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Solutions to exercise 4, 9.2.2007

Problem 1.

i) Likelihood is irrelevant when considering the prior. The problem does not give any
reason to distinguish 6; and 6,. Therefore p(6;) = p(f2) = 0.5 is a reasonable choice for
the prior distribution.

ii) Use p(6;]z = j) o p(xz = j|6;)p(6;) for i = 1,2. Then normalize the distribution.
p(01]z = 0) < p(z = 0]6)p(6;) = 0.8 - 0.5 and p(f;|z = 0) & 0.4 - 0.5, normalize —
pOilz —0) =2/3, p(bale = 0) = 1/3

p(f1]z =1) < 0.2-0.5 and p(62|z = 1) < 0.6 - 0.5, normalize —

pbh|lz =1)=1/4, p(bslz=1)=3/4

iii) p(A|z1, ..., @n) X p(21, . .., 2,]0)p(6)

Since the data are independent given 6, the likelihood is [[; p(z;|¢;). Each term depends
on the binary value of z; but is independent of the index j. Therefore we may compute
the sum T =3, z; and find that the likelihood is

116 = (p(x = 116:))7(p(x = 016:))" 7
J
This can be computed for ¢; and 0y to get the unnormalized posterior. Normalization

gives the result.

The sum Z = ) .x; is the single variable that determines the answer. This kind of a
variable is called a sufficient statistic.

Problem 2

Likelihood says that < 6 and prior says that § < 1, so compute the posterior with these
conditions.

i) p(z) o< p(x|0)p(0) = 22/6°

Normalization constant: p(x) = [ p(x(0)p(0)d0 = [} 2002d0 = 2x(z~* — 1)
Result: p(f]z) = 072/(z™" — 1)

i) p(0)x) o< p(x|0)p(0) = 22/6° - 30° = 6

This is independent of @ so the posterior is constant on the interval (x,1]. This gives

p(blz) =1/(1 =), 0 € (x,1]

iii) E(f]x) can be directly computed using the posterior. Using the posterior in i),

E@|z) = /0p(9|3:)d6 = / 07'do/(x*—1) = (log1—logx)/(z7'—1) = (logx)/(1—2~")

Using the posterior in ii),

E()r) :/ 0/(1— 2)d8 = (1 + 2)/2

Problem 3.

i) The two Normal distributions are far enough from each other that they can be considered
separately. Either § = 0 or § = 4 approximately maximizes the posterior. Compute the
posterior at both points, ignoring the other Normal distribution:

p(8 =0|D) =~ 0.9 % N(0]0,1) = 0.9/(v/27)
p(6 = 4|D) ~ 0.1 % N(4/4,0.1%) = 0.1/(v/270.1)

Dividing by the the square-root, the first value is 0.9 and the second 0.1/0.1 = 1. So
the posterior is maximized around the value @ = 4. The predicted value is approximately
y = exp(4) ~ 55. By looking at the prior probabilities of the Normal distributions you
might think 6 = 0 is a better choice. But § = 4 has a smaller variance, so picking a point
estimate results in choosing 6 = 4.

ii) 6 is not normally distributed, but it is a mixture of two Normal distributions. However,
we can use the fact that integration is a linear operation and we can thus calculate the
integrals, i.e. expectations over the mixture component distributions separately. For both
of the component distributions, y is lognormal, and by the given hint E[y] = exp(u+0c?/2):

1 1
E(y) = E(exp(#)) = 0.9 exp(0 + 3" 1) +0.1exp(4 + 3" 0.01) =~ 7

Now the mean value is closer to exp(1/2) than exp(4.005). In part i), the predicted value
was exp(4) ~ 55.

Problem 4.

i) In this problem we need to average models for different values of . Model averaging
does not mean that the values § predicted by the models are averaged: if this was so, then
the average would be g = 2, but all models give zero probability for this value. Instead,
the “probability mass” given by each model for each value of § is averaged over the models,
using the posterior probabilities of the models as weights. The average probability mass
for a specific value g is

p(jID) = Zp §16:, D)p(6,|D).
i=1
The value § = 1 gets probability mass p(g = 1|61, D)p(6:|D) = 1/2 and § = 3 gets
p(§ = 3|62, D)p(62| D) +p(§ = 3|05, D)p(63]D) = 1/2: all terms that are zero were omitted
here.



ii) Using the above formula, we obtain
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p(§ = 1|0, D)p(6:] D)
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= —-0. - 0. - 0.1 =0.325.
2035—0-4 05+40 0.325
Similarly,
1 1 1
y=2|D)=--034+--04+4--04=0.35
pH=2ID) =503+ -04+7
and
p(y=3D)==-035+=--0.1+--0.5=0.325

Each model predicts that the most probable g is either 1 or 3. However, the predictive
distribution is maximized for § = 2. Looking at the maximum of a distribution may thus
be misleading!



