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Solutions for exercise 7

1. If we are not interested in the dependencies inside the groups X1 or X2 but are interested
only on dependecies between these groups, we can use canonical correlation analysis
(CCA). It means that we try to find projections from X1 and X2 which would be as
correlated as possible. CCA uses only second-order statistics; for Gaussian variables this
is sufficient but CCA can also be used for non-Gaussian variables. For a tutorial on CCA,
see, e.g., the one by Magnus Borga available at http://people.imt.liu.se/∼magnus/cca/ .
The following is partly based on the information in that tutorial.

The correlation coefficient between zero mean random variables a and b is defined to be
ρab = E{ab}/
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E{a2}E{b2}. We have projections ai = uT
i x1 and bi = vT
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would like to maximise the correlations between ai and bi. We restrict the solutions to
be uncorrelated for different i: E{aiaj} = E{bibj} = E{aibj} = 0 for i 6= j.
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It can be shown that the maximization corresponds to solving either one of the following
eigenvalue equations:
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Connection to singular value decomposition. Canonical correlations are invariant
to affine transformations (for example, if a transformation A is used for x1, just set
ûi = A−1ui). Therefore, to simplify the situation, suppose that X1 and X2 have been
whitened (see problem 4 for the precise transformations needed). Then Σ1 = I and
Σ2 = I. (Note that X1 and X2 can have different dimensionalities, so the two identity
matrices can be of different sizes.) The eigenvalue equations then become
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Solving the above equations corresponds to singular value decomposition (SVD) of Σ12.
SVD is similar to eigendecomposition but the orthogonal matrices need not be the same.
This also means the SVD can be extended for non-square matrices. The singular value
decomposition for matrix Σ12 = E{x1x

T
2 } gives a decomposition Σ12 = UDVT , where

U and V are orthogonal square matrices and D is a matrix which has non-zero elements



only on its diagonal. Notice that D has the same shape as Σ12 and it is therefore not
necessarily square. The matrices U and V are computed by eigendecomposition:

Σ12 = UDVT ⇒
{

Σ12Σ
T
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12Σ12 = VDTUTUDVT = VDTDVT .
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Therefore U and V are the same as the solutions to the eigenvalue equations (1): U =
[u1 . . .un]T and V = [v1 . . .vm]T and the diagonal elements of D are the corresponding
correlation coefficients ρi.

Note: SVD can be seen as an extension to eigendecomposition. If SVD is done for the
covariance matrix Σ1 = E{x1x

T
1 }, we have Σ1Σ

T
1 = ΣT

1 Σ1 and DDT = DTD in equation
(2), and the orthogonal matrices U and V are therefore the same. The diagonal matrix
then contains the eigenvalues which can be interpreted as variances to the directions
given by the eigenvectors. For Σ12 the diagonal elements give the correlation coefficients
(assuming that Σ12 is computed for the whitened data).

2. (a) We shall use subindices k and l instead of i and j in order to avoid confusion with
the i =

√
−1. Denote the Fourier transform of the sequence xk(t) by Xk(ω) and

the Fourier transform of sl(t) by Sl(ω). Recall that the Fourier transform changes a
delay by Dkl into multiplication with term eiωDkl . Fourier transforming both sides
of the equation defining the mixtures thus yields
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This can be written as X(ω) = A(ω)S(ω) when X and S are defined to be the
vectors containing Xk and Sl and
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Notice that A is not constant.

(b) Since the original akl are real, we have akl = ±|Akl|, where Akl denotes the element
of matrix A.

3. Assume that x1 and x2 are independent random variables. The kurtosis (fourth-order
cumulant) of a random variable y is defined by

kurt(y) = E{(y − E{y})4} − 3(E{(y − E{y})2})2.

Let us prove that kurt(x1 +x2) = kurt(x1)+kurt(x2). We may without loss of generality
assume that x1 and x2 are zero-mean. Then the kurtosis of x1 + x2 is
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Expectation is a linear operation, ie. E{αy1 + βy2} = αE{y1} + βE{y2} for random
variables y1 and y2 and scalar multipliers α and β. The above formula can therefore be
rewritten as
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the above formula can be further rewritten:
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Here, E{x1} = E{x2} = 0, so the above reduces to
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Let us prove the second property kurt(αx1) = α4kurt(x1). We have
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4. Let x be the observed vector, and denote

x2 = ED−1/2ETx,

where E is the orthogonal matrix of eigenvectors of E{xxT}, D is the diagonal matrix
of its eigenvalues, D = diag(d1, . . . , dn), and D−1/2 is a diagonal matrix whose diagonal

elements are simply those of D raised to power −1/2, D = diag(d
−1/2
1 , . . . , d

−1/2
n ). Let us

show that x2 is white.

Assume that x is zero-mean (E{x} = 0). The matrices E and D are constant with regard
to the expectation operator. Then

E{x2} = E{ED−1/2ETx} = ED−1/2ET E{x} = ED−1/2ET0 = 0.



It remains to show that E{x2x
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From the definition of E and D we have the eigendecomposition

E{xxT} = EDET .

Inserting this into the previous equation we get
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Therefore x2 is white.

5. Let us consider the distribution

g(x) =
b

4
{exp(−b|x − a|) + exp(−b|x + a|)}

where we assume b > 0 (otherwise g(x) would not be a distribution).

(a) The nth order moment of a distribution p(x) with infinite support is
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Note that g(x) is symmetric about zero. Therefore the mean (first moment) of the
distribution is zero (this can also be proved by integration). The kurtosis of g(x)
(the kurtosis of a random variable x distributed according to g(x)) is then defined
by

kurtg(x)(x) = E{x4} − 3(E{x2})2 = m4 − 3m2
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In our case, n is even, so xn is symmetric about zero. Let us then change the
integration variable from x to −x in the second and fourth integrals. We get
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The remaining integrals can be computed by partial integration. For n = 4 we have
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Inserting this result into the formula for m4, with a and −a in place of c, respectively,
we get
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Performing a similar partial integration procedure for m2, we get
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Inserting these results into the moment-based formula for the kurtosis, we have
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Let us assume that the distribution g(x) has unit variance (m2 = 1). Then
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Here we require b2 > 0 ⇒ a2 < 1, where the the right-hand side follows from the
unit variance assumption. In this case, the previous formula is in fact simpler.



(b) Since b4 > 0, the sign of the kurtosis depends only on the numerator term of the
above expression.

i. When the kurtosis is negative, we have
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The corresponding values for b can be calculated from the unit variance assump-
tion (see the formula above).

ii. The kurtosis is zero when |a| = 4
√

6/b. In the unit variance case this becomes

|a| =
√
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√

6 (2 points).

iii. The kurtosis is positive when |a| < 4
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6/b. In the unit variance case this becomes

|a| <
√
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√
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(c) Distributions (or the associated random variables) with negative kurtosis are called
subgaussian and distributions with positive kurtosis are called supergaussian. Here,
the distribution g(x) can be either, depending on the values of a and b (see the
previous section). In the figure below, the solid curve is subgaussian, the dashed
curve has zero kurtosis and the dashdot curve is supergaussian.
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