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ises 1, 19.1.2007Problem 1.We show that in ea
h 
ase we 
an �nd a model that �ts perfe
tly to the observations butyet it does not give any reasonable predi
tion outside the observations. The system is asfollows:
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i) We modify the prede�ned model only at the observations, so that the model gives a
orre
t value at the observations.
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ii) We modify the prede�ned model in a neighborhood of radius ε of the observations.Here ε 
an be arbitrarily small. Now the model is 
ontinuos.
x

εε

Continuous but non-differentiable model
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iii) Consider fun
tion exp(−x2) that is in�nitely many times di�erentiable. We 
an adda suitably s
aled exp(−x2) at the points of the observations. By s
aling the argument1

of the exponential, exp(−x2) 
an be made so thin that within a distan
e of ε from theobservations, the values of the modi�ed model and the original model di�er only at most
δ.The value of the exponential must be s
aled so that the value of the observations is�rea
hed� (see �gure), and its sign is 
hosen positive or negative a

ording whether thevalue of the observation is larger or smaller than the value of the original model. Also,the exponential must be 
entered at xi for observation i. The new model is thus

f(x) +
∑

i

bi exp(−ai(x − xi)
2)where f is the prede�ned model and ai and bi are s
aling parameters, di�erent for ea
hobservation. The �gure shows an example of a situation where the original, prede�nedmodel (here, a sinusoid) is added with s
aled exponentials at the observations.
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f(x) − 0.5exp(−25(x−1)2) + 1.5exp(−20(x−3)2)

Problem 2.i) 8 bits per pixel and 256 × 256 pixels gives a total of 524 288 bits.ii) Using a 
ode of length n we 
an losslessly 
ode 2n di�erent images, be
ause ea
h bitof the binary 
ode 
an assume 2 values. Some of these images 
an be losslessly 
odedusing a shorter 
ode, too, for example using a 
ode of length (n − 10). Using a 
ode oflength (n − 10) we 
an 
ode 2n−10 di�erent images. Thus among the 2n original images,

2n−10

2n
≈ 0.001 or about one of a thousand images 
an be 
oded using this shorter 
ode.iii) Lossless 
ompression of a natural image is not as di�
ult as des
ribed above. Natu-ral images often 
ontain redundan
y: areas of 
onstant gray level or repeating stru
tu-res. Using this redundan
y, the information 
ontent of the images 
an be presented in a
ompressed form. However, the 
ompression will be su

esful only if reasonably 
orre
t2



assumptions about the stru
ture in images are made. Even if �generi
� algorithms (su
has LZW) may work fairly well, the assumptions are in
luded (impli
itly) in the algorithm.Problem 3.i) Any predi
tion will be equally good, sin
e for any predi
ted bit there are exa
tly twove
tors with the same n−1 bits and the last bits are di�erent. The probability of makinga mistake is 1/2 for any method.ii) Assume a bag 
ontains N ve
tors. Take any predi
tion method and 
ompute its e�e
-tiveness by 
al
ulating the number of mistakes it makes for any given bag of ve
tors. You
an 
onstru
t another bag of ve
tors by �ipping the last bit in ea
h ve
tor. All possiblebags 
an now be paired so that the predi
tion method will make exa
tly N mistakes whenapplied to the pair of bags. We may assume that it is equally possible that the unknownbag is either one of this kind of pairs. Then the average error rate will be 1/2 for oneve
tor. This is the same as a
hieved by guessing.This shows that it is pointless to try to learn from data when there are no assumptions.An assumption would 
orrespond to a spe
i�
 bag, or a set of bags with a probability forea
h bag.iii) We �rst assume that the training ve
tors are pi
ked from the bag of ve
tors. Then weknow the bag 
ontains those ve
tors and possibly some unknown ve
tors. When a newve
tor is drawn, 
he
k if its �rst n− 1 bits mat
h any of the training ve
tors. If not, thenguess the last bit sin
e again you 
an make pairs of bags where the non-training ve
torshave their last bit �ipped.If the �rst n − 1 bits mat
h a training ve
tor, then predi
t the last bit to be the same asfor the training ve
tor. You might use f1 to do this. This follows be
ause you have no apriori reason to assume that the bag 
ontains an unbalan
ed set of unknown ve
tors withthe same n − 1 �rst bits.If the training are not pi
ked from the bag of ve
tors, any strategy performs as well asguessing (by part ii). The strategy outlined earlier is optimal also in this 
ase. Thus wemay 
on
lude that the above mentioned strategy is optimal even though the problemstatement leaves it un
lear, whether the training ve
tors are pi
ked from the ve
tor bag.We see that training data alone tells us something about the training data itself but not-hing else. Again without assumptions, you 
annot make better predi
tions than guessingoutside the training data.iv) One 
an again 
onsider all possible bags 
ontaining 10% of the possible binary ve
torsand make pairs out of them by �ipping the last bit. This will make the predi
tion errorto be 1/2 on average.This shows that even when the problem has "stru
ture", as one might assume that real-world problems have, it is not possible to learn from data without making fairly 
orre
tassumptions about the stru
ture. 3

Comments on all parts: these problems illustrate the ideas behind the No Free Lun
h-theorems by David H. Wolpert (see e.g. Neural Computation 8, 1341-1390 (1996). Thea
tual theorems are more general than predi
tions of bits but the ideas are more or lessobvious from the above problems.)Problem 4.In a randomly 
hosen binary bag, the expe
ted predi
tion error is 1/2 for the same reasonas in the previous problem, part iv).For the spe
i�
 bag in whi
h the BVM seems to perform so well the situation is a bitmore deli
ate. The expe
ted predi
tion error on ve
tors whose �rst n − 1 bits do notmat
h with any of the sampled n ve
tors is 1/2 for the same reason as in the previousproblem, part iv). The ve
tors that have n − 1 bits 
ommon with some sampled ve
torbias the expe
tation somewhat, but numeri
ally the di�eren
e is small for any larger n asthe proportion of mat
hing ve
tors in the bag is at most 2n
0,1·2n

= 5n
2n−2 , e.g. for n = 15 lessthan 1/100.The problem illustrates the "validation"of a learning method by simply testing it on sometraining data. If one really makes no assumptions about the 
ontents of the bag, then thegood performan
e of BVM on training data is just lu
k. Otherwise the BVM and the bagare "mat
hed", i.e. the 
ontents of the bag are su
h that BVM 
an be expe
ted to workbetter than average.Does the good performan
e on training data suggest that BVM and the bag of ve
tors"mat
h"? It does not, using the argument from the previous problem, part iii). Trainingset without any additional information 
annot give information about unobserved data.Therefore we 
annot guarantee that the performan
e of BVM is good outside the trainingset.This problem illustrates that the 
ommonly used validation of a heuristi
 learning methodis a
tually wrong, unless additional assumptions are made. Often these assumptions arenot expli
itly stated, but are impli
it.Problem 5.First assume the algorithms A and B to be deterministi
. We have a set of all binary bags

{Bi}, Bi denoting the i:th bag. Let us write CA = CA(Bi) for the proportion of predi
tionerrors of the method A for the bag Bi. Correspondingly, CB = CB(Bi) is the proportionof predi
tion errors of the method B for the bag Bi.If we assume that any bag Bi is equally probable, then CA and CB are random variables.The di�eren
e D = CA−CB is also a random variable. We are interested in the distributionof D, more spe
i�
ally the tail probabilities of the distribution.D 
an be written as a sum over the predi
tion errors on all ve
tors in the bag. Sin
e anybag is equally probable, then ea
h predi
tion error is independent from the others.Write D informally as ∑
j 2−n+1(CA(xj) − CB(xj)) where xj is a ve
tor in a bag. Ea
h4



term is in the interval [−2−n+1, 2−n+1]. Then we 
an use the Hoe�ding inequality to obtain

p(D − E(D) ≥ ǫ) ≤ exp(−2ǫ2/25−n)From this we get easily

p(|D − E(D)| ≥ ǫ) ≤ 2 exp(−2ǫ2/25−n)(Where does the Hoe�ding inequality 
ome from? Plug the distribution of the given formto Cherno� bound P (X ≥ λ) ≤ infr≥0 E[er(X−λ)], 
hoose suitable r and approximate theresult.)Above we assumed the algorithms A and B are deterministi
. However, the results holdalso for non-deterministi
 algorithms. This 
an be seen as follows: let r.v G denote all thenon-determinism in the algorithms A and B. We 
an inter
hange the order of randomlysele
ting the bag and pi
king the value for G as the algorithms are independent of the
hosen bag. If we �rst �x G, the remaining parts of the algorithms are deterministi
 andfor a �xed value of G we 
an get the results as below. But the results then hold for any
hoi
e for G, i.e. always regardless of the non-determinism.When we plug in the numbers given in the assignment, we obtain a limit for the tailprobability:

P (|CA − CB| ≥ 1/128) ≤ 2 exp(−2ǫ2/2−15) < 0.04Interpretation: if you are predi
ting bits using 20-bit input ve
tors with any given algo-rithm, then in less than four per
ent of all su
h predi
tion problems is your performan
eto be even slightly di�erent than that obtained by guessing. Thus beating guessing is notonly hard on average, it also happens in a very small part of all problems (for deterministi
algorithms).We 
ould alternatively use Cheby
hev's theorem to get a bound for the tail probabilitiesof the distribution of D: P(|D − E(D)| > ǫ) ≤
1

ǫ2

Var(D).We know that D gets values in the range [−1, 1] and is symmetri
 about the origin.Therefore the expe
tation E(D) = 0.Let N denote number of ve
tors for whi
h A and B disagree. Let S denote the number of
ases where A is wrong and B is right and T = N − S the opposite 
ases.The number S of ones is has a Bin(N, 1/2) distribution. Hen
eE(S) = N/2and Var(S) = N/4.5

Now Var(D) = Var(2−(n−1)[S − T ]) = 2−2n+2Var(2[S − N/2]) = 2−2n+2 · 4Var(S)

= 2−2n+2N ≤ 2−2n+22n−1 = 2−n+1.Here we used N ≤ 2n−1. We are now ready to apply Chebyshev's inequality:
P (|D| ≥ ǫ) <

1

ǫ2
2−n+1.When we plug in the numbers given in the assignment, we obtain a limit for the tailprobability:

P (|CA − CB| ≥ 1/128) < 0.07.
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