *pruning* set of pruning each possible node (plus those below it).
 - Greedily remove the one that most improves the *pruning* set accuracy.
- Produces smallest version of most accurate subtree.
- Alternative: rule postpruning (commonly used, for example, C4.5).

Classification Trees Regression Trees

Outline

1 Decision Trees

- Classification Trees
- Regression Trees
- 2 Linear Discrimination
 - Naive Bayes Classifier (Again)
 - Logistic Regression
 - Logistic Regression vs. Naive Bayes
- Computing Sums and Products
 Floating Point Numbers

Examples: Predicting woody cover in African savannas

- Task: woody cover (% of surface covered by trees) as a function of precipitation (MAP), soil characteristics (texture, total nitrogen total and phosphorus, and nitrogen mineralization), fire and herbivory regimes.
- Result: MAP is the most important factor.

Figure 41 The distributions of MAP-determined (stable?) and disturbancedetermined (unstable?) savanass in Africa. Grey areas represent the cisting distribution of savanas is Africa according to ref. 30. Vertically hatched areas show the unstable savanas (>744 mm MAP; cross-hatched areas show the transition between stable and unstable avannas (316– 784 mm MAP); grey areas that are not hatched show the stable savanas (<)515 mm MAP.

Figure 3 linegraviton tree showing generalized relationships between work over our MAN. The returns interpola and percentage of reat. The tree is prused on four trensmit almosts and is based on 16 site show which all the standard of the strengthener showing the strengthener mass of the trends of the strengthener mass of the trends of the strengthener mass significantly more than a moden tree ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over, which is significantly more than a moden tree ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over, which is significantly more than a moden tree ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). Of this, 15% was accoused for by the variance in words over ($\ell < 0.011$). This is the variance in words over ($\ell < 0.011$). This is the variance in words over ($\ell < 0.011$). This is the variance in words over ($\ell < 0.011$). This is the variance in words over ($\ell < 0.011$. The variance in words over ($\ell < 0.011$). This is the variance in words over ($\ell < 0.011$). This is the variance in words over ($\ell < 0.011$. The variance in words over ($\ell < 0.0111$). This is the variance in words over ($\ell < 0.0111$. The variance in words over ($\ell < 0.0111$). This is the variance in words over ($\ell < 0.0111$. The variance in words over ($\ell < 0.0111$). The variance in words over ($\ell < 0.0111$ and the variance in words over

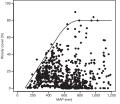


Figure 1 (Change in wood; over of Abrican savamas as a function of MAP. Maximum rec over is represented by using a 94% upantile piece wise linear regression. The regression analysis identifies the breakpoint (if a minimum tere cover is a stained) in the interval 650 \pm 134 mm MAP (between 516 and 724 mm; see Methods). Trees are bryically absent below 101 mm MAP. The countion for the line quantifyin the upper bound on tree cover between 101 and 650 mm MAP is Cover(%) = 0.14(MAP) - 14.2. Data are from 854 dises arous Africa.

From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846-849.

Kai Puolamäki T-6

T-61.3050

Classification Trees Regression Trees

Regression Trees

• Error at node *m*:

 $b_m(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \text{ reaches node } m \\ 0 & \text{otherwise} \end{cases}$

$$\mathcal{E}_m = \frac{1}{N_m} \sum_t \left(r^t - g_m \right)^2 b_m(\mathbf{x}^t) \quad , \quad g_m = \frac{\sum_t b_m(\mathbf{x}^t) r^t}{\sum_t b_m(\mathbf{x}^t)}.$$

• After splitting:

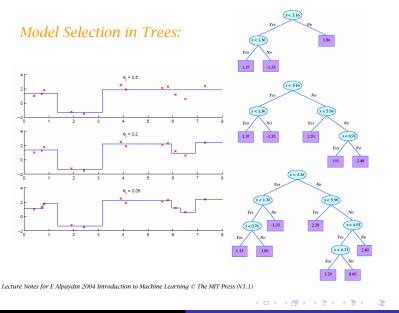
 $b_{mj}(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \text{ reaches node } m \text{ and branch } j \\ 0 & \text{otherwise} \end{cases}$

$$\mathcal{E}_m = \frac{1}{N_m} \sum_j \sum_t \left(r^t - g_{mj} \right)^2 b_{mj}(\mathbf{x}^t) \quad , \quad g_{mj} = \frac{\sum_t b_{mj}(\mathbf{x}^t) r^t}{\sum_t b_{mj}(\mathbf{x}^t)}.$$

- 4 同 6 4 日 6 4 日 6

3

Classification Trees Regression Trees



Kai Puolamäki T-61.3050

Implementations

There are many implementations, with sophisticated pruning methods.

```
> library(rpart)
> rpart(Hipparion ~ .,DD[,taxa])
n= 124
node), split, n, loss, yval, (yprob)
    * denotes terminal node
1) root 124 32 0 (0.74193548 0.25806452)
2) Amphimachairodus=0 108 19 0 (0.82407407 0.17592593)
4) Choerolophodon=0 96 13 0 (0.86458333 0.13541667)
8) Ursus=0 76 6 0 (0.92105263 0.07894737) *
9) Ursus=1 20 7 0 (0.65000000 0.35000000)
18) Cervus=1 13 2 0 (0.84615385 0.15384615) *
19) Cervus=0 7 2 1 (0.28571429 0.71428571) *
5) Choerolophodon=1 12 6 0 (0.5000000 0.50000000) *
3) Amphimachairodus=1 16 3 1 (0.18750000 0.81250000) *
```

- ₹ 🖬 🕨

- 4 🗗 ▶

-

Outline

1 Decision Trees

- Classification Trees
- Regression Trees
- 2 Linear Discrimination
 - Naive Bayes Classifier (Again)
 - Logistic Regression
 - Logistic Regression vs. Naive Bayes

Computing Sums and Products Floating Point Numbers

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Linear Discrimination

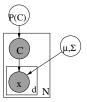
- Source material:
 - Alpaydin (2004) Ch 10, or
 - A new chapter by Mitchell (September 2005), "Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression", available as PDF at http://www.cs.cmu.edu/~tom/NewChapters.html

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Naive Bayes Classifier Common diagonal covariance matrix

- Idea: the means are class-specific, covariance matrix Σ is common and diagonal (Naive Bayes).
- d parameters in the covariance matrix.
- Discriminant is linear: $g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$, where $\mathbf{w}_i = \Sigma^{-1} \mu_i$ and $w_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P(C_i)$.

Figure 5.5: All classes have equal, diagonal covariance matrices but variances are not equal. From: E. Alpaydin. 2004. Introduction to Machine Learning. © The MIT Press.

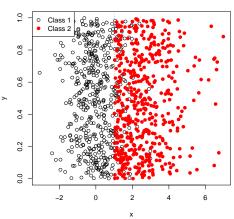


Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

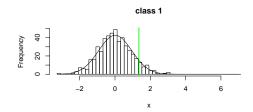
Naive Bayes Classifier Using Naive Bayes Classifier



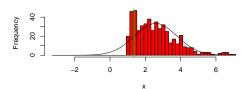
Toy data

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Naive Bayes Classifier Using Naive Bayes Classifier



class 2



Kai Puolamäki T-6

< 同 ▶

2

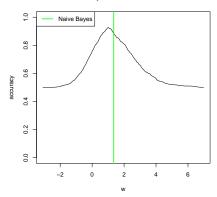
Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

2

▶ < ≣ ▶

< □ > < 同 > < 三

Naive Bayes Classifier Using Naive Bayes Classifier



accuracy of linear discriminator

Accuracy of discriminator "class 1 if x < w, class 2 if $x \ge w$ ".

Naive Bayes Classifier

- $\mathcal{X} = \{(r^t, \mathbf{x}^t)\}_{t=1}^N$, $r^t \in \{0, 1\}$, $\mathbf{x}^t \in \mathbb{R}^d$.
- Naive Bayes assumption: $P(\mathbf{x}^t \mid r^t) = \prod_{i=1}^d P(x_i^t \mid r^t)$.
- Using Bayes rule,

$$P(r \mid \mathbf{x}) = \frac{P(r) \prod_{i=1}^{d} P(x_i \mid r)}{\sum_{s \in \{0,1\}} P(s) \prod_{i=1}^{d} P(x_i \mid s)}.$$

• Discriminant is linear:

$$g_i(\mathbf{x}) = \log P(r_i = 1 | \mathbf{x}) + \text{const.} = \mathbf{w}_i^T \mathbf{x} + w_{i0}, \text{ where } \mathbf{w}_i = \Sigma^{-1} \mu_i \text{ and } w_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P(C_i).$$

• Observation:

$$\log \frac{P(r=1 \mid \mathbf{x})}{1 - P(r=1 \mid \mathbf{x})} = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0.$$

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Outline

1 Decision Trees

- Classification Trees
- Regression Trees

2 Linear Discrimination

• Naive Bayes Classifier (Again)

Logistic Regression

• Logistic Regression vs. Naive Bayes

Computing Sums and Products Floating Point Numbers

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

< 17 > <

Logistic Regression

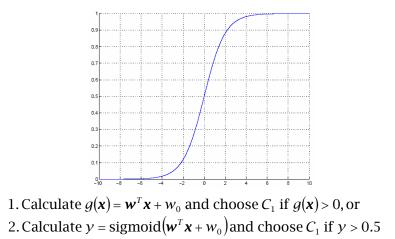
• Logit:
$$logit(p) = log\left(\frac{p}{1-p}\right)$$
.

- Sigmoid: sigmoid(t) = $logit^{-1}(t) = 1/(1 + e^{-t})$.
- Derivative of sigmoid: sigmoid'(t) = sigmoid(t) (1 - sigmoid(t)).

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

12

Sigmoid (Logistic) Function



Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Cost Function for Logistic Regression

۲

٠

$$P(R \mid X, W) = \prod_{t=1}^{n} P(r^t \mid \mathbf{x}^t, W)$$

$$\mathcal{L} = e^{-P(R|X,W)} = -\sum_{t=1}^{N} (r^t \log y^t - (1 - r^t) \log (1 - y^t)),$$

where $y^t = P(r^t = 1 | \mathbf{x}) = \text{sigmoid}(\mathbf{w}^t \mathbf{x} + w_0)$.

- Task: find $W = (\mathbf{w}, w_0)$ such that \mathcal{L} is minimized.
- No EM algorithm. Use gradient ascent.

Decision Trees Naive Bayes Classifier (Again) Linear Discrimination Logistic Regression Computing Sums and Products Logistic Regression vs. Naive B

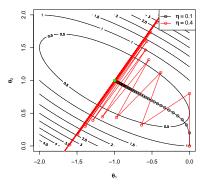
Gradient Ascent

```
GRADASC(\mathcal{L}(\theta), \theta^0) {Input: \mathcal{L}(\theta), cost function; \theta^0, initial
parameters. Output: \theta, a local minimum of \mathcal{L}.
\theta \leftarrow \theta^0 \ \{\theta, \theta^0 \in \mathbb{R}^d.\}
t \leftarrow 1
repeat
    for all i \in \{1, ..., d\} do
        \Delta \theta_i \leftarrow \partial \mathcal{L}(\theta) / \partial \theta_i
    end for
    for all i \in \{1, ..., d\} do
        \theta_i \leftarrow \theta_i - n_t \Delta \theta_i
    end for
    t \leftarrow t + 1
until convergence
return \theta
```

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Gradient Ascent

- The function GRADASC always converges if $\sum_{t=1}^{\infty} \eta_t = \infty$ and $\sum_{t=1}^{\infty} \eta_t^2 < \infty$, where $\eta_t \ge 0$ for all t, for example, $\eta_t = 1/t$.
- The function GRADASC often converges also for constant small enough η_t = η > 0.



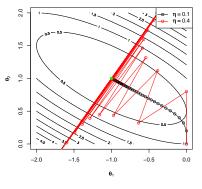
Convergence of GRADASC

Minimizing $\mathcal{L}(\theta) = (\theta_1 + \theta_2)^2 + (\theta_2 - 1)^2,$ using $\theta^0 = (0, 0)^T$.

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Gradient Ascent

- GRADASC is inefficient.
- Usually one should use a more sophisticated gradient ascent algorithm, such as conjugate gradient, from some numerical library (e.g., in R type help(optim)).



Minimizing $\mathcal{L}(\theta) = (\theta_1 + \theta_2)^2 + (\theta_2 - 1)^2$, using $\theta^0 = (0, 0)^T$.

Convergence of GRADASC

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Gradient Ascent

- Logistic regression may converge to w → ±∞ (see right), especially when data is high dimensional and sparse. This causes problems.
- Solution: minimize regularized cost $\mathcal{L} \rightarrow \mathcal{L} + \frac{1}{2}\lambda \left(w_0^2 + \mathbf{w}^T \mathbf{w} \right).$

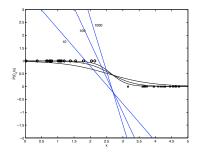


Figure 10.7: For a univariate two-class problem (shown with 'o' and '×'), the evolution of the line $wx + w_0$ and the sigmoid output after 10, 100, and 1,000 iterations over the sample. *From: E. Alpaydin.* 2004. Introduction to Machine Learning. ©*The MIT Press.*

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Generalized Linear Models

- Logistic regression is a special case of Generalized Linear Models (GLM)
 - logit is a link function.
- Many respectable numerical packages contain GLM implementation which includes logistic regression (e.g., in R help(glm)). You should probably use these in real life applications instead of programming one on your own.

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Outline

1 Decision Trees

- Classification Trees
- Regression Trees

2 Linear Discrimination

- Naive Bayes Classifier (Again)
- Logistic Regression
- Logistic Regression vs. Naive Bayes

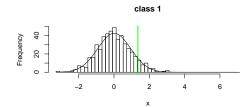
Computing Sums and Products Floating Point Numbers

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

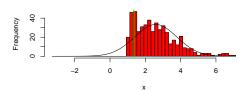
2

< 同 ▶

Naive Bayes Classifier Using Naive Bayes Classifier



class 2



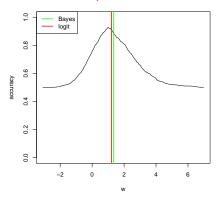
Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

-2

- ∢ ≣ ▶

< □ > < 同 > < 三

Naive Bayes Classifier Using Naive Bayes Classifier



accuracy of linear discriminator

Accuracy of discriminator "class 1 if x < w, class 2 if $x \ge w$ ".

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Naive Bayes vs. Logistic Regression

- Naive Bayes classifier estimates parameters of P(r) and P(x | r) (means, covariances, etc.). (generative classifier, because we can generate the data points, given parameters)
- Logistic regression directly estimates the parameters of P(r | x). (discriminative classifier, because we can directly discriminate wrt. r, given x; no generative model for p(x) is needed)
- If Naive Bayes assumptions hold (data from multivariate Gaussians with diagonal covariate matrix) and the number of training examples is very large, Naive Bayes and logistic regression give identical classification.

Naive Bayes Classifier (Again) Logistic Regression Logistic Regression vs. Naive Bayes

Naive Bayes vs. Logistic Regression

- The differences:
 - If data is not Gaussian etc. (that is, NB assumptions do not hold), logistic regression often gives better result (at least for large amounts of data).
 - Logistic regression needs more data. Naive Bayes needs $N = O(\log d)$ samples, while logistic regression needs N = O(d). Ng & Jordan (2002) On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes. In Proc NIPS 14.
- Generative classifier: more bias, less variance. There is a model for P(x). This is good if there is little data and/or the model for x is correct enough.
- Discriminative classifier: less bias, more variance. There is no model for P(x), it is estimated directly from data. This is good if the NB model for x is wrong and/or there is enough data.

Outline

Decision Trees

- Classification Trees
- Regression Trees
- 2 Linear Discrimination
 - Naive Bayes Classifier (Again)
 - Logistic Regression
 - Logistic Regression vs. Naive Bayes

Computing Sums and Products Floating Point Numbers

Numerical Computation: Computing Sums and Products

- Sometimes it is enough to use + and * operators to compute sums and products. According to R: 3.14*42=131.88; 3.14+42+5=50.14.
- Sometimes it is not. According to R: 3.14e-200*42e-201*1e300=0; 1e-400*1e400=NaN; 1e-16+1-1=0.
- In probabilistic modeling it is typical to...
 - Have numbers of different orders of magnitudes, including very small numbers.
 - Do sums and products with them.
- Important numbers (examples from the R floating point implementation in Mac OS X, help(.Machine)):
 - Smallest positive floating point number ϵ (machine epsilon) for which $1 + \epsilon \neq 1$: 2.2×10^{-16} .
 - $\bullet\,$ The largest finite floating point number: $1.7\times10^{308}.$
 - The smallest positive floating point number: 2.2×10^{-308} .

Numerical Computation: Representing Numbers

- In many practical applications, 2.2×10^{-308} is too large for representing intermediate probabilities.
- Solution: store numbers as logs.
- Probabilities are usually always positive. (Generally, software should however be written so that to work consistently also with zero probabilities.)
- R is consistent also for zero probabilities: log(0)=-Inf; exp(-Inf)=0.
- Other software may behave differently. Read the documentation and test.

Numerical Computation: Computing Products

- Task: compute the product $y = \prod_{i=1}^{n} x_i$.
- 1e-200*1e-200*1e300=0 (wrong!).
- Solution: use logs.
- log $y = \sum_{i=1}^n \log x_i$.
- log(1e-200)+log(1e-200)+log(1e300)=log(1e-100) (correct).
- Division: $\log(x/y) = \log x \log y$. Product with negatives.

Numerical Computation: Computing Sums

- Task: compute sum $y = \sum_{i=1}^{n} x_i$.
- exp(-1000)+exp(-999)=0 (wrong!).
- Solution: scale numbers appropriately before doing the sum.
- $\log y = \log x_{MAX} + \log \left(\sum_{i=1}^{n} \exp \left(\log x_i \log x_{MAX} \right) \right)$, where $\log x_{MAX} = \max_i \log x_i$.
- -999+log(exp(-1)+exp(0))=-998.6 (correct).
- Something like this: safesum <- function(x) { xmax <- max(x) ; xmax+log(sum(exp(x-xmax)))) }

Numerical Computation: Example Naive Bayes' classifier

$$P(C_i \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid C_i)P(C_i)}{\sum_{k=1}^{K} P(\mathbf{x} \mid C_k)P(C_k)} = \frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$

Store numbers as logs and denote: $a[i] = \log P(\mathbf{x} \mid C_i),$ $b[i] = \log P(C_i).$

safesum <- function(x) { xmax <- max(x); xmax+log(sum(exp(x-xmax)))) }

```
evidence <- safesum(a+b)
```

```
posterior <- sum(c(a[i],b[i],-evidence))</pre>
```

```
exp(posterior) \#P(C_i \mid \mathbf{x})
```