T-61.5040 Oppivat mallit ja menetelmét
T-61.5040 Learning Models and Methods
Pajunen, Viitaniemi

Solutions to exercises 1, 19.1.2007

Problem 1.

We show that in each case we can find a model that fits perfectly to the observations but
yet it does not give any reasonable prediction outside the observations. The system is as
follows:

X ___ | BLACK y - Observations

BOX ~— Predefined model

o

i) We modify the predefined model only at the observations, so that the model gives a
correct value at the observations.

o
int of discontinuit
point of discontinuity

ii) We modify the predefined model in a neighborhood of radius ¢ of the observations.
Here € can be arbitrarily small. Now the model is continuos.

Continuous but non-differentiable model

iii) Consider function exp(—2?) that is infinitely many times differentiable. We can add
a suitably scaled exp(—z?) at the points of the observations. By scaling the argument

of the exponential, exp(—2?) can be made so thin that within a distance of € from the
observations, the values of the modified model and the original model differ only at most
é.

The value of the exponential must be scaled so that the value of the observations is
“reached” (see figure), and its sign is chosen positive or negative according whether the
value of the observation is larger or smaller than the value of the original model. Also,
the exponential must be centered at z; for observation 7. The new model is thus

f(z) + Zb, exp(—a;(z — x;)?)

where f is the predefined model and a; and b; are scaling parameters, different for each
observation. The figure shows an example of a situation where the original, predefined
model (here, a sinusoid) is added with scaled exponentials at the observations.

f(x) - 0.5exp(~25(x~1)%) + 1.5exp(~20(x-3)%)
T T T

Problem 2.
i) 8 bits per pixel and 256 x 256 pixels gives a total of 524 288 bits.

ii) Using a code of length n we can losslessly code 2" different images, because each bit
of the binary code can assume 2 values. Some of these images can be losslessly coded
using a shorter code, too, for example using a code of length (n — 10). Using a code of
length (n — 10) we can code 27710 different images. Thus among the 2" original images,

2"2%10 ~ 0.001 or about one of a thousand images can be coded using this shorter code.

iii) Lossless compression of a natural image is not as difficult as described above. Natu-
ral images often contain redundancy: areas of constant gray level or repeating structu-
res. Using this redundancy, the information content of the images can be presented in a
compressed form. However, the compression will be succesful only if reasonably correct

assumptions about the structure in images are made. Even if “generic” algorithms (such
as LZW) may work fairly well, the assumptions are included (implicitly) in the algorithm.

Problem 3.

i) Any prediction will be equally good, since for any predicted bit there are exactly two
vectors with the same n — 1 bits and the last bits are different. The probability of making
a mistake is 1/2 for any method.

ii) Assume a bag contains N vectors. Take any prediction method and compute its effec-
tiveness by calculating the number of mistakes it makes for any given bag of vectors. You
can construct another bag of vectors by flipping the last bit in each vector. All possible
bags can now be paired so that the prediction method will make exactly N mistakes when
applied to the pair of bags. We may assume that it is equally possible that the unknown
bag is either one of this kind of pairs. Then the average error rate will be 1/2 for one
vector. This is the same as achieved by guessing.

This shows that it is pointless to try to learn from data when there are no assumptions.
An assumption would correspond to a specific bag, or a set of bags with a probability for
each bag.

iii) We first assume that the training vectors are picked from the bag of vectors. Then we
know the bag contains those vectors and possibly some unknown vectors. When a new
vector is drawn, check if its first n — 1 bits match any of the training vectors. If not, then
guess the last bit since again you can make pairs of bags where the non-training vectors
have their last bit flipped.

If the first n — 1 bits match a training vector, then predict the last bit to be the same as
for the training vector. You might use f; to do this. This follows because you have no a
priori reason to assume that the bag contains an unbalanced set of unknown vectors with
the same n — 1 first bits.

If the training are not picked from the bag of vectors, any strategy performs as well as
guessing (by part ii). The strategy outlined earlier is optimal also in this case. Thus we
may conclude that the above mentioned strategy is optimal even though the problem
statement leaves it unclear, whether the training vectors are picked from the vector bag.

We see that training data alone tells us something about the training data itself but not-
hing else. Again without assumptions, you cannot make better predictions than guessing
outside the training data.

iv) One can again consider all possible bags containing 10% of the possible binary vectors
and make pairs out of them by flipping the last bit. This will make the prediction error
to be 1/2 on average.

This shows that even when the problem has "structure", as one might assume that real-
world problems have, it is not possible to learn from data without making fairly correct
assumptions about the structure.

Comments on all parts: these problems illustrate the ideas behind the No Free Lunch-
theorems by David H. Wolpert (see e.g. Neural Computation 8, 1341-1390 (1996). The
actual theorems are more general than predictions of bits but the ideas are more or less
obvious from the above problems.)

Problem 4.

In a randomly chosen binary bag, the expected prediction error is 1/2 for the same reason
as in the previous problem, part iv).

For the specific bag in which the BVM seems to perform so well the situation is a bit
more delicate. The expected prediction error on vectors whose first n — 1 bits do not
match with any of the sampled n vectors is 1/2 for the same reason as in the previous
problem, part iv). The vectors that have n — 1 bits common with some sampled vector
bias the expectation somewhat, but numerically the difference is small for any larger n as
the proportion of matching vectors in the bag is at most % = 2‘222, e.g. for n = 15 less
than 1/100. ’

The problem illustrates the "validation"of a learning method by simply testing it on some
training data. If one really makes no assumptions about the contents of the bag, then the
good performance of BVM on training data is just luck. Otherwise the BVM and the bag
are "matched", i.e. the contents of the bag are such that BVM can be expected to work
better than average.

Does the good performance on training data suggest that BVM and the bag of vectors
"match"? It does not, using the argument from the previous problem, part iii). Training
set without any additional information cannot give information about unobserved data.
Therefore we cannot guarantee that the performance of BVM is good outside the training
set.

This problem illustrates that the commonly used validation of a heuristic learning method
is actually wrong, unless additional assumptions are made. Often these assumptions are
not explicitly stated, but are implicit.

Problem 5.

First assume the algorithms A and B to be deterministic. We have a set of all binary bags
{Bi}, Bi denoting the i:th bag. Let us write Cy = C4(B;) for the proportion of prediction
errors of the method A for the bag B;. Correspondingly, Cz = Cp(B;) is the proportion
of prediction errors of the method B for the bag B;.

If we assume that any bag B; is equally probable, then C'y and Cg are random variables.
The difference D = C'4—C'p is also a random variable. We are interested in the distribution
of D, more specifically the tail probabilities of the distribution.

D can be written as a sum over the prediction errors on all vectors in the bag. Since any
bag is equally probable, then each prediction error is independent from the others.

Write D informally as -, 27"+ (Ca(x;) — Cp(x;)) where x; is a vector in a bag. Each

7n+q

term is in the interval [-27"1 2 . Then we can use the Hoeffding inequality to obtain

p(D —E(D) > €) < exp(—2¢7/2°7")
From this we get easily

p(ID —E(D)| >) < 2exp(—2¢/2°")

(Where does the Hoeffding inequality come from? Plug the distribution of the given form
to Chernoff bound P(X >) < inf,»0 E[e"X~Y], choose suitable r and approximate the
result.)

Above we assumed the algorithms A and B are deterministic. However, the results hold
also for non-deterministic algorithms. This can be seen as follows: let r.v G denote all the
non-determinism in the algorithms A and B. We can interchange the order of randomly
selecting the bag and picking the value for G as the algorithms are independent of the
chosen bag. If we first fix G, the remaining parts of the algorithms are deterministic and
for a fixed value of G we can get the results as below. But the results then hold for any
choice for G, i.e. always regardless of the non-determinism.

When we plug in the numbers given in the assignment, we obtain a limit for the tail
probability:
P(|C4 — Cg| > 1/128) < 2exp(—2¢2/27%%) < 0.04

Interpretation: if you are predicting bits using 20-bit input vectors with any given algo-
rithm, then in less than four percent of all such prediction problems is your performance
to be even slightly different than that obtained by guessing. Thus beating guessing is not
only hard on average, it also happens in a very small part of all problems (for deterministic
algorithms).

We could alternatively use Chebychev’s theorem to get a bound for the tail probabilities
of the distribution of D:

1
P(|D — E(D)| > €) < 5 Var(D).
€
We know that D gets values in the range [—1,1] and is symmetric about the origin.

Therefore the expectation E(D) = 0.

Let N denote number of vectors for which A and B disagree. Let S denote the number of
cases where A is wrong and B is right and 7'= N — S the opposite cases.

The number S of ones is has a Bin(V, 1/2) distribution. Hence
E(S) = N/2

and
Var(S) = N/4.

ot

Now

Var(D)

Var(2~"V[§ — T]) = 272 2Var(2[S — N/2]) = 272+2 . 4Var(S)
2—2n+2N < 2—2n+22n—1 — 27n+1.

Here we used N < 2"~1, We are now ready to apply Chebyshev’s inequality:

1
—n+1
P(ID] 2 e) < 527,

When we plug in the numbers given in the assignment, we obtain a limit for the tail

probability:

P(|C4 — Cp| > 1/128) < 0.07.

