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alized basis fun
tions are one method of nonparametri
 modeling.i)

E{y|x} =

∫

yp(y|x) dyUse

p(y|x) =
p(x, y)

p(x)
=

p(x, y)
∫

p(x, y) dyto get the regression fun
tion

E{y|x} =

∫

yp(x, y)dy
∫

p(x, y)dy
.ii) Pla
e 1/N-th of the probability mass at ea
h observation, that is, K(x − xi, y − yi)/Nat (xi, yi). Then the joint density of the observations is

p(x, y) = 1/N
∑

i

K(x − xi, y − yi)whi
h is indeed a density fun
tion be
ause it integrates to 1 and it is nonnegative.iii) Now insert the formula of p(x, y) into the regression fun
tion E{y|x} obtained in parti):

E{y|x} =

∫

yp(x, y)dy
∫

p(x, y)dy

=

∫

y
∑

i K(x − xi, y − yi)dy
∫

∑

i K(x − xi, y − yi)dy

=

∑

i

(

Kx(x − xi)
∫

yKy(y − yi)dy
)

∑

i

(

Kx(x − xi)
∫

Ky(y − yi)dy
)

=

∑

i Kx(x − xi)yi
∑

i Kx(x − xi)In the last equation we used the fa
t that Ky(y − yi) is the density fun
tion of the Gaus-sian distribution N(yi, 1), and formula ∫

yKy(y − yi)dy gives the expe
tation yi of thisdistribution.Note that using the regression fun
tion E{y|x} as an estimate for the value of y given x isa justi�ed 
hoi
e if the least mean squared error is 
onsidered.1

Problem 2.i) The 
lassi�ers are de�ned by sele
ting the index i ∈ {1, 2, . . . , n−1} and de
iding whether
xi is in 
lass 0 or 1. This gives a total of 2n − 2 di�erent �ni
e� 
lassi�ers.ii) The assumptions made above mean that the fra
tion of �ni
e� 
lassi�
ation problems is
(2n − 2)/2n. In Problem 5 / Exer
ise 1, we 
omputed an upper bound for the fra
tion ofproblems where the performan
e of any two methods di�er more than ǫ. Here we use thegiven upper bound 2e−ǫ2(n/2) (*).Consider A=guessing and B=potentially very good 
lassi�er. Suppose you want to 
laimthat B is mu
h better than A, meaning that ǫ is large. Then you use (*) to see how smallthe fra
tion of problems must be for this to be true. In
reasing ǫ, the upper bound getssmaller. At some ǫ, the upper bound is equal to (2n − 2)/2n. If this ǫ is small, you 
an
on
lude that in the set of �ni
e� problems, B is not mu
h better than guessing. If ǫ islarge, then you 
an 
on
lude that B may be mu
h better than guessing. Compute the ǫwhere the upper bound equals (2n − 2)/2n:

2n − 2

2n
= 2e−ǫ2(n/2)

ǫ =

√

2

n
log(

2n

n − 1
)This ǫ is typi
ally larger than 1, as seen in the �gure. Therefore the set of �ni
e� problemsis small enough that (*) 
annot limit the performan
e of B.
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Comments: The assumption made above (the problem is �ni
e�) is often reasonable in
lassi�
ation problems. However, for regression problems it would seem to be quite strong.Yet both regression and 
lassi�
ation are exa
tly the same problems: there are inputs x and
orresponding outputs y. In 
lassi�
ation, loose assumptions su
h as made above seem toimply mu
h more on the possibility of having useful learning methods.Note that all this requires that all errors are equally bad: in regression one often preferssmall errors to large errors, but in 
lassi�
ation all errors are often equal. We avoided thesequestions by 
hoosing the outputs to be binary.2



Problem 3.i) There are two points and therefore the line 
an be exa
tly �tted. The equations are

y1 = µ̂ + β̂, y0 = β̂ =⇒ β̂ = y0 and µ̂ = y1 − y0The predi
tion at x = 2 is ŷ2 = 2µ̂ + β̂ = 2y1 − y0. The distribution of the predi
ted valueis Normal. The mean value is 2E[y1]−E[y0] = 2µ+ β, and the varian
e is V ar(2y1 − y0) =
4V ar(y1)+V ar(y0) = 5 (here we have taken the noise term n to be generated independentlyfor ea
h observation). So ŷ2 ∼ N(2µ + β, 5). Sin
e the true value at x = 2 is 2µ + β, themean-square error is 5.ii) The 
onstant minimizing the mean-square error is the average y0/2+y1/2. This is at thesame time the predi
tion at all inputs x. It is Normally distributed with mean 1/2E[y0] +
1/2E[y1] = 1/2β + 1/2(µ+ β) = 1/2µ+ β and varian
e is 1/4V ar(y0) + 1/4V ar(y1) = 1/2.Therefore the predi
tion ŷ2 has a distribution N(1/2µ + β, 1/2). The mean squared erroris E([ŷ2 − 2µ − β]2) = E[z2] where we denote z = ŷ2 − 2µ − β. z has normal distribution

N(−3/2µ, 1/2) and therefore it is easy to 
al
ulateE[z2] = V ar(z)+E[z]2 = 1/2+(−3/2µ)2.If this mean-square error is less than 5, then it may make sense to use a 
onstant regressionfun
tion even if you know that the true model is linear. If µ = 1, then the MSE for the
onstant model is 11/4 < 5. Over�tting 
an happen when there is not enough data.Problem 4.i)

P (|a1 − b1| ≤ x) = 1 − P (|a1 − b1| > x)

= 1 − 2P (a1 − b1 > x)

= 1 − 2

∫ 1−x

0

(
∫ 1

b1+x

1da1

)

db1

= 1 − 2

∫ 1−x

0

(1 − b1 − x)db1

= 1 − 2|1−x
0

(

b1 −
1

2
b2
1 − xb1

)

= 1 − 2

(

1 − x −
1

2
(1 − x)2 − x(1 − x)

)

= 1 − 2

(

1

2
x2 − x +

1

2

)

= 1 − x2 + 2x − 1

= x(2 − x).ii) z is the maximum of variables |ai − bi|. Therefore
P (z ≤ x) =

d
∏

i=1

P (|ai − bi| ≤ x) = xd(2 − x)d.3

iii) As a minimum of n − 1 variables zj , we have

P (w ≤ x) = 1 −
n

∏

j=2

(1 − P (zj ≤ x))

= 1 − (1 − xd(2 − x)d)n−1

E(w) =

∫ 1

0

1 − P (w ≤ x)dx =

∫ 1

0

(

1 − xd(2 − x)d
)n−1

dx.iv)

E(w) =

∫ 1

0

(1 − 2x + x2)n−1dx

=

∫ 1

0

(x − 1)2n−2dx

=

∫ 0

−1

x2n−2dx

=
1

2n − 1
.v) We are evaluating the integral

E(w) =

∫ 1

0

(

1 − xd(2 − x)d
)n−1

dx.Monotone 
onvergen
e lemma says that limd→∞

∫

fd(x)dx =
∫

limd→∞
fd(x)dx when fd(x) ≥

0 and fd+1(x) ≥ fd(x) for all d and x ∈ [0, 1] and limd→∞
fd(x) exists. We take the integrand

(1 − xd(2 − x)d)n−1 to be our fun
tion f . Sin
e 0 ≤ x(2 − x) < 1 for 0 ≤ x < 1,

lim
d→∞

(

1 − xd(2 − x)d
)n−1

= 1when 0 ≤ x < 1 and zero for x = 1. Furthermore, for �xed x in the interval f is non-negativeand does not de
rease as d grows.The 
onditions of the lemma are thus ful�lled and we get

E(w) = lim
d→∞

∫ 1

0

(

1 − xd(2 − x)d
)n−1

dxE(w) =

∫ 1

0

lim
d→∞

(

1 − xd(2 − x)d
)n−1

dx =

∫ 1

0

1dx = 1.Note: the 
al
ulation was based on the limit of the integrand being one for a �xed n. Thesame 
an be shown to hold even if the number of points n is any polynomial fun
tion ofthe dimension d (but the 
orresponding limiting pro
edure is a bit more 
ompli
ated). We
an thus say that a polynomial number of points is not enough to densely 
over the 
ubeas the dimension of the spa
e in
reases.vi) E(w) ≈ ( 1
n
)1/d sin
e this gives the volume 1

n

for one small 
ube, and there are n of them.Also this approximation tends to unity if n is any polynomial of d.4


