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Solutions to exercise 7, 2.3.2007

Problem 1. i) According to the problem statement, the coins are independent. The
problem statement must be interpreted in such way that this is the case. The independence
can be achieved by regarding a and b as known constants (for unknown a and b this
would not be the case). The following probabilities (in subproblem i) ) include implicitly
conditioning on these values.

The likelihood is a Binomial distribution, so
p(yl0;) = Bin(y|n, 8;)
The posterior is
p(0i]yi) o< Bin(yi|n, ;) Beta(]a, b) o 0¥ (1 — ;)" %6271 (1 — 6;)>~"
The posterior is therefore Beta(6;]a + yi, b +n —y;)

ii) Now the likelihood is Bin(y = yi + y2|2n,0) and the prior is Beta(f]a,b). The same
calculation as above gives

p(0ly1,y2) = Beta(fla+ y1 + y2, 0+ 2n — y1 — ya)

iii) p(01, 02, a, bly1, y2) = p(O1, O2]a, b, y1, y2)p(a, blyr, y2)

The first term is simply the product of two posteriors from part i), so

p(01, 02]a, b, y1,y2) = p(01]y1, a, b)p(0a|ys, a, b) = Beta(0;|a+yy, b+n—y1) Beta(Oz|a+yz, b+n—ys).

The term p(a, bly1, y2) is more difficult. To compute it, use the product rule to obtain

p(61,0s,a, b\yh ya) = p(01, 0aa, b, y1, y2)p(a, by, ya)
= pla, bly1, y2) = p(01, 02, a,bly1, ya2)/p(01, 02 a, b, y1, 2)

Here the term p(60y,60s]a, b, y1,y2) was just computed above (Beta times Beta). The term
p(01,02,a,bly1,y2) can be computed as

(01,05, a,0ly1,y2) o< p(y1161, a, 0)p(y2|65, a, b)p(6h, 0 a, b)p(a, b)
= Bin(y1|n, 01)Bin(ys|n, 02) Beta(6, |a, b) Beta(62|a, b) Exp(a|l) Exp(b|1)

and thus p(a, bly, y2) can be computed: The denominator has the product of Beta distri-
butions and the numerator has the product of Binomial and Beta distributions. The 6;
terms cancel out. Also the Binomial constants (;’) can be dropped. The resulting distri-
bution is

Cla+b))PT(a+y)Tb+n—y)l(a+y)T(b+n —y)
[C(a)T(®)C(a+b+n))?

pla,bly1, y2) o< Exp(a|l)Exp(b|1)

This problem demonstrates how to do Bayesian Inference on hierarchical data. In part
i) the problem splits into two subproblems, because the prior parameters a,b are known
and observing y; = 12 gives no information about 6. But in part iii) observing y; = 12
gives information about the values a and b, which then affect 6.

Problem 2.

i) The model is p(y|p,0?) = N(y|u,0?). In last week’s exercises we showed that the
Jeffrey’s prior for the mean of a Normal distribution is constant, and for the variance it
is p(0?) o 0~2. Thus the product of Jeffrey’s priors is now p(u,02) o< =2, The Bayes’
theorem gives

_ 1 _ _ 1
P, o°y) o< p(ylp, 0*)p(p, o) oc o~ ' exp (*T‘Z(y - M)Q) o =0"exp (*ﬁ(y - u)z) :

ii) The conditional posterior p(u|o?,y) answers the question "What is the mean y, when
data y is observed and the variance o2 is known?". This was answered last week for the
case of normal data model with known variance and a normal prior for the mean. Now we
can regard the constant prior of p as an infinitely flat normal distribution. The posterior
is then a normal distribution with mean given by a weighted average of prior mean and
data. The weights are the prior precision and the data precision o~2. The uniform prior
has zero precision and thus the posterior mean is y. The posterior precision is the sum of
prior and data precisions. Again, prior precision is zero so the posterior variance is 0. So

plulo?,y) = N(uly, o?).
iii) Write the integral explicitly as
p(o®ly) = /p(m a*ly)dp
x /U‘BeXP ~ L y-w?)du
202
=073V 2702 / 1 exp —L(y — ) ) du
V2ro? 202

=0 22r x o2

and thus the posterior of ¢ is of the same form as the prior.
iv)

00 1
pluly) o /O o % exp (—ﬁ(y - u)Q) do®

Substitute z = (y;;;)z = Ao~2. Then the integration limits are switched, and

dz = —Ao *do? = —A"lo*dz = do®.



Also 27Y/2 = A=/25 Then the integral is

= A7V?1(1/2)
The Gamma integral is constant with respect to p, so the posterior is

~1/2

e [y=w 1
pLy O(AI/Z:|:— X —
(1ly) 5 =7l

Problem 3.

i) We are estimating the unknown mean 6; of a Normal distribution with a known variance
o2. The prior for 0; is N(u, 7%) which is known. The result was obtained before (Exercises
6, Problem 1) and is

p/m*+ (3 wi)/o?

p(91|N7U7T>D):N(9 ‘ 1/72+n/02

(172 + n/(;?)*l)

Similarly for 6, (in which case the number of observations is m).

ii) Now we are estimating the unknown mean of N (u, 72) when 7 is known. The "data"are
the known values 6;, 6,. Since p has zero prior precision (infinite variance), the result is

p(plby,02,0,7,D) =N (N|(91 +65)/2, 72/2)

iii) This time the variance o? is unknown, but the mean is known for each ohservation.

The prior is p(0?) oc 0=2. This can be written as p(62) = IG(0%|0,0). Then use the hint
given in the problem to compute

p(0®)01, 02, 1,7, D) = IG (6*|(n +m)/2, (n + m)v/2)

where

”—nim@, i —0) +Z @2>

iv) Again, 72 is the unknown variance and p is the known mean of a Normal distribution.
The "data"is 61, 6, both known. The prior for 72 is p(72) oc (72)~'/2. Non-rigorously this
is p(12) = IG(7?| — 1/2,0). Then the posterior is

p(72|‘917927%07 D) =IG (T2

1251000~ + 62— 1)
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Problem 4.
The posterior

6l) = [ D0, o2Nu)dat .. do?
requires the joint posterior p(6, 0%, ..., 02|y). It is
pl0,0t,... oY) 0<Hp yilo, o HN (v:l0,0)p(0?) = [[ G-
i

The term Gj is
G; x o7 % exp (—1/20; % (y; — 0)?) exp(—20;?).

Each G; contains just the parameters o2 and 6, so to integrate out the variances, we can
do it term by term:

e 1
J; = /Gidaiz o / o; % exp (—0;2(5(% —0)* + 2)) do?
0

Let us change variables by setting z = o; > [%( ;—0)% + ] For the differentials then

1
dz/do} = —o;* {i(yi —0)? + 2}

and the integration limits will change, too. Substituting these into the integral we get
0 00 o .
J; :/ —exp(—2)o; Mz = / exp(—z)o; 2| 22dz :/ exp(—2)[|7*2%dz,
e 0 0

where we have used the shorthand [] = [3(y; — 6)? + 2]. The term [] does not depend on
02, 50 it can be taken out of the integral. The rest is a Gamma integral fooo 2% exp(—z)dz,
which equals I'(3) = 2!, independent of 6. The posterior of € is then

p(0ly) ocH[ ; +2]

Given the data and § = 0, the posterior value is 2711073 ~ 3. 107, and for § = 1 it is
[5/2]715[13/2] % ~ 4- 10~ 9. Therefore § = 0 has a higher posterior value.
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For comparison, we also determine whether # = 0 or § = 1 results in larger value of
likelihood p(y|6,0?) if the variance o2 is constant for all observations (02 = 02). The
likelihood is a normal distribution and by the symmetry of the distribution around its
mean we can find the maximum likelihood estimate and see whether it is closer to 8 = 0
or § = 1. The likelihood is

TTot016.0%) o [Texp (=50~ 0102 = exp (—% S 9)“‘02>

i
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whose maximum is found at
ol 1, ) 1
%[50 El (yie)}—oﬁe—ﬁ% Yi

which equals the mean 4/6 of the observations. This is closer to § = 1, so the likelihood
(or posterior probability with constant prior) is higher for § = 1.

Comments: this is an example of a multivariate model which can be solved and margina-
lized in closed form. It also illustrates the flexibility of Bayesian inference: we could easily
allow the variance to depend on the sample y;. With a suitable prior for o2, the result is
a posterior which has some robustness against outliers. This means that the single value
y = 4 did not make the more probable 6 equal one, as opposed to the standard model
with fixed variance.
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