
T-61.5040 Oppivat mallit ja menetelmätT-61.5040 Learning Models and MethodsPajunen, ViitaniemiSolutions to exer
ise 4, 9.2.2007Problem 1.i) Likelihood is irrelevant when 
onsidering the prior. The problem does not give anyreason to distinguish θ1 and θ2. Therefore p(θ1) = p(θ2) = 0.5 is a reasonable 
hoi
e forthe prior distribution.ii) Use p(θi|x = j) ∝ p(x = j|θi)p(θi) for i = 1, 2. Then normalize the distribution.

p(θ1|x = 0) ∝ p(x = 0|θ1)p(θ1) = 0.8 · 0.5 and p(θ2|x = 0) ∝ 0.4 · 0.5, normalize →
p(θ1|x = 0) = 2/3, p(θ2|x = 0) = 1/3
p(θ1|x = 1) ∝ 0.2 · 0.5 and p(θ2|x = 1) ∝ 0.6 · 0.5, normalize →
p(θ1|x = 1) = 1/4, p(θ2|x = 1) = 3/4iii) p(θ|x1, . . . , xn) ∝ p(x1, . . . , xn|θ)p(θ)Sin
e the data are independent given θ, the likelihood is ∏

j
p(xj |θi). Ea
h term dependson the binary value of xj but is independent of the index j. Therefore we may 
omputethe sum x =

∑
j
xj and �nd that the likelihood is

∏
j

p(xj |θi) = (p(x = 1|θi))
x(p(x = 0|θi))

n−xThis 
an be 
omputed for θ1 and θ2 to get the unnormalized posterior. Normalizationgives the result.The sum x =
∑

j
xj is the single variable that determines the answer. This kind of avariable is 
alled a su�
ient statisti
.Problem 2Likelihood says that x < θ and prior says that θ ≤ 1, so 
ompute the posterior with these
onditions.i) p(θ|x) ∝ p(x|θ)p(θ) = 2x/θ2Normalization 
onstant: p(x) =

∫
p(x|θ)p(θ)dθ =

∫
1

x
2xθ−2dθ = 2x(x−1 − 1)Result: p(θ|x) = θ−2/(x−1 − 1)ii) p(θ|x) ∝ p(x|θ)p(θ) = 2x/θ2 · 3θ2 = 6xThis is independent of θ so the posterior is 
onstant on the interval (x, 1]. This gives

p(θ|x) = 1/(1 − x), θ ∈ (x, 1] 1

iii) E(θ|x) 
an be dire
tly 
omputed using the posterior. Using the posterior in i),
E(θ|x) =

∫
θp(θ|x)dθ =

∫
1

x

θ−1dθ/(x−1−1) = (log 1−log x)/(x−1−1) = (log x)/(1−x−1)Using the posterior in ii),

E(θ|x) =

∫
1

x

θ/(1 − x)dθ = (1 + x)/2Problem 3.i) The two Normal distributions are far enough from ea
h other that they 
an be 
onsideredseparately. Either θ = 0 or θ = 4 approximately maximizes the posterior. Compute theposterior at both points, ignoring the other Normal distribution:
p(θ = 0|D) ≈ 0.9 ∗ N(0|0, 1) = 0.9/(

√
2π)

p(θ = 4|D) ≈ 0.1 ∗ N(4|4, 0.12) = 0.1/(
√

2π0.1)Dividing by the the square-root, the �rst value is 0.9 and the se
ond 0.1/0.1 = 1. Sothe posterior is maximized around the value θ = 4. The predi
ted value is approximately

y = exp(4) ≈ 55. By looking at the prior probabilities of the Normal distributions youmight think θ = 0 is a better 
hoi
e. But θ = 4 has a smaller varian
e, so pi
king a pointestimate results in 
hoosing θ = 4.ii) θ is not normally distributed, but it is a mixture of two Normal distributions. However,we 
an use the fa
t that integration is a linear operation and we 
an thus 
al
ulate theintegrals, i.e. expe
tations over the mixture 
omponent distributions separately. For bothof the 
omponent distributions, y is lognormal, and by the given hint E[y] = exp(µ+σ2/2):E(y) = E(exp(θ)) = 0.9 exp(0 +
1

2
· 1) + 0.1 exp(4 +

1

2
· 0.01) ≈ 7Now the mean value is 
loser to exp(1/2) than exp(4.005). In part i), the predi
ted valuewas exp(4) ≈ 55.Problem 4.i) In this problem we need to average models for di�erent values of θ. Model averagingdoes not mean that the values ỹ predi
ted by the models are averaged: if this was so, thenthe average would be ỹ = 2, but all models give zero probability for this value. Instead,the �probability mass� given by ea
h model for ea
h value of ỹ is averaged over the models,using the posterior probabilities of the models as weights. The average probability massfor a spe
i�
 value ỹ is

p(ỹ|D) =

3∑
i=1

p(ỹ|θi, D)p(θi|D).The value ỹ = 1 gets probability mass p(ỹ = 1|θ1, D)p(θ1|D) = 1/2 and ỹ = 3 gets

p(ỹ = 3|θ2, D)p(θ2|D)+p(ỹ = 3|θ3, D)p(θ3|D) = 1/2: all terms that are zero were omittedhere. 2



ii) Using the above formula, we obtain

p(ỹ = 1|D) =

3∑
i=1

p(ỹ = 1|θi, D)p(θi|D)

=
1

2
· 0.35 +

1

4
· 0.5 +

1

4
· 0.1 = 0.325.Similarly,

p(ỹ = 2|D) =
1

2
· 0.3 +

1

4
· 0.4 +

1

4
· 0.4 = 0.35and

p(ỹ = 3|D) =
1

2
· 0.35 +

1

4
· 0.1 +

1

4
· 0.5 = 0.325.Ea
h model predi
ts that the most probable ỹ is either 1 or 3. However, the predi
tivedistribution is maximized for ỹ = 2. Looking at the maximum of a distribution may thusbe misleading!
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