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Machine Learning Guest Lectures on 27 November

10–11 Juha Vesanto (Xtract): Data Mining in Practice
How to make succesfull analytics/data mining in an industry/corporate

environment. Principles and a case study.

11–12 Hannu Helminen (Google): Machine Learning Methods in
Web Search
Google is using machine learning methods in the presence of erroneous user

queries and documents of low quality. Differences between a traditional

information retrieval corpora and the web, and implications of these differences

for improving queries and modeling the web are discussed. Inferring meaning

from context and using this additional context for query expansion improves

the quality of search results.

See http://www.cis.hut.fi/Opinnot/T-61.3050/2007/guestlecture
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Please visit www.google.com/jobs/students to view our complete list of  
job opportunities and learn more about Google, our work and our culture.

Let’s talk.
Google is coming to campus to talk  
about Engineering  opportunities.  

Join us to find out how we work, play 
and change the world.

Helsinki University of Technology 
Lecture Hall: T1

TKK Computer Science Building
Konemiehentie 2, Espoo 
27th November 2007

4.15pm

See http://www.cis.hut.fi/googletalk07/
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Decision Trees

Each internal node tests an attribute.

Each branch corresponds to set of attribute values.

Each leaf node assigns a classification (classification tree) or a
real number (regression tree).

The tree is usually learned using a greedy algorithm built
around ID3, such as C4.5. (The problem of finding optimal
tree is generally NP-hard.)

Advantages of trees:

Learning and classification is fast.
Trees are accurate in many domains.
Trees are easy to interpret as sets of decision rules.

Often, trees should be used as a benchmark before more
complicated algorithms are attempted.
For alternative discussion, see Mitchell (1997), Ch 3.
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ID3 algorithm for discrete attributes

ID3(X ) {Input: X = {(r t , xt)}N
t=1, data set with binary attributes

r t ∈ {−1, +1} and a vector of discrete variables xt . Output: T , classification
tree.}
Create root node for T
If all items in X are positive (negative), return a single-node tree with label
“+” (“-”)
Let A be attribute that “best” classifies the examples
for all values v of A do

Let Xv be subset of X that have value v for A
if Xv is empty then

Below the root of T , add a leaf node with most common label in X
else

Below the root of T , add subtree ID3(Xv )
end if

end for
return T
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Variations of ID3

Impurity measures:

Entropy: −p+ log2 p+ − p− log2 p−.
Gini index: 2p+p−.
Misclassification error: 1−max (p+, p−).
All vanish for p+ ∈ {0, 1} and have a maximum at
p+ = p− = 1/2.

Continuous or ordered variables: sort x t
A for some attribute A

and find the best split xA ≤ w vs. xA > w .
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Observations of ID3

Inductive bias:

Preference on short trees.
Preference on trees with high information gain near root.

Vanilla ID3 classifies the training data perfectly.

Hence, in presence of noise, vanilla ID3 overfits.
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Pruning

How to avoid overfitting?

Prepruning: stop growing when data split is not statistically
significant. For example: stop tree construction when node is
smaller than a given limit, or impurity of a node is below a
given limit θI . (faster)
Postpruning: grow the whole tree, then prune subtrees which
overfit on the pruning (validation) set. (more accurate)
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Pruning
Postpruning

Split data into training and pruning (validation) sets.

Do until further pruning is harmful:
1 Evaluate impact on pruning set of pruning each possible node

(plus those below it).
2 Greedily remove the one that most improves the pruning set

accuracy.

Produces smallest version of most accurate subtree.

Alternative: rule postpruning (commonly used, for example,
C4.5).
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Examples: Predicting woody cover in African savannas

Task: woody cover (% of surface covered by trees) as a
function of precipitation (MAP), soil characteristics (texture,
total nitrogen total and phosphorus, and nitrogen
mineralization), fire and herbivory regimes.

Result: MAP is the most important factor.

©!!""#!Nature Publishing Group!
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below the MAP-controlled upper bound (Fig. 3). Woody cover is
higher, on average, where fires are infrequent (fire-return interval
.10.5 yr). In sites with more frequent fires, woody cover is typically
low, except on very sandy soils (mostly concentrated on the Kalahari
sand sheets), which tend to support higher woody cover (Fig. 3). The
dependence of fire frequency on MAP presumably arises because
increased grass production in mesic sites leads to greater fuel loads
that can support more frequent fires14 (Supplementary Fig. S2). Very
high sand content, which correlates with low nutrient availability
(Supplementary Table S1), may promote higher woody cover if the
positive effects of coarse-textured soils, such as lower wilting points19

and greater water percolation to soil layers below grass rooting
depths1,11,12, override the negative effects associated with lower
nutrient availability in these soils19.
Herbivore effects on woody cover are, however, less apparent.

Although we found a tendency for grazers to enhance woody cover
and browsers and mixed feeders to depress it, such effects were weak
and could not be generalized beyond our data set (see Methods;
measures of herbivore biomass were retained in the complete, but not
pruned, regression tree). The lack of consistent herbivore effects
across sites most probably reflects differences in herbivore guilds,
seasonality of herbivory, and variation in herbivore body-size distri-
butions across sites, features for which data were not available.
Larger, more detailed data sets will undoubtedly provide greater
resolution of how different driver variables interact to influence
mean woody cover.
These results have the power to inform savanna management

strategies because they bear directly on our ability to predict savanna
responses to changing environmental drivers. In particular, our data
indicate that woody encroachment, a phenomenon in which many
savannas across the world show a directional trend of increasing
woody cover1, may be a bounded process in savannas receiving a
MAP of ,650 ^ 134mm, ultimately limited by water availability.
For sites close to or at theMAP-controlled bound (Fig. 1), changes in
precipitation regimes that lead to increased water availability6 there-
foremay be a cause for concernwith respect to woody encroachment.
However, the enormous variation in woody cover, with most sites far
from the climatic bound (Fig. 1), suggests that processes other than
MAP regulate actual tree cover in many savannas of Africa. In
particular, our results suggest that if disturbances by fire, browsers

and humans were absent, then large sections of the African continent
would switch to a wooded state (hatched regions in Fig. 4).
The patterns described here for African savannas suggest that the

dominant ecological theories for tree–grass coexistence in these
systems need to be combined: it is clear that most savannas are
strongly affected by disturbances that maintain woody cover well
below the resource-limited upper bound. Disturbance-based models
do not consider and are unable to explain, however, the upper bound
to tree cover. The results emerging from this continental scale
analysis strongly indicate that water limits the maximum cover of
woody species inmany African savanna systems, but that disturbance
dynamics control savanna structure below the maximum. These
results have important implications both for our understanding of
the fundamental nature of African savanna systems and for our
ability to predict their responses to changing environmental drivers.
It remains to be established whether the patterns observed here for
African savannas also hold in other tropical savanna regions or in
temperate savannas where the effects of winter precipitation and
temperature on moisture distribution through the soil profile can
markedly alter water partitioning between woody and herbaceous
plants, and thus can influence maximum woody cover.

METHODS
Data collection. Data on projected woody cover (the percentage of ground
surface covered when crowns are projected vertically), MAP, soil characteristics
(texture, total nitrogen and phosphorus, and nitrogen mineralization), fire and
herbivory regimes were gathered from several sources for a range of sites across
Africa. We included only sites for which vegetation was sampled over sufficiently
large spatial scales (.0.25 ha for plot measurements and .100m for transect
sampling). Sites located in riparian or seasonally flooded areas, or in net water
run-on areas such as depressions, and sites in which trees were known to access
ground water resources (that is, sources of water not dependent on rainfall in the
immediate vicinity or in recent years) were excluded from the analysis because
MAP is not a relevant descriptor of water availability in these sites. We also
excluded sites that had been cultivated or harvested by humans ,10 yr before
sampling from the analysis.

Rainfall data included estimates from field measurements and regional
rainfall maps (n ¼ 469) and from fitted climatic grids (0.058 resolution,

Figure 4 |The distributions ofMAP-determined (‘stable’) and disturbance-
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (.784mmMAP); cross-hatched
areas show the transition between stable and unstable savannas (516–
784mm MAP); grey areas that are not hatched show the stable savannas
(,516mm MAP).

Figure 3 | Regression tree showing generalized relationships between
woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained,45.2% of the variance in woody cover, which is significantly
more than a random tree (P , 0.001). Of this, 31%was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.
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below the MAP-controlled upper bound (Fig. 3). Woody cover is
higher, on average, where fires are infrequent (fire-return interval
.10.5 yr). In sites with more frequent fires, woody cover is typically
low, except on very sandy soils (mostly concentrated on the Kalahari
sand sheets), which tend to support higher woody cover (Fig. 3). The
dependence of fire frequency on MAP presumably arises because
increased grass production in mesic sites leads to greater fuel loads
that can support more frequent fires14 (Supplementary Fig. S2). Very
high sand content, which correlates with low nutrient availability
(Supplementary Table S1), may promote higher woody cover if the
positive effects of coarse-textured soils, such as lower wilting points19

and greater water percolation to soil layers below grass rooting
depths1,11,12, override the negative effects associated with lower
nutrient availability in these soils19.
Herbivore effects on woody cover are, however, less apparent.

Although we found a tendency for grazers to enhance woody cover
and browsers and mixed feeders to depress it, such effects were weak
and could not be generalized beyond our data set (see Methods;
measures of herbivore biomass were retained in the complete, but not
pruned, regression tree). The lack of consistent herbivore effects
across sites most probably reflects differences in herbivore guilds,
seasonality of herbivory, and variation in herbivore body-size distri-
butions across sites, features for which data were not available.
Larger, more detailed data sets will undoubtedly provide greater
resolution of how different driver variables interact to influence
mean woody cover.
These results have the power to inform savanna management

strategies because they bear directly on our ability to predict savanna
responses to changing environmental drivers. In particular, our data
indicate that woody encroachment, a phenomenon in which many
savannas across the world show a directional trend of increasing
woody cover1, may be a bounded process in savannas receiving a
MAP of ,650 ^ 134mm, ultimately limited by water availability.
For sites close to or at theMAP-controlled bound (Fig. 1), changes in
precipitation regimes that lead to increased water availability6 there-
foremay be a cause for concernwith respect to woody encroachment.
However, the enormous variation in woody cover, with most sites far
from the climatic bound (Fig. 1), suggests that processes other than
MAP regulate actual tree cover in many savannas of Africa. In
particular, our results suggest that if disturbances by fire, browsers

and humans were absent, then large sections of the African continent
would switch to a wooded state (hatched regions in Fig. 4).
The patterns described here for African savannas suggest that the

dominant ecological theories for tree–grass coexistence in these
systems need to be combined: it is clear that most savannas are
strongly affected by disturbances that maintain woody cover well
below the resource-limited upper bound. Disturbance-based models
do not consider and are unable to explain, however, the upper bound
to tree cover. The results emerging from this continental scale
analysis strongly indicate that water limits the maximum cover of
woody species inmany African savanna systems, but that disturbance
dynamics control savanna structure below the maximum. These
results have important implications both for our understanding of
the fundamental nature of African savanna systems and for our
ability to predict their responses to changing environmental drivers.
It remains to be established whether the patterns observed here for
African savannas also hold in other tropical savanna regions or in
temperate savannas where the effects of winter precipitation and
temperature on moisture distribution through the soil profile can
markedly alter water partitioning between woody and herbaceous
plants, and thus can influence maximum woody cover.

METHODS
Data collection. Data on projected woody cover (the percentage of ground
surface covered when crowns are projected vertically), MAP, soil characteristics
(texture, total nitrogen and phosphorus, and nitrogen mineralization), fire and
herbivory regimes were gathered from several sources for a range of sites across
Africa. We included only sites for which vegetation was sampled over sufficiently
large spatial scales (.0.25 ha for plot measurements and .100m for transect
sampling). Sites located in riparian or seasonally flooded areas, or in net water
run-on areas such as depressions, and sites in which trees were known to access
ground water resources (that is, sources of water not dependent on rainfall in the
immediate vicinity or in recent years) were excluded from the analysis because
MAP is not a relevant descriptor of water availability in these sites. We also
excluded sites that had been cultivated or harvested by humans ,10 yr before
sampling from the analysis.

Rainfall data included estimates from field measurements and regional
rainfall maps (n ¼ 469) and from fitted climatic grids (0.058 resolution,

Figure 4 |The distributions ofMAP-determined (‘stable’) and disturbance-
determined (‘unstable’) savannas in Africa. Grey areas represent the
existing distribution of savannas in Africa according to ref. 30. Vertically
hatched areas show the unstable savannas (.784mmMAP); cross-hatched
areas show the transition between stable and unstable savannas (516–
784mm MAP); grey areas that are not hatched show the stable savannas
(,516mm MAP).

Figure 3 | Regression tree showing generalized relationships between
woody cover and MAP, fire-return interval and percentage of sand. The
tree is pruned to four terminal nodes and is based on 161 sites for which all
data were available. No consistent herbivore effects were detected. Branches
are labelled with criteria used to segregate data. Values in terminal nodes
represent mean woody cover of sites grouped within the cluster. The pruned
tree explained,45.2% of the variance in woody cover, which is significantly
more than a random tree (P , 0.001). Of this, 31%was accounted for by the
first split; the second split explained an additional 10% of the variance in
woody cover.
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should limit the potential tree cover that can be supported at any
given site, and maximum realizable woody cover should gradually
increase with MAP4,12. By contrast, if disturbances such as fire
and herbivory primarily maintain savannas4,5,15, then we expect an
abrupt, rather than gradual, increase in maximum realizable woody
cover with increasing MAP4: below a critical threshold of rainfall
sufficient to permit tree growth outside riparian areas or depressions,
grasslands should dominate; above this threshold, the maximum
woody cover should correspond to a closed-canopy woodland state4.
Depending on the level of disturbance, a particular location might
have reduced woody cover, but the upper bound would not depend
on MAP.
We evaluated relationships between woody cover and MAP, soil

characteristics (texture, percentage nitrogen, nitrogen mineraliza-
tion, total phosphorus) and disturbance regimes (fire-return inter-
vals, mammalian herbivore biomass) from 854 sites across Africa
(Supplementary Fig. S1 andMethods).Woody cover ranges from 0 to
90% across sites and tends to increase with MAP (Fig. 1). More
particularly, within a narrow range of MAP from ,100 to 650mm,
an upper bound exists on the maximum realizable woody cover
(Fig. 1). In these arid to semi-arid sites (,650 ^ 134mm MAP;
see Fig. 1), maximum realized woody cover increases with MAP
(Fig. 2a), but shows no relationship with fire-return intervals,
herbivore biomass or soil characteristics (Fig. 2b–f), suggesting
that the observed upper limit on woody cover in arid and semi-
arid African savannas is primarily a consequence of moisture
limitation. The presence of an upper bound on woody cover in
these savannas that is linked primarily to MAP is not consistent with
the view that savannas are inherently unstable systems maintained by
disturbances.
Within this MAP range (,650 ^ 134mm MAP), our analysis

suggests that tree–grass coexistence is stable to the extent that
disturbances such as fire and herbivory, although capable of modify-
ing tree to grass ratios, are not necessary for coexistence. In these
“climatically determined savannas”17 (,650 ^ 134mm MAP),
restrictions on maximumwoody cover as a result of water limitation
permit grasses to persist in the system. By contrast, in areas that

receive aMAP in excess of 650 ^ 134mm, water availability seems to
be sufficient to allow trees to approach canopy closure such that
grasses may be effectively excluded. These “disturbance-driven
savannas”17 represent unstable systems in which disturbances such
as fire, grazing and browsing are required to maintain both trees
and grasses in the system by buffering against transitions to a closed-
canopy state5,17.
Whereas MAP drives the upper bound onwoody cover in arid and

semi-arid savannas, disturbance regimes and soil characteristics
impose significant controls on savanna structure by influencing
woody cover below the bound. A regression tree analysis of mean
woody cover for a restricted subset of sites for which all data were
available (Fig. 3 and Methods) further highlights the importance of
MAP as a principal driver of savanna structure and suggests that
MAP also mediates the relative importance of other savanna drivers
such as fire and soil characteristics.
Below aMAPof,350mm,woody cover is typically low (Fig. 3). In

these sites, soil properties and disturbances such as fire and herbivory
rarely regulate woody cover. As MAP increases above this threshold,
fire in particular becomes a common factor that reduces woody cover

Figure 1 | Change in woody cover of African savannas as a function of
MAP. Maximum tree cover is represented by using a 99th quantile piece-
wise linear regression. The regression analysis identifies the breakpoint (the
rainfall at which maximum tree cover is attained) in the interval
650 ^ 134mm MAP (between 516 and 784mm; see Methods). Trees are
typically absent below 101mm MAP. The equation for the line quantifying
the upper bound on tree cover between 101 and 650mm MAP is
Cover(%) ¼ 0.14(MAP) 2 14.2. Data are from 854 sites across Africa.

Figure 2 | Woody cover as a function of MAP, soil properties and
disturbance regimes in arid and semi-arid savannas. Relationships
between woody cover and MAP (a; n ¼ 529), fire-return intervals
(b; n ¼ 302), herbivore biomass (c; n ¼ 145), percentage of clay
(d; n ¼ 234), nitrogen mineralization potential (e; n ¼ 109) and soil total
phosphorus (f; n ¼ 118) for savannas receiving ,650mm MAP. Unbroken
and broken lines represent the 99th and 90th linear quantiles, respectively.
Maximum woody cover increased with MAP, but showed no consistent
relationship with other variables. For MAP, both quantile slopes were
significantly different from zero. For fire-return intervals, herbivore
biomass, clay and nitrogen mineralization rates, neither regression line had
a significant non-zero slope. For total phosphorus, the 90th but not the 99th
quantile slope differed from zero.

NATURE|Vol 438|8 December 2005 LETTERS
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From Sankaran M et al. (2005) Determinants of woody cover in African savannas. Nature 438: 846–849.
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Regression Trees

Error at node m:

bm(x) =

{
1 x reaches node m
0 otherwise

Em =
1

Nm

∑
t

(
r t − gm

)2
bm(xt) , gm =

∑
t bm(xt)r t∑
t bm(xt)

.

After splitting:

bmj(x) =

{
1 x reaches node m and branch j
0 otherwise

Em =
1

Nm

∑
j

∑
t

(
r t − gmj

)2
bmj(x

t) , gmj =

∑
t bmj(x

t)r t∑
t bmj(xt)

.
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Kai Puolamäki T-61.3050



AB

Decision Trees
Linear Discrimination

Computing Sums and Products

Classification Trees
Regression Trees

Implementations

There are many implementations, with sophisticated pruning
methods.
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Linear Discrimination

Source material:

Alpaydin (2004) Ch 10, or
A new chapter by Mitchell (September 2005), “Generative and
Discriminative Classifiers: Naive Bayes and Logistic
Regression”, available as PDF at
http://www.cs.cmu.edu/∼tom/NewChapters.html

Kai Puolamäki T-61.3050

http://www.cs.cmu.edu/~tom/NewChapters.html


AB

Decision Trees
Linear Discrimination

Computing Sums and Products

Naive Bayes Classifier (Again)
Logistic Regression
Logistic Regression vs. Naive Bayes

Naive Bayes Classifier
Common diagonal covariance matrix

Idea: the means are class-specific, covariance matrix Σ is
common and diagonal (Naive Bayes).

d parameters in the covariance matrix.

Discriminant is linear: gi (x) = wT
i x + wi0, where wi = Σ−1µi

and wi0 = −1
2µT

i Σ−1µi + log P(Ci ).

       
 

 

 

 

 

 

 

Figure 5.5: All classes have equal, diagonal

covariance matrices but variances are not equal.

From: E. Alpaydın. 2004. Introduction to Machine

Learning. c©The MIT Press.
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Using Naive Bayes Classifier
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Naive Bayes Classifier

X = {(r t , xt)}Nt=1, r t ∈ {0, 1}, xt ∈ Rd .

Naive Bayes assumption: P(xt | r t) =
∏d

i=1 P(x t
i | r t).

Using Bayes rule,

P(r | x) =
P(r)

∏d
i=1 P(xi | r)∑

s∈{0,1} P(s)
∏d

i=1 P(xi | s)
.

Discriminant is linear:
gi (x) = log P(ri = 1 | x) + const. = wT

i x + wi0, where
wi = Σ−1µi and wi0 = −1

2µT
i Σ−1µi + log P(Ci ).

Observation:

log
P(r = 1 | x)

1− P(r = 1 | x)
= wTx + w0.
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Logistic Regression

Logit: logit(p) = log
(

p
1−p

)
.

Sigmoid: sigmoid(t) = logit−1(t) = 1/(1 + e−t).

Derivative of sigmoid:
sigmoid′(t) = sigmoid(t) (1− sigmoid(t)).
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Sigmoid (Logistic) Function

!"#$%&"'()$"*'+)&','-./012!3'4556'73$&)2%#$8)3'$)'90#:83"'!"0&383;'< =:"'97='>&"**'?@ABAC

!"

D8;E)82'?!);8*$8#C'F%3#$8)3

! " ! "

! " !"#$%%%&'(()*%+,-%)#./(#-%0+1&21+3*%45

(6%7"#$%%%&'(()*%+,-%%0+1&21+3*%85

8"

8"

B1GH1

;GH;
=

=

#$%

#$%

!"

!!"!
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Cost Function for Logistic Regression

P(R | X ,W ) =
n∏

t=1

P(r t | xt ,W )

L = e−P(R|X ,W ) = −
N∑

t=1

(
r t log y t − (1− r t) log (1− y t)

)
,

where y t = P(r t = 1 | x) = sigmoid(wtx + w0).

Task: find W = (w,w0) such that L is minimized.

No EM algorithm. Use gradient ascent.
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Gradient Ascent

GRADASC(L(θ), θ0) {Input: L(θ), cost function; θ0, initial
parameters. Output: θ, a local minimum of L.}
θ ← θ0 {θ, θ0 ∈ Rd .}
t ← 1
repeat

for all i ∈ {1, . . . , d} do
∆θi ← ∂L(θ)/∂θi

end for
for all i ∈ {1, . . . , d} do

θi ← θi − ηt∆θi

end for
t ← t + 1

until convergence
return θ
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Gradient Ascent

The function GRADASC
always converges if∑∞

t=1 ηt =∞ and∑∞
t=1 η2

t <∞, where ηt ≥ 0
for all t, for example,
ηt = 1/t.

The function GRADASC
often converges also for
constant small enough
ηt = η > 0.
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Gradient Ascent

GRADASC is inefficient.

Usually one should use a
more sophisticated gradient
ascent algorithm, such as
conjugate gradient, from
some numerical library (e.g.,
in R type help(optim)).
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Kai Puolamäki T-61.3050



AB

Decision Trees
Linear Discrimination

Computing Sums and Products

Naive Bayes Classifier (Again)
Logistic Regression
Logistic Regression vs. Naive Bayes

Gradient Ascent

Logistic regression may
converge to w → ±∞ (see
right), especially when data
is high dimensional and
sparse. This causes
problems.

Solution: minimize
regularized cost
L → L+ 1

2λ
(
w2

0 + wTw
)
.
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Figure 10.7: For a univariate two-class problem

(shown with ‘◦’ and ‘×’ ), the evolution of the line

wx + w0 and the sigmoid output after 10, 100, and

1,000 iterations over the sample. From: E. Alpaydın.

2004. Introduction to Machine Learning. c©The MIT

Press.

83Kai Puolamäki T-61.3050
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Generalized Linear Models

Logistic regression is a special case of Generalized Linear
Models (GLM)

logit is a link function.

Many respectable numerical packages contain GLM
implementation which includes logistic regression (e.g., in R
help(glm)). You should probably use these in real life
applications instead of programming one on your own.
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Naive Bayes vs. Logistic Regression

Naive Bayes classifier estimates parameters of P(r) and
P(x | r) (means, covariances, etc.). (generative classifier,
because we can generate the data points, given parameters)

Logistic regression directly estimates the parameters of
P(r | x). (discriminative classifier, because we can directly
discriminate wrt. r , given x; no generative model for p(x) is
needed)

If Naive Bayes assumptions hold (data from multivariate
Gaussians with diagonal covariate matrix) and the number of
training examples is very large, Naive Bayes and logistic
regression give identical classification.
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Naive Bayes vs. Logistic Regression

The differences:

If data is not Gaussian etc. (that is, NB assumptions do not
hold), logistic regression often gives better result (at least for
large amounts of data).
Logistic regression needs more data. Naive Bayes needs
N = O(log d) samples, while logistic regression needs
N = O(d). Ng & Jordan (2002) On Discriminative vs. Generative Classifiers: A
Comparison of Logistic Regression and Naive Bayes. In Proc NIPS 14..

Generative classifier: more bias, less variance. There is a
model for P(x). This is good if there is little data and/or the
model for x is correct enough.

Discriminative classifier: less bias, more variance. There is no
model for P(x), it is estimated directly from data. This is
good if the NB model for x is wrong and/or there is enough
data.
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Numerical Computation: Computing Sums and Products

Sometimes it is enough to use + and * operators to compute
sums and products. According to R:
3.14*42=131.88; 3.14+42+5=50.14.

Sometimes it is not. According to R:
3.14e-200*42e-201*1e300=0; 1e-400*1e400=NaN;
1e-16+1-1=0.
In probabilistic modeling it is typical to. . .

Have numbers of different orders of magnitudes, including very
small numbers.
Do sums and products with them.

Important numbers (examples from the R floating point
implementation in Mac OS X, help(.Machine)):

Smallest positive floating point number ε (machine epsilon) for
which 1 + ε 6= 1: 2.2× 10−16.
The largest finite floating point number: 1.7× 10308.
The smallest positive floating point number: 2.2× 10−308.
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Numerical Computation: Representing Numbers

In many practical applications, 2.2× 10−308 is too large for
representing intermediate probabilities.

Solution: store numbers as logs.

Probabilities are usually always positive. (Generally, software
should however be written so that to work consistently also
with zero probabilities.)

R is consistent also for zero probabilities:
log(0)=-Inf; exp(-Inf)=0.

Other software may behave differently. Read the
documentation and test.
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Numerical Computation: Computing Products

Task: compute the product y =
∏n

i=1 xi .

1e-200*1e-200*1e300=0 (wrong!).

Solution: use logs.

log y =
∑n

i=1 log xi .

log(1e-200)+log(1e-200)+log(1e300)=log(1e-100) (correct).

Division: log(x/y) = log x − log y . Product with negatives.
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Numerical Computation: Computing Sums

Task: compute sum y =
∑n

i=1 xi .

exp(-1000)+exp(-999)=0 (wrong!).

Solution: scale numbers appropriately before doing the sum.

log y = log xMAX + log (
∑n

i=1 exp (log xi − log xMAX )), where
log xMAX = maxi log xi .

-999+log(exp(-1)+exp(0))=-998.6 (correct).

Something like this:
safesum <- function(x) { xmax <- max(x) ;
xmax+log(sum(exp(x-xmax)))) }
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Numerical Computation: Example
Naive Bayes’ classifier

P(Ci | x) =
P(x | Ci )P(Ci )∑K

k=1 P(x | Ck)P(Ck)
=

likelihood× prior
evidence

Store numbers as logs and denote: a[i ] = log P(x | Ci ),
b[i ] = log P(Ci ).

safesum <- function(x) { xmax <- max(x); xmax+log(sum(exp(x-xmax)))) }

evidence <- safesum(a+b)

posterior <- sum(c(a[i],b[i],-evidence))

exp(posterior) #P(Ci | x)
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