T-61.5040 Oppivat mallit ja menetelmét
T-61.5040 Learning Models and Methods
Pajunen, Viitaniemi

Exercises 9, 23.3.2007

Problem 1.

In variational learning the following expression is maximised:

C = /q(e) log <%) a9

i) Justify variational learning by showing that it minimizes the Kullback-Leibler divergence
D(qllp) between g(¢) and p(f]y).

ii) The evidence p(y), or the prior predictive distribution, is the probability of the data
according to the model p(y,#). The evidence can not be computed if the model can not
be integrated. Show that maximising C' maximises a lower bound for p(y). Hint: Jensen’s
inequality for a random variable X and a convex function f: E[f(X)] > f(E[X]).

Problem 2.

Consider what happens in variational learning with a Normal approximate posterior ¢(0),
when the true posterior p(f|y) is a mixture of two Normal distributions N (8|u;, 02), i = 1,2
with prior probabilities a; and ay = 1—ay. Assume that the mixture distributions N (0|pu;, 0?)
are separated well enough to warrant fitting ¢ separately to the mixture components.

Problem 3.
The Poisson distribution with intensity A is
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i) Compute the Laplace approximation for p(A|k) using the prior p(\) oc A7L.

ii) Also compute the Laplace approximation for p(log A|k). Note that the prior is now
p(log \) oc 1 (This follows from the formula for the density of a transformation: Let [ =

g(A) = log A. Now py(I) = (Z)=1. py(N).)



Problem 4.

Approximate the posterior p(f|y) by another distribution ¢(#). Use q(6) = N(6|6y, c?) where
the variance o is known. What is 6, when

i) you minimize the KL divergence D(p(0|y)|q(8))?
ii) you minimize the KL divergence D(q(0)||p(0|y))?

Note that in part ii), the solution can be found only approximately.



