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ise 10, 30.3.2007Problem 1.i) Use the produ
t rule to obtain

p(y, L|θ, λ) = p(y|L, θ, λ)p(L|θ, λ) = p(y|L, θ)p(L|λ)Here we dropped λ from p(y|L, θ, λ) be
ause when L is known, λ has no e�e
t on y:sdistribution. Also, we dropped θ from p(L|θ, λ) be
ause L is independent of θ.The �rst term is

p(y|L, θ) =
∏

i

∏

j

[N(yi|µj, σ
2

j )]
LijThe exponent Lij is used to for
e the term to be equal to one when Lij = 0. This way,ea
h observation yi gets exa
tly one term di�erent from one in the produ
t. This term isthe mixture distribution having generated yi.The se
ond term is

p(L|λ) =
∏

i

∏

j

λ
Lij

j (∗)Again, the exponent is used to make some terms equal to one. This term 
an be understoodas follows: 
onsider a ve
tor Li = (Li1, Li2, . . . , Lim). Exa
tly one of the 
omponents isone, and others are zero. Sin
e the probability that Lij = 1 is λj , then the probabilitythat Li = (0, 0, . . . , 1, . . . , 0) is also λj. So we have to pi
k the single λj 
orresponding to

Lij = 1 for ea
h observation yi in the produ
t (∗).Finally, multiply the terms together to get

p(y, L|θ, λ) =
∏

i

∏

j

[N(yi|µj, σ
2

j )]
Lijλ

Lij

j =
∏

i

∏

j

[λjN(yi|µj, σ
2

j )]
Lij ,whi
h is other way of writing the result that was to be shown.ii) For the Gibbs sampler for θ, we need p(θ|y, L).

p(θ|y, L) ∝ p(y|θ, L)p(θ|L) ∝ p(y|θ, L)sin
e θ and L are independent of ea
h other and we assume a 
onstant prior for θ .Sin
e p(yi|θ, L) = N(yi|µj, σ
2

j ), Lij = 1 the posterior fa
torizes into terms in
luding ea
h
µj. Ea
h term is a subproblem where the unknown Normal mean µj is inferred with aknown varian
e. Old results apply and the posteriors are

p(µj|y, L) = N(µj |sj, σ
2

j /nj)1

where sj is the sample average of all yi:s that are from mixture j, and nj is the numberof su
h yi:s. (We assumed σ2

j known, so θ 
onsists of µj's only.)Then the Gibbs sampler for L. By the produ
t rule we get
p(L|y, θ) = p(L, y|θ)/p(y|θ)Fix i and �nd the distribution p(Lik = 1, yi|θ).Sin
e p(Lik = 1, yi|θ) = p(yi|Lik = 1, θ)p(Lik = 1|θ) = p(yi|Lik = 1, θ)p(Lik = 1), we get

p(Lik = 1, yi|θ) = N(yi|µk, σ
2

k)λkSin
e p(yi|θ) =
∑

j p(yi, Lij = 1|θ) =
∑

j p(yi|Lij = 1, θ)p(Lij = 1|θ) =
∑

j λjN(yi|µj, σ
2

j ),the result is

p(Lik = 1|yi, θ) = N(yi|µk, σ
2

k)λk/
∑

j

λjN(yi|µj, σ
2

j )This 
an be simulated for ea
h i, sin
e it de�nes a dis
rete distribution over the values

k = 1, 2, . . . , m.Now the Gibbs sampler is ready and 
onsists of alternating the simulation of µj:s andsimulation of Lij :s. If desired also p(L|y, θ) 
ould be written out expli
itly but the resultingformula would be 
umbersome and is not needed for the simulation.Problem 2.We 
onsider the likelihood
p(y|θ, λ) =

∏

i

p(yi|θ, λ) =
∏

i

[

λ1N(yi|µ1, σ
2) + λ2N(yi|µ2, σ

2)
]

,where θ is the set of parameters. We wish to maximize the likelihood with respe
t to theparameters µ1 and µ2. This is the same as maximizing the log-likelihood. We utilize theNewton-Rhapson update formula

µm,new = µm − (log p)′/(log p)′′,where p = p(y|θ, λ).The derivative of the log-likelihood with respe
t to µm is now (see le
tures)

(log p)′ =
∑

i

p(Lim = 1|θ, yi)σ
−2(yi − µm).The se
ond derivative is, assuming p(Lim = 1|θ, yi) is 
onstant with respe
t to µm,

(log p)′′ ≈
∑

i

p(Lim = 1|θ, yi)(σ
−2(yi − µm))′

=
∑

i

p(Lim = 1|θ, yi)(−σ−2).2



The ratio (log p)′/(log p)′′ is

[

∑

i

p(Lim = 1|θ, yi)(yi − µm)σ−2

]

/

[

∑

i

p(Lim = 1|θ, yi)(−σ−2)

]

.The terms σ−2 
an
el out and we have

−

[

∑

i

p(Lim = 1|θ, yi)(yi − µm)

]

/

[

∑

i

p(Lim = 1|θ, yi)

]

.The mean µm does not depend on i so it 
omes out of the sum: �nally,

(log p)′/(log p)′′ = µm −

∑

i p(Lim = 1|θ, yi)yi
∑

i p(Lim = 1|θ, yi)
.Finally, the Newton-Rhapson step is

µm,new =

∑

i p(Lim = 1|θ, yi)yi
∑

i p(Lim = 1|θ, yi)
.EM interpretation: p(Lim = 1|θ, yi) 
orresponds to q(L). In the E step, we average

log p(θ|y) over the distribution q(L), and this is what a
tually happens in (log p)′. Inthe M step, we assume q(L) is �xed; similarly we did not di�erentiate q(L) with respe
tto µm in the Newton-Raphson update.Problem 3.The Kullba
k-Leibler divergen
e is

D(q||p) =

∫

log
q(x)

p(x)
q(x)dx = Eq(log q − log p).KL divergen
e gives the average number of bits that are wasted by en
oding events from adistribution q with a 
ode based on the distribution p. KL divergen
e is always nonnegativeand zero if q = p.Now

−D(q||p(s|a, y)) = Eq(log p(s|a, y))− Eq(log q)and

−D(q||p(s|a, y)) + log p(a|y) = −D(q||p(s|a, y)) + Eq(log p(a|y))

= Eq(log p(s|a, y))− Eq(log q) + Eq(log p(a|y))

= Eq(log(p(s|a, y)p(a|y)) )− Eq(log q)

= Eq(log p(s, a|y))− Eq(log q)

= F (q, a).The �rst step, 
hoosing a distribution q(s) that maximizes F , is equivalent to minimizing
D(q||p(s|a, y)) sin
e log p(a|y) does not depend on q. So we are looking for a distribution q3

as 
lose as possible to p(s|a0, y) where a0 is the 
urrent value for the parameters. Naturallywe may 
hoose q = p(s|a0, y), making the KL divergen
e 0.Next the parameters a are updated to maximize F . Now both terms in F are a�e
ted. If
a1 maximizes F (q, a) then the se
ond term log p(a|y) must in
rease or remain the samewhen a0 is 
hanged to a1. This is be
ause after the previous step, F (q, a0) = 0+log p(a0|y).Sin
e

F (q, a1) = −D(p(s|a0, y)||p(s|a1, y)) + log p(a1|y)where the �rst term is negative or zero, the last term must be at least as large as log p(a0|y)(otherwise F (q, a1) < F (q, a0) whi
h is a 
ontradi
tion as we 
hose a1 so that it maximizes

F ). We get

log p(a1|y) ≥ log p(a0|y) =⇒ p(a1|y) ≥ p(a0|y).In the Generalized EM (GEM) algorithm, the new parameters a1 are 
hosen so that thevalue of F in
reases, instead of maximizing F . The above derivations still hold, that is,

log p(a|y) 
annot de
rease. If a1 is suitably 
hosen, the 
onvergen
e of the GEM algorithmmay be faster than the 
onvergen
e of the original EM.Problem 4.In the M-step of the EM algorithm, we wish to maximize

F (q, a) =
∑

m

∑

i

[log N(yi|µm, Σm) + log λm]τimwith respe
t to the unknown parameters λm, µm and Σm while regarding τim as 
onstants.We have written a as a shorthand for the non-latent parameters. Also, we have τim =
p(Lim = 1|a, yi).We �rst maximize F (q, a) with respe
t to λm. The �rst term does not 
ontain λm; wemay leave it out for now. In
lude the 
onstraint ∑

m λm = 1 with a Lagrange multiplier

β and set the derivative to zero:

∂

∂λm

[

∑

m

∑

i

log λm τim + β(
∑

m

λm − 1)

]

=
1

λm

∑

i

τim + β = 0whi
h gives
λm = −

1

β

∑

i

τim.By using the 
onstraint ∑

m λm = 1 we get − 1

β

∑

i

∑

m τim = − 1

β

∑

i 1 = 1 =⇒ −β = N .Then

λm =
1

N

∑

i

τim.Next, we maximize F (q, a) with respe
t to µm. Only the �rst term of the expression
ontains µm. We substitute in the probability density fun
tion of a Normal distribution4



and set the derivative to zero:

∂

∂µm

[

∑

m

∑

i

log N(yi|µm, Σm)τim

]

=
∂

∂µm

[

∑

m

∑

i

(−
1

2
log |Σm| −

1

2
(yi − µm)Σ−1

m (yi − µm) + K) τim

]

=
∑

i

Σ−1

m (yi − µm) τim = 0.Here, K is a 
onstant. Thus the expe
tation of mixture 
omponent m is a weighted sumover observations, the weights τim telling at whi
h degree ea
h observation yi 
omes fromthe 
omponent distribution m:

µm =

∑

i yiτim
∑

i τim

.Similarly, setting the derivative with respe
t to Σm to zero we would get an update formulafor Σm. The update formula is not derived here.Comments: the update formulas are easy to interpret sin
e they are weighted averagesover quantities that are 
learly related to the parameters. The weights τim take into
onsideration the importan
e of sample yi in representing the mixture 
omponent m.Some referen
es to the EM algorithm:Redner and Walker: Mixture densities, maximum likelihood and the EM algorithm. SIAMReview, 26(2), 1984.Bilmes: A gentle tutorial of the EM algorithm and its appli
ation to parameter estimationfor Gaussian Mixture and Hidden Markov Models. Te
h. Report TR-97-021, UC Berkeley.www.i
si.berkeley.edu/ftp/global/pub/te
hreports/1997/tr-97-021.pdf
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