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Solutions to exercise 2, 26.1.2007

Problem 1.
Localized basis functions are one method of nonparametric modeling.
i)

Blule) = [ wwlolo)dy

B p(z,y) B p(x,y)
pylz) = @) [ple,y)dy

to get the regression function

~ Jyp(z,y)dy
B = T ydy

ii) Place 1/N-th of the probability mass at each observation, that is, K(z — x;,y — y;)/N
at (z;,y;)- Then the joint density of the observations is

p(z,y) = 1/NZK($*I2'J/*?/@')

which is indeed a density function because it integrates to 1 and it is nonnegative.

iii) Now insert the formula of p(x,y) into the regression function E{y|z} obtained in part
i):
+ Jup(z, y)dy
B e
Sy K@ =iy — yi)dy
B fZViK(JC — i,y — yi)dy
X (Kl — @) [yK,(y — yi)dy)
> (Kalw — ) [ Ky(y — yi)dy)
_ > Kalw — i)y
> Kalw — @)
In the last equation we used the fact that K,(y — y;) is the density function of the Gaus-

sian distribution N(y;, 1), and formula [yK,(y — y;)dy gives the expectation y; of this
distribution.

Note that using the regression function E{y|xz} as an estimate for the value of y given z is
a justified choice if the least mean squared error is considered.

Problem 2.

i) The classifiers are defined by selecting the index i € {1,2,...,n—1} and deciding whether
x; is in class 0 or 1. This gives a total of 2n — 2 different “nice” classifiers.

ii) The assumptions made above mean that the fraction of “nice” classification problems is
(2n —2)/2™. In Problem 5 / Exercise 1, we computed an upper bound for the fraction of
problems where the performance of any two methods differ more than e. Here we use the
given upper bound 2e~(/2) (%),

Consider A=guessing and B=potentially very good classifier. Suppose you want to claim
that B is much better than A, meaning that € is large. Then you use (*) to see how small
the fraction of problems must be for this to be true. Increasing e, the upper bound gets
smaller. At some ¢, the upper bound is equal to (2n — 2)/2". If this € is small, you can
conclude that in the set of “nice” problems, B is not much better than guessing. If € is
large, then you can conclude that B may be much better than guessing. Compute the e
where the upper bound equals (2n — 2)/2™:
2n —2
2n

26—62(n/2)

2 n
e=4/—log(
n

)

This € is typically larger than 1, as seen in the figure. Therefore the set of “nice” problems
is small enough that (*) cannot limit the performance of B.

n—1

£=sqrt (2/nlog (2" / (n-1)))

Comments: The assumption made above (the problem is “nice”) is often reasonable in
classification problems. However, for regression problems it would seem to be quite strong.
Yet both regression and classification are exactly the same problems: there are inputs x and
corresponding outputs y. In classification, loose assumptions such as made above seem to
imply much more on the possibility of having useful learning methods.

Note that all this requires that all errors are equally bad: in regression one often prefers
small errors to large errors, but in classification all errors are often equal. We avoided these
questions by choosing the outputs to be binary.



Problem 3. iii) As a minimum of n — 1 variables z;, we have

i) There are two points and therefore the line can be exactly fitted. The equations are

Pw<z) = 1-][(1-P(z <)
n=p+p y=0 = B=yand =y —yo i

The prediction at x = 2 is gy = 2/1 + 8= 2y; — yo. The distribution of the predicted value 1 1
is Normal. The mean value is 2E[y;] — E[yo] = 211+ /3, and the variance is Var(2y; — yo) = E(w) = 1— P(w < 2)dz = / (1 —at2 - w)d)n—l d.
4Var(y1)+Var(yo) = 5 (here we have taken the noise term n to be generated independently 0

for each observation). So ¢ ~ N(2u + (3,5). Since the true value at x = 2 is 2u + 3, the

mean-square error is 5. iv)

=)

1

ii) The constant minimizing the mean-square error is the average yo/2+y;/2. This is at the Bw) (1= 22+ 2%)" 'de

same time the prediction at all inputs . It is Normally distributed with mean 1/2E[y,] +
1/2E[yp] = 1/26+1/2(pu+ B) = 1/2uu+ 5 and variance is 1/4Var(yo) + 1/4Var(y:) = 1/2.
Therefore the prediction g, has a distribution N(1/2p + 3,1/2). The mean squared error
is E([f2 — 2u — B]?) = E[2?] where we denote z = §» — 2u — 3. z has normal distribution
N(—-3/2u,1/2) and therefore it is easy to calculate E[z%] = Var(z)+E[z]? = 1/2+(—3/2u)2. =

1
(x — 1) 2dz

0
l‘2n72d1’

1

If this mean-square error is less than 5, then it may make sense to use a constant regression 1

function even if you know that the true model is linear. 1If = 1, then the MSE for the 2n—1

constant model is 11/4 < 5. Overfitting can happen when there is not enough data.

Il
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v) We are evaluating the integral
Problem 4.

E(w) = 1 (1—a2%2- x)d)nf1 dz.
i) J

Monotone convergence lemmasays that limy_. [ fo(z)de = [limg .o fa(z)dz when fy(z) >

_ < — _ _
Pllor =t < 2) L= Pl =b| > ) 0and fz41(x) > fa(z) for alld and z € [0,1] and limg_., f4(x) exists. We take the integrand

= 1- 2P(?1 b 1> ) (1 =292 — )" to be our function f. Since 0 < z(2—2) <1for 0 <z < 1,
= 1- 2/ (/ 1da,1) dby : d adyl
A byt dllj& (1-2/2-2))" =1
1-x
= 1- 2/ (1 —by — x)dby when 0 < z < 1 and zero for x = 1. Furthermore, for fixed  in the interval f is non-negative
0 and does not decrease as d grows.
= 1-2/" (b - 1b2 — b
0 LR e The conditions of the lemma are thus fulfilled and we get
= 1-2 171‘71(171‘)2*1‘(1*1‘) ! n-1 ! n-1 !
- 2 E(w) = lim / (1-2%2—-2)")"" dzE(w) = / dlim (1-22—-2)")" dz = / ldx = 1.
1
= 172(71‘2*1‘4*7)
) 2 2 Note: the calculation was based on the limit of the integrand being one for a fixed n. The
= 1-a"+22-1 same can be shown to hold even if the number of points n is any polynomial function of
= (2 —2). the dimension d (but the corresponding limiting procedure is a bit more complicated). We

can thus say that a polynomial number of points is not enough to densely cover the cube

sy . . as the dimension of the space increases.
ii) z is the maximum of variables |a; — b;|. Therefore p

d vi) E(w) ~ ()} since this gives the volume 1 for one small cube, and there are n of them.
P(z <) =[] Plla; — bi| < 2) = 22— 2)".

o Also this approximation tends to unity if n is any polynomial of d.
i



