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1. (a) We start with the notion that a neuron j flips from state xj to −xj at temperature
T with probability

P (xj → −xj) =
1

1 + exp(∆Ej/T )
(1)

where ∆Ej is the energy difference resulting from such a flip. Note that this agrees
with the notion that in equilibrium, the probability of being in a state decreases as
the energy of the state increases (see Haykin, Eq. 11.40): as a consequence of the
notion, the probability of changing to a higher-energy state should decrease as the
energy difference increases.

The energy function of the Boltzmann machine is defined by

E = −
1

2

∑

i

∑
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wjixixj

where wij = wji. The weights wii are zero. Hence the energy change produced by
neuron j flipping from state xj to −xj is

∆Ej = (energy with neuron j in state −xj) − (energy with neuron j in state xj)

= −(−xj)
∑

i

wjixi −

(

−(xj)
∑

i

wjixi

)

= 2xj

∑

i

wjixi = 2xjvj (2)

where vj is the induced local field of neuron j. Therefore the probability is P (xj →

−xj) = 1/(1 + exp(2xjvj/T )), which is the desired result.

(b) In light of the result in Eq.(2), we may rewrite Eq.(1) as

P (xj → −xj) =
1

1 + exp(2xjvj/T )
.

This means that for an initial state xj = −1, the probability that neuron j is flipped
into state +1 is

1

1 + exp(−2vj/T )
. (3)

(c) For an initial state of xj = +1, the probability that neuron j is flipped into state
−1 is

1

1 + exp(+2vj/T )
= 1 −

1

1 + exp(−2vj/T )
. (4)

The flipping probability in Eq.(4) and the one in Eq.(3) are in perfect agreement
with the following probabilistic rule:

xj =

{

+1 with probability P (vj)
−1 with probability 1 − P (vj)



where P (vj) is itself defined by

P (vj) =
1

1 + exp(−2vj/T )
.

Compare to Haykin, Eq. 11.43, but note that in each of the three equations after
Eq. 11.42, up to and including Eq. 11.43, the term that is divided by T should be
multiplied by 2 (the multiplier is missing in the book).

2. The Boltzmann machine and sigmoid belief network share a common feature: they are
both stochastic machines with their theory rooted in statistical mechanics.

They differ from each other in the following respects:

• The Boltzmann machine is a recurrent network whereas the sigmoid belief network
is an acyclic feedforward network.

• The learning process in a Boltzmann machine involves two phases: one clamped
(positive) and the other free running (negative). The negative phase is eliminated
from the sigmoid belief network.

3. Writing the system of N simultaneous equations (Haykin, Eq. 12.22) in matrix form:

Jµ = c(µ) + γP(µ)Jµ (5)

where
Jµ = [Jµ(1), Jµ(2), . . . , Jµ(N)]T

c(µ) = [c(1, µ), c(2, µ), . . . , c(N, µ)]T

P(µ) =











p11(µ) p12(µ) . . . p1N(µ)
p21(µ) p22(µ) . . . p2N(µ)

...
...

...
pN1(µ) pN2(µ) . . . pNN(µ)











.

Rearranging terms in Eq.(5):

(I − γP(µ))Jµ = c(µ)

where I is the N -by-N identity matrix. For the solution Jµ to be unique we require
that the N -by-N matrix (I − γP(µ)) has an inverse matrix for all possible values of the
discount factor γ.

4. An important property of dynamic programming is the monotonicity property described
by

Jµn+1 ≤ Jµn .

We shall prove the monotonicity property for the policy iteration algorithm, based on the
proof in (R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998. Online version at
http://www.cs.ualberta.ca/∼sutton/book/the-book.html).

The cost-to-go function is defined in Haykin, Eq. 12.26 and the policy iteration at each
step changes the policy by minimizing the Q-factor in Haykin, Eq. 12.27. (Note: Haykin,
Eq. 12.26 and Eq. 12.27 should probably have Jµn(j) at right rather than Jµn(i).)



Writing out the cost-to-go function at iteration n, we get

Jµn(i) = c(i, µn(i)) + γ

N
∑

j=1

pij(µn(i))J
µn(i) = Qµn(i, µn(i))

≥ min
a∈Ai

Qµn(i, a) = Qµn(i, µn+1(i))) = c(i, µn+1(i)) + γ

N
∑
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pij(µn+1(i))J
µn(i) (6)

where the second-to-last equality follows from Haykin, Eq. 12.27. The above inequality
applies for all Jµn(i), i = 1, . . . , N . We can then apply it to the term Jµn(j) on the
right-hand side. We get:

Jµn(i) ≥ c(i, µn+1(i)) + γ
N
∑
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pij(µn+1(i))J
µn(j)

≥ c(i, µn+1(i)) + γ
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µn(j2))

]

= c(i, µn+1(i)) + γ

N
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pi,j1(µn+1(i))c(j1, µn+1(j1))

+ γ2

N
∑
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pi,j1(µn+1(i))pj1,j2(µn+1(j1))J
µn(j2)

≥ c(i, µn+1(i)) + γ
N
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pi,j1(µn+1(i))pj1,j2(µn+1(j1))pj2,j3(µn+1(j2))J
µn(j3)

≥ . . . ≥
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(jt−1, µn+1(jt−1))c(jt, µn+1(jt))

]

= Jµn+1(i) (7)

where the term with Jµn disappears as the exponent of γ grows because the cost-to-go
function is finite-valued for all starting states (if c is finite-valued and γ < 1) and the
sum before it is just an expectation. The last equality follows from the definition of the
cost-to-go function (Haykin, Eq. 12.26) because the expression on the left-hand side of
the equality depends only on µn+1, not µn. Since equation (7) applies for all i, we have
proved the monotonicity property.


