T-61.263 Advanced course in neural computing

Solutions for exercise 9

1.

(a)

We start with the notion that a neuron j flips from state z; to —z; at temperature
T with probability X

) = A exp (A, /T 1)
where AE; is the energy difference resulting from such a flip. Note that this agrees
with the notion that in equilibrium, the probability of being in a state decreases as
the energy of the state increases (see Haykin, Eq. 11.40): as a consequence of the
notion, the probability of changing to a higher-energy state should decrease as the
energy difference increases.
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The energy function of the Boltzmann machine is defined by
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where w;; = wj;. The weights w;; are zero. Hence the energy change produced by

neuron j flipping from state z; to —z; is

AE; = (energy with neuron j in state —x;) — (energy with neuron j in state x;)
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where v; is the induced local field of neuron j. Therefore the probability is P(z; —
—x;) = 1/(1 + exp(2x;v;/T)), which is the desired result.

In light of the result in Eq.(2), we may rewrite Eq.(1) as

1
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This means that for an initial state z; = —1, the probability that neuron j is flipped

into state +1 is )

1+ exp(—20,/T) - )

For an initial state of x; = +1, the probability that neuron j is flipped into state
—1is

L =1- L . (4)
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The flipping probability in Eq.(4) and the one in Eq.(3) are in perfect agreement

with the following probabilistic rule:

| +1 with probability P(v;)
%171 —1 with probability 1 — P(v;)




where P(v;) is itself defined by

1
Plv;) = 1+ exp(—20;/T)

Compare to Haykin, Eq. 11.43, but note that in each of the three equations after
Eq. 11.42, up to and including Eq. 11.43, the term that is divided by 7" should be
multiplied by 2 (the multiplier is missing in the book).

2. The Boltzmann machine and sigmoid belief network share a common feature: they are
both stochastic machines with their theory rooted in statistical mechanics.
They differ from each other in the following respects:
e The Boltzmann machine is a recurrent network whereas the sigmoid belief network
is an acyclic feedforward network.

e The learning process in a Boltzmann machine involves two phases: one clamped
(positive) and the other free running (negative). The negative phase is eliminated
from the sigmoid belief network.

3. Writing the system of N simultaneous equations (Haykin, Eq. 12.22) in matrix form:
J# = c(p) +~vP(p)J* (5)

where
Jn = [J*1), JN2), ..., JHN)]T
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Rearranging terms in Eq.(5):

(I =P (u)J* = c(p)

where I is the N-by-N identity matrix. For the solution J* to be unique we require
that the N-by-N matrix (I —yP(u)) has an inverse matrix for all possible values of the
discount factor ~.

4. An important property of dynamic programming is the monotonicity property described
by
Jhntt < Jhn

We shall prove the monotonicity property for the policy iteration algorithm, based on the
proof in (R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998. Online version at
http://www.cs.ualberta.ca/~sutton/book/the-book.html).

The cost-to-go function is defined in Haykin, Eq. 12.26 and the policy iteration at each

step changes the policy by minimizing the Q-factor in Haykin, Eq. 12.27. (Note: Haykin,
Eq. 12.26 and Eq. 12.27 should probably have J#»(j) at right rather than J"»(i).)



Writing out the cost-to-go function at iteration n, we get
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where the second-to-last equality follows from Haykin, Eq. 12.27. The above inequality

applies for all J# (i), i = 1,...,N. We can then apply it to the term J#"(j) on the
right-hand side. We get:
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where the term with J#» disappears as the exponent of v grows because the cost-to-go
function is finite-valued for all starting states (if ¢ is finite-valued and vy < 1) and the
sum before it is just an expectation. The last equality follows from the definition of the
cost-to-go function (Haykin, Eq. 12.26) because the expression on the left-hand side of
the equality depends only on fi,11, not u,. Since equation (7) applies for all 7, we have
proved the monotonicity property.



