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Solutions to exercise 10, 30.3.2007

Problem 1.
i) Use the product rule to obtain
p(y, L10,A) = p(y|L, 0, \)p(L10, A) = p(y| L, O)p(LIA)

Here we dropped A from p(y|L, 0, \) because when L is known, A has no effect on y:s
distribution. Also, we dropped 0 from p(L|6, \) because L is independent of 6.
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The exponent L;; is used to force the term to be equal to one when L;; = 0. This way,
each observation y; gets exactly one term different from one in the product. This term is
the mixture distribution having generated y;.

p(E) =TI )

Again, the exponent is used to make some terms equal to one. This term can be understood
as follows: consider a vector L; = (L1, Lia, . .., Lim). Exactly one of the components is
one, and others are zero. Since the probability that L;; = 1 is A;, then the probability
that L; = (0,0,...,1,...,0) is also ;. So we have to pick the single A; corresponding to
L;; = 1 for each observation y; in the product ().

The first term is

The second term is

Finally, multiply the terms together to get
Py, L16,)) HH (Yl o2) P9 AT HH[A N (il g, 03))7,

which is other way of writing the result that was to be shown.
ii) For the Gibbs sampler for 6, we need p(f|y, L).
p(Oly, L) o< p(y|6, L)p(0| L) o< p(y|0, L)
since § and L are independent of each other and we assume a constant prior for 6 .

Since p(y;|0, L) = N (yi|u;, UJQ-), L;; = 1 the posterior factorizes into terms including each
jt. Fach term is a subproblem where the unknown Normal mean p; is inferred with a
known variance. Old results apply and the posteriors are

p(psly, L) = N(u,ls;, 0_72-/71/]-)

where s; is the sample average of all y;:s that are from mixture j, and n; is the number
of such y;:s. (We assumed af- known, so 6 consists of ;’s only.)

Then the Gibbs sampler for L. By the product rule we get
p(Lly,0) = p(L,y|0)/p(yl6)
Fix ¢ and find the distribution p(L;, = 1, y;]0).
Since p(Lir = 1, 4il0) = p(ys| Lir = 1,0)p(Lir. = 1|10) = p(ys| Lir, = 1,0)p(Lix = 1), we get
p(Lix = 1,9:10) = N(yilu, o) M
Since p(y;]0) = E].p(y,;,Lij =1/6) = Z]-P(yi‘Lij =1,0)p(Li; = 1]0) = Zj )‘J'N(yi‘/ijva.;z')’

the result is
p(Li = 1|y, 0) = N (uilpx, o) M/ D NN (wil g, 03)
J
This can be simulated for each ¢, since it defines a discrete distribution over the values
k=1,2,...,m

Now the Gibbs sampler is ready and consists of alternating the simulation of f;:s and
simulation of L;;:s. If desired also p(L|y, #) could be written out explicitly but the resulting
formula would be cumbersome and is not needed for the simulation.

Problem 2.

We consider the likelihood

p(yl6, A) Hp yil0, A) H [MN (Yl g, 02) + XN (yil 2, 0%)]

where 6 is the set of parameters. We wish to maximize the likelihood with respect to the
parameters p; and po. This is the same as maximizing the log-likelihood. We utilize the
Newton-Rhapson update formula

,Um,new = Htm — (lng)l/(logp)//7
where p = p(y|6, \).

The derivative of the log-likelihood with respect to i, is now (see lectures)
(logp)’ Zp im = 1|0, y;)o~ ( = fm)-
The second derivative is, assuming p(L;,, = 1|0,y;) is constant with respect to fi,,,
(log p)"” Zp im = 10,9:)(0 (4 = pim))'
= ZP im = 110,3;)(=07?).



The ratio (logp)’/(logp)” is

[Zp(Lim = 1‘07 yi)(yi - Mm)a_2:| / [Zp(Lim = 1‘07 yi)(0_2):| .

2 cancel out and we have

- |:Zp(Lim =110, y:) (v — um)] / [ZP(Lm =16, yl-)} :
The mean p,, does not depend on 7 so it comes out of the sum: finally,

’ " E'p(Lim = 1|97 7/1)7/1
log lo, = by — = .
(logp)'/(logp)" = ¢ S~ o Lon = 110,40

The terms o~

Finally, the Newton-Rhapson step is

m _ 2iP(Lim = 110, 4i)yi
m,new Zz p(Lim = 1‘97 yi)

EM interpretation: p(L;, = 1|6,y;) corresponds to ¢(L). In the E step, we average
log p(]y) over the distribution ¢(L), and this is what actually happens in (logp)’. In
the M step, we assume ¢(L) is fixed; similarly we did not differentiate ¢(L) with respect
to f,, in the Newton-Raphson update.

Problem 3.

The Kullback-Leibler divergence is

D(q|lp) = /log %q(x)dx = E,(logq — logp).

KL divergence gives the average number of bits that are wasted by encoding events from a
distribution ¢ with a code based on the distribution p. KL divergence is always nonnegative
and zero if ¢ = p.

Now
—D(qllp(sla,y)) = Ey4(logp(sla, y)) — E4(logq)

and

—=D(qllp(s|a,y)) + log p(aly) = —D(ql|p(s|a,y)) + Ey4(log p(aly))
= E,(logp(sla,y)) — E,(log q) + E,4(logp(aly))
= E,(log(p(sla, y)p(aly)) ) — Eq(logq)
= Ey(logp(s, aly)) — Ey(logq)
= F(q,a).

=

The first step, choosing a distribution ¢(s) that maximizes F, is equivalent to minimizing
D(ql|p(sla, y)) since log p(aly) does not depend on g. So we are looking for a distribution ¢

3

as close as possible to p(s|ag, y) where aq is the current value for the parameters. Naturally
we may choose ¢ = p(s|ag, y), making the KL divergence 0.

Next the parameters a are updated to maximize F'. Now both terms in F' are affected. If
a; maximizes F(g,a) then the second term log p(aly) must increase or remain the same
when qq is changed to a;. This is because after the previous step, (g, ap) = 0+log p(ao|y)-
Since

F(g,a1) = =D(p(slao, y)llp(sla1, y)) +log p(asly)
where the first term is negative or zero, the last term must be at least as large as log p(ao|y)
(otherwise F'(q,a1) < F(q,ap) which is a contradiction as we chose a; so that it maximizes
F). We get

log p(asly) > logp(acly) = plasly) = placly)-
In the Generalized EM (GEM) algorithm, the new parameters a; are chosen so that the
value of F' increases, instead of maximizing F. The above derivations still hold, that is,
log p(aly) cannot decrease. If a; is suitably chosen, the convergence of the GEM algorithm
may be faster than the convergence of the original EM.

Problem 4.

In the M-step of the EM algorithm, we wish to maximize
Flg,a) =Y > [10g N(iltm, Xom) + 1og A i

with respect to the unknown parameters A, p,,, and 3, while regarding 7;,, as constants.
We have written a as a shorthand for the non-latent parameters. Also, we have 7, =

We first maximize F'(q,a) with respect to A,,. The first term does not contain \,,; we
may leave it out for now. Include the constraint )~ A, = 1 with a Lagrange multiplier
[ and set the derivative to zero:

% ;Xi:log/\m Tim+ﬁ(2m:)‘m71) = %Zﬂ'm+ﬂ:0

s
which gives
1
)\m = 73 Z Tim -

By using the constraint Y- Ay, =1 we get —£ 3.5 T = 7% >.1=1= —3=N.
Then 1

Next, we maximize F(g,a) with respect to fi,. Only the first term of the expression
contains fi,,,. We substitute in the probability density function of a Normal distribution



and set the derivative to zero:

0
au—m |:; 21: log N(yi‘/"m: Em)ﬂ‘m

0 1 1 1
*me |:§m: Z:(*Q log [£,,| — 5(‘% — tin) Ey (Ui = pn) + K) Tim

= Z E;nl (y't - ,“'m) Tim = 0.

Here, K is a constant. Thus the expectation of mixture component m is a weighted sum
over observations, the weights 7, telling at which degree each observation y; comes from
the component distribution m:

_ E, YiTim

Hm = 7Zz P

Similarly, setting the derivative with respect to ¥, to zero we would get an update formula
for ¥,,. The update formula is not derived here.

Comuments: the update formulas are easy to interpret since they are weighted averages
over quantities that are clearly related to the parameters. The weights 7;,, take into
consideration the importance of sample y; in representing the mixture component m.

Some references to the EM algorithm:
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