
T-61.5040 Oppivat mallit ja menetelmätT-61.5040 Learning Models and MethodsPajunen, ViitaniemiSolutions to exer
ise 12, 20.4.2007Problem 1.In the le
tures, the predi
tive distribution was given as

p(ỹ|y) ∝ exp

[

−
1

2

1

(c − kT C−1k)
(ỹ − kT C−1y)2

]

.We are asked to 
on�rm this result. Here y is a ve
tor of training data, ỹ is the s
alarvalue we are trying to predi
t, and all other symbols will be de�ned shortly.We 
an 
al
ulate the predi
tive distribution as

p(ỹ|y) = p(y, ỹ)/p(y).Here p(y) = N(y|0, C) and p(y, ỹ) = N((y ỹ)|0, C̃), where

C̃ =

[
C k
kT c

]

.Above, C is a n × n matrix, c is a s
alar, and k is a n × 1 ve
tor.Now we are able to employ the formulas given in the problem. We get

E(ỹ|y) = E(ỹ) + Cov(y, ỹ)(Var(y))−1(y − E(y))

= 0 + kT C−1(y − 0)

= kT C−1y,as required. Similarly,Var(ỹ|y) = Var(ỹ) − Cov(y, ỹ)(Var(y))−1Cov(ỹ, y)

= c − kT C−1k.If we have n training points (the length of the ve
tor y is n), the matrix C is of size n×nand its inverse takes O(n3) multipli
ations to 
ompute. All the other 
omputations areat most O(n2) so the total 
ost is O(n3).When the matrix C−1 has been 
omputed on
e, it does not 
hange when predi
ting newpoints. Only the ve
tor k 
ontaining the 
ovarian
es between the new point and all thetraining points 
hanges. To 
ompute the predi
tive mean, we only need an inner produ
t
kT C−1y where C−1y is a �xed ve
tor. This takes O(n) multipli
ations.The predi
tive varian
e has a quadrati
 form kT C−1k whi
h 
an be written as ∑

i

∑

j kikj[C
−1]ijand therefore takes O(n2) multipli
ations. 1

To summarize: solving the regression �rst takes O(n3) steps. Predi
ting the mean of newpoints takes O(n) steps, and predi
ting the varian
e of new points takes O(n2) steps.Problem 2.i) At ea
h time ti, the expe
ted value of B(ti) = 0, sin
e B(ti) − B(0) = B(ti) is Nor-mally distributed with zero mean. The 
ovarian
e fun
tion C(ti, tj) is then E(B(ti)B(tj)).Assume ti > tj and write

C(ti, tj) = E [B(ti)B(tj)]

= E [
{B(ti) − B(tj)}B(tj) + B2(tj)

]

= E [{B(ti) − B(tj)}B(tj)] + E [
B2(tj)

]

= E [
B2(tj)

]

= tj .So the 
ovarian
e is C(ti, tj) = min(ti, tj). This pro
ess a
tually exists and is 
ontinuousbut nowhere di�erentiable, despite the inno
ent-looking 
ovarian
e.ii) The expe
ted value is E(y) = E(wTx + e) = 0 given the noise assumption. The
ovarian
e fun
tion is then by de�nition
C(xi, xj) = E(yiyj)

= E((wTxi + ei)(w
T xj + ej))

= E(xT
i wwTxj) + σ2δij

= xT
i xj + σ2δij,where δij = 1 if i = j and 0 otherwise.iii) The expe
ted value is zero, sin
e E(b) = E(vi) = 0. The 
ovarian
e fun
tion is then

C(xi, xj) = E(f(xi)f(xj)) = E[

(b +
∑

k

vkhik)(b +
∑

k

vkhjk)

]

,where hik = exp(− 1

2σ2 ‖xi − uk‖
2). Computing further gives

C(xi, xj) = σ2

b +
∑

k

E(v2

khikhjk)

= σ2

b +
∑

k

σ2

vE(hikhjk)

= σ2

b + Kσ2

vE(hikhjk).These steps follow from the independent zero-mean priors on the weights, and the i.i.d. priorfor vk's. It remains to 
ompute the expe
tation. This isE(hikhjk) =

∫

exp(−
1

2σ2
[(xi − u)T (xi − u) + (xj − u)T (xj − u)])p(u)du.2



Now we assume that σ2

u is very large 
ompared to σ2 and omit the distribution p(u) ≈
constant.The exponent 
an be written as a sum of an u-dependent and an x-dependent term:

−
1

2
[2uT u − 2(xi + xj)

T u + xT
i xi + xT

j xj ]σ
−2 = −[(u − m)T (u − m) + g(xi, xj)]σ

−2

= −[uT u − 2mT u + mT m + g(xi, xj)]σ
−2.First �nd m: Comparing the terms in the left and right sides of the above equation, mmust be m = 1

2
[xi + xj ]. Then

g(xi, xj) =
1

2
(xT

i xi + xT
j xj) − mT m

=
1

4
(xT

i xi + xT
j xj) −

1

2
(xT

i xj)

=
1

4
(xi − xj)

T (xi − xj).This �nishes the solution, sin
e the integral over u simply integrates the term

exp(−(u − m)T (u − m)) whi
h results in a 
onstant. What remains is

exp(−1

4
(xi − xj)

T (xi − xj)).The �nal 
ovarian
e is approximately

C(xi, xj) ≈ σ2

b + σ2

vK
′ exp(−

1

4
(xi − xj)

T (xi − xj)),where K ′ is a 
onstant.Problem 3.i) To �nd the mode of p(u|x̃D) we maximise log p(u|x̃D) over the latent variables ui(u = {u1, . . . , un}). We use the Bayes Theorem to obtain

p(u|x̃, D) = p(u|x̃, x, y) ∝ [
∏

i

p(yi|ui, x̃, x)]p(u|x̃, x) = [
∏

i

p(yi|ui)]p(u|x̃, x)To �nd the 
onditional prior p(u|x̃, x) we assume another set of latent variables w linearlyrelated to u: ui = xT
i w ⇒ u = XT w. Now we 
an reasonably assume all the dependen
eon the data x to be in the linear transformation matrix XT and use a prior for w that isindependent of x: p(w|x̃, x) = p(w). As instru
ted, we take p(w) = N(w|0, I). Sin
e u isa linear 
ombination of zero mean normally distributed variables w, its distribution alsois a zero mean Gaussian distribution: p(u|x̃, x) = N(u|0, C). The 
ovarian
e matrix C isgiven by

C = Eu|x̃,x[uuT ] = Ew|x̃,x[X
T w(XT w)T ] = XT Ew|x̃,x[wwT ]

︸ ︷︷ ︸

=I

X = XT X.Inserting the prior into the fun
tion to be maximised, we have
log p(u|x̃, D) = [

∑

i

log p(yi|ui)] −
1

2
uT C−1u + constant.3

As hinted, we insert the assumption w = Xa in u = XT w and obtain u = XTXa = Ca.This gives

uTC−1u = aT Ca.But sin
e w = Xa we have that also wTw = aT XT Xa = aT Ca. Therefore uT C−1u =
‖w‖2.We 
an thus maximise

log p(u|x̃, D) = [
∑

i

log p(yi|ui)] −
1

2
‖w‖2 + constantWe may as well minimise

‖w‖2 − 2
∑

i

log p(yi|ui)Substitute the given distribution p(yi|ui) to obtain
‖w‖2 + 2

∑

i

log(1 + exp(−2yiw
Txi))where we have used ui = wTxi.ii) In the above 
ost fun
tion there are two parts. The ‖w‖2 part is independent of thetraining samples, whereas the sum evaluates the e�
ien
y of the linear 
lassi�er in 
las-sifying the training samples. Consider the e�e
t of single training point i on the sum.From the expression for p(yi|ui) we see that yi is likely have the same sign as ui = wT xi.With large |ui| dependen
y is very sharp. yiw

T xi < 0 is the indi
ator for sample i beingprobably mis
lassi�ed.In the 
ase of almost 
ertain mis
lassi�
ation yiw
Txi << 0 the 
orresponding term inthe sum is approximately −2yiw

Txi, a large positive number. For a probable 
orre
t
lassi�
ation yiw
Txi >> 1 the term in the sum is aproximately zero.Similar 
onsiderations apply also to the soft-margin SVM 
ost fun
tion. The 
ost has al-so in this 
ase a training sample independent term ‖w‖2. In the sum, samples 
lassi�edsu

esfully with large enough margin (yi(w

Txi) ≥ 1) are not penalised at all. Mis
lassi-�
ations yi(w
Txi) << 0 result in a large positive 
ost.Generally, the GP 
lassi�er is more or less 
lose to the soft-margin SVM, depending onthe distribution p(yi|ui).
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