
T-61.5030 Advanced course in neural computing

Solutions for exercise 8

1. The network model is y = Wx + n, where y is a two-dimensional vector. The goal is
to analyse how much information about x is conserved in the output y. This can be
measured by the mutual information I(X; Y ) = h(Y )− h(Y |X) (where X and Y are the
random variables corresponding to x and y).

Let z = Wx, i.e., z is the noiseless version of y and denote the variance of the components
of z by σ2

1 and σ2
2. Also, denote the normalised correlation of the components z1 and z2

by ρ = E{(z1 −E{z1})(z2 −E{z2})}/(σ1σ2) and the variance of the noise by σ2
N (assume

the noise to be the same on both outputs).

It is reasonable to assume the noise to be Gaussian. If the inputs are not Gaussian, neither
is the noiseless output z. However, we need to assume this for the sake of computational
tractability, because then the noisy output y is Gaussian and we can compute h(Y ).
Given x all that is unknown about y is the noise and therefore h(Y |X) is actually the
same as h(N). We therefore have I(X; Y ) = h(Y ) − h(Y |X) = h(Y ) − h(N). For a
certain noise level, only the term h(Y ) can be affected by the weights W and the mutual
information is maximised by maximising the differential entropy h(Y ) of the outputs.

For a Gaussian random variable the differential entropy is

h(Y ) =
q

2
+

1

2
ln |ΣY | ,

where q = 2 is the dimension of y and |ΣY | is the determinant of the covariance matrix
of y. Since

ΣY =

(

σ2
1 + σ2

N σ1σ2ρ
σ1σ2ρ σ2

2 + σ2
N

)

we have

|ΣY | = (σ2
1 + σ2

N )(σ2
2 + σ2

N ) − (σ1σ2ρ)2 = σ4
N + σ2

N (σ2
1 + σ2

2) + σ2
1σ

2
2(1 − ρ2) .

If the noise level is high compared to the noiseless output z (σ2
N ≫ σ2

1, σ2
N ≫ σ2

2), the last
term σ2

1σ
2
2(1 − ρ2) is negligible compared to σ2

N (σ2
1 + σ2

2). This means that the network
tries to maximise the variances of the outputs y1 and y2 without paying any attention to
their correlation which means the outputs should probably be the same, i.e., the one that
has the highest variance.

If the noise level is low compared to the noiseless output, the middle term σ2
N(σ2

1 + σ2
2) is

negligible and the network tries to maximise σ2
1σ

2
2(1 − ρ2). The variances of the outputs

should be high, but the correlation of the outputs low. This means that the network
represents two uncorrelated aspects of the inputs.

2. The goal of the Infomax learning rule is to conserve as much information about the input
x in the output y, i.e., to maximise the mutual information I(X; Y ) = h(Y )−h(Y |X). If
there is noise in the inputs, this reduces into h(Y ) − h(N) as was argued in the previous



exercise. In this problem there is no noise, which can be seen as the limiting case σN → 0.
This makes the term h(N) approach −∞, but this doesn’t matter since the weights can
only affect the term h(Y ) and therefore only that term matters. Maximising the mutual
information is thus equivalent to maximising the differential entropy h(Y ) of the output.
The output g(x) is restricted to the range [0, 1] which means that the maximum would
be reached if the output had a uniform distribution between zero and one.

Recall that the relation y = g(x) means that the density of y is

p(y) =
p(x)

|g′(x)|
.

We then have

h(Y ) = −

∫

p(y) ln p(y)dy = −

∫

p(y) ln p(x)dy +

∫

p(y) ln |g′(x)|dy =

−

∫

p(x) ln p(x)dx + E {ln |g′(x)|} .

The first term does not depend on the weights of the network and therefore only the
second term needs to be taken into account in the learning.

If the learning is done by stochastic gradient descent we have

∆w ∝
∂

∂w
h(y) =

∂

∂w
ln|g′(x)| =

∂
∂w

g′(x)

g′(x)
=

∂
∂w

y(1 − y)w

y(1 − y)w

because the function y = f(u) = 1/(1 + e−u) has the nice property f ′(u) = y(1 − y) and
if we denote u = wx + w0, we have y = f(u) and g′(x) = f ′(u)∂u/∂x by the chain rule.
Likewise, ∂y/∂w = f ′(u)∂u/∂w = y(1 − y)x, which means that

∆w ∝
(1 − 2y)y(1− y)xw + y(1 − y)

y(1 − y)w
=

1

w
+ x(1 − 2y) .

A similar derivation yields
∆w0 ∝ 1 − 2y .

In the multivariate case the scalar weight w is replaced by a matrix W and a similar
derivation would give the learning algorithm in equation (10.137) of Haykin’s book.

3. By definition, we have
p

(n)
ij = P (xt = j|xt−n = i)

where t denotes time and n denotes the number of discrete steps. For n = 1 we have the
one-step transition probability

p
(1)
ij = pij = P (xt = j|xt−1 = i) .

For n = 2 we have the two-step transition probability

p
(2)
ij =

∑

k

pikpkj

where the sum is taken over all intermediate steps k taken by the system. By induction,
it thus follows that

p
(n+1)
ij =

∑

k

pikp
(n)
kj .



4. The stochastic matrix of the Markov chain in Haykin, Fig. P.11.4 is given by

P =





3
4

1
4

0
0 2

3
1
3

1
4

0 3
4





Let π1, π2, and π3 denote the steady-state probabilities of this chain. We may then write
(see Haykin, Eq. (11.27))

π1 = 3
4
π1 + 0π2 + 1

4
π3 ,

π2 = 1
4
π1 + 2

3
π2 + 0π3 , and

π3 = 0π1 + 1
3
π2 + 3

4
π3 .

The first and third equations give

π1 = π3 and π2 =
3

4
π3 .

We also have, by definition, π1 + π2 + π3 = 1. Hence,

π3 +
3

4
π3 + π3 = 1

or equivalently π3 = 4
11

, and so

π1 =
4

11
and π2 =

3

11
.

5. Simulated annealing algorithm for solving the travelling salesman problem:

(a) Set up an annealing schedule for the algorithm.

(b) Initialize the algorithm by picking a tour at random.

(c) Choose a pair of cities in the tour and reverse the order that the cities in-between
the selected pair are visited. This procedure, illustrated below, generates new tours
in a local manner:

(d) Calculate the energy difference due to the reversal of paths applied in step (c).

(e) If the energy difference so calculated is negative or zero, accept the new tour. If, on
the other hand, it is positive, accept the change in the tour with probability defined
in accordance with the Metropolis algorithm.

(f) Select another pair of cities, and repeat steps (c) to (e) until the required number of
iterations is complete.

(g) Lower the temperature in the annealing schedule, and repeat steps (c) to (f).


