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Solutions to exercise 12, 20.4.2007

Problem 1.

In the lectures, the predictive distribution was given as
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We are asked to confirm this result. Here y is a vector of training data, gy is the scalar
value we are trying to predict, and all other symbols will be defined shortly.

We can calculate the predictive distribution as

p(ly) = ply, 9)/p(y).
Here p(y) = N(y[0.C) and p(y,5) = N((y 9)|0, C), where
~ c k
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Above, C'is a n X n matrix, c is a scalar, and k is a n x 1 vector.
Now we are able to employ the formulas given in the problem. We get
B(gly) = BE(g) + Cov(y, §)(Var(y)) " (y — E(y))
=0+k"C "y —0)
=kTC ™y,

as required. Similarly,

Var(jjly) = Var() — Cov(y, §)(Var(y)) "' Cov(j, y)
=c—kK'C .

If we have n training points (the length of the vector y is n), the matrix C'is of size n x n
and its inverse takes O(n?®) multiplications to compute. All the other computations are
at most O(n?) so the total cost is O(n?).

When the matrix C~! has been computed once, it does not change when predicting new
points. Only the vector k& containing the covariances between the new point and all the
training points changes. To compute the predictive mean, we only need an inner product
kETC~'y where C~'y is a fixed vector. This takes O(n) multiplications.

The predictive variance has a quadratic form k”C~'k which can be written as Y-, 3. kik;[C ']

and therefore takes O(n?) multiplications.

To summarize: solving the regression first takes O(n?®) steps. Predicting the mean of new
points takes O(n) steps, and predicting the variance of new points takes O(n?) steps.

Problem 2.

i) At each time ¢;, the expected value of B(t;) = 0, since B(t;) — B(0) = B(t;) is Nor-
mally distributed with zero mean. The covariance function C(t;,t;) is then E(B(t;) B(t;)).
Assume t; > t; and write

C(ti t;) = E[B(t:)B(1))]
=E [{B(t:) - B(t;)}B(t;) + B*(t;)]
=E[{B(t) — B(t;)}B(t)] + E [B*(t;)]
=E[B(t))]
—t;.
So the covariance is C'(t;,t;) = min(t;,¢;). This process actually exists and is continuous
but nowhere differentiable, despite the innocent-looking covariance.

ii) The expected value is E(y) = E(w’z + e) = 0 given the noise assumption. The
covariance function is then by definition
C(wi, 7;) = E(yiy;)

=E((w T1+6z)(w T +ej))
( wwl'z;) + 0%
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where ¢;; = 1 if i = j and 0 otherwise.

iii) The expected value is zero, since E(b) = E(v;) = 0. The covariance function is then
Clwiszy) = B(f(2:) f(w) = B | (0+ D ophie) (0 + Y vihy) | 5
k k
where Ry, = exp(— 55 ||z — ux||?). Computing further gives
C(w,x;) = 0p + Z E(vihihji)

701) ZCT E zkhjk
= O'b + KO’ E(h,khjk)

These steps follow from the independent zero-mean priors on the weights, and the i.i.d. prior
for v;’s. It remains to compute the expectation. This is

E(hixhji) = /CXP(*ﬁ[(Ii —u)" (2 — u) + (z; — u)" (z; — w)])p(u)du.



Now we assume that o2 is very large compared to 2 and omit the distribution p(u) =
constant.
The exponent can be written as a sum of an u-dependent and an z-dependent term:
1
75[2uTu — 2w+ x)Tu+ ol + .z'JTx]-]a’z =—[(u—m)"(u—m)+ gz, 2;)]0”

= —[uT

2

u—2mTu +mTm + g(2, ;)02

First find m: Comparing the terms in the left and right sides of the above equation, m
must be m = 1[z; + x;]. Then

1
g(zs, ;) = 5(:}6?:}01 + ‘ﬁx]) —m'm
1 1
= Z(IZTIL + :I;JT:I;]-) - 5(1?11)
1
= (@i —z)" (2 = x)).

This finishes the solution, since the integral over u simply integrates the term
exp(—(u — m)T(u — m)) which results in a constant. What remains is
exp(—i(zi — :rj)T(xi —x;)).

The final covariance is approximately
1
C(wi,z5) = o + 0, K' eXP(—Z(fEi — ;)" (2 — ),

where K’ is a constant.

Problem 3.
i) To find the mode of p(u|ZD) we maximise logp(u|ZD) over the latent variables u;
(u={u,...,u,}). We use the Bayes Theorem to obtain

p(ul|z, D) = p(u|z, z,y) x [Hp(yihf,i,:Z,:f)]p(u\ﬁc, x) = [I—[p(yi|ui)]p(u|.7~:7 x)

To find the conditional prior p(u|Z, z) we assume another set of latent variables w linearly
related to u: u; = z7w = u = XTw. Now we can reasonably assume all the dependence
on the data  to be in the linear transformation matrix X7 and use a prior for w that is
independent of z: p(w|Z,z) = p(w). As instructed, we take p(w) = N(w|0,I). Since u is
a linear combination of zero mean normally distributed variables w, its distribution also
is a zero mean Gaussian distribution: p(u|Z,z) = N(u|0,C). The covariance matrix C' is
given by
C= Eu‘i’z[uuT] = Eyjza [XTw(XTw)T] = XT Ewﬁ@[wa] X =XTX.
—_————
=I

Inserting the prior into the function to be maximised, we have

1 »
log p(u|z, D) = [Z log p(yi|wi)] — §u1 C™'u + constant.
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As hinted, we insert the assumption w = Xa in u = X7w and obtain u = X" Xa = Ca.
This gives

WI'C = a"Ca.
But since w = Xa we have that also w"w = a" X" Xa = a"Ca. Therefore u"C~ 'y =
[Jwlf*.

We can thus maximise
. 1
log p(u|z, D) = [ g log p(yi|ui)] — §||wH2 + constant

We may as well minimise

l[w][* = 2> log p(yslus)

Substitute the given distribution p(y;|u;) to obtain

[w]|* 42 " log(1 + exp(—2yw" ;)

where we have used u; = wlx;.

ii) In the above cost function there are two parts. The ||w|? part is independent of the
training samples, whereas the sum evaluates the efficiency of the linear classiffier in clas-
sifying the training samples. Consider the effect of single training point ¢ on the sum.
From the expression for p(y;|u;) we see that y; is likely have the same sign as w; = w’z;.
With large |u;| dependency is very sharp. y;wTz; < 0 is the indicator for sample i being
probably misclassified.

In the case of almost certain misclassification y;w”z; << 0 the corresponding term in
the sum is approximately —2y,w”x;, a large positive number. For a probable correct
classification y;w?z; >> 1 the term in the sum is aproximately zero.

Similar considerations apply also to the soft-margin SVM cost function. The cost has al-
so in this case a training sample independent term [Jwl||?. In the sum, samples classified
succesfully with large enough margin (y;(w?x;) > 1) are not penalised at all. Misclassi-
fications y;(wTx;) << 0 result in a large positive cost.

Generally, the GP classifier is more or less close to the soft-margin SVM, depending on
the distribution p(y;|u;).



