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ise 7, 2.3.2007Problem 1. i) A

ording to the problem statement, the 
oins are independent. Theproblem statement must be interpreted in su
h way that this is the 
ase. The independen
e
an be a
hieved by regarding a and b as known 
onstants (for unknown a and b thiswould not be the 
ase). The following probabilities (in subproblem i) ) in
lude impli
itly
onditioning on these values.The likelihood is a Binomial distribution, so

p(y|θi) = Bin(y|n, θi)The posterior is

p(θi|yi) ∝ Bin(yi|n, θi)Beta(θi|a, b) ∝ θyi

i (1 − θi)
n−yiθa−1

i (1 − θi)
b−1The posterior is therefore Beta(θi|a + yi, b + n − yi)ii) Now the likelihood is Bin(y = y1 + y2|2n, θ) and the prior is Beta(θ|a, b). The same
al
ulation as above gives

p(θ|y1, y2) = Beta(θ|a + y1 + y2, b + 2n − y1 − y2)iii) p(θ1, θ2, a, b|y1, y2) = p(θ1, θ2|a, b, y1, y2)p(a, b|y1, y2)The �rst term is simply the produ
t of two posteriors from part i), so

p(θ1, θ2|a, b, y1, y2) = p(θ1|y1, a, b)p(θ2|y2, a, b) = Beta(θi|a+y1, b+n−y1)Beta(θ2|a+y2, b+n−y2).The term p(a, b|y1, y2) is more di�
ult. To 
ompute it, use the produ
t rule to obtain
p(θ1, θ2, a, b|y1, y2) = p(θ1, θ2|a, b, y1, y2)p(a, b|y1, y2)

=⇒ p(a, b|y1, y2) = p(θ1, θ2, a, b|y1, y2)/p(θ1, θ2|a, b, y1, y2)Here the term p(θ1, θ2|a, b, y1, y2) was just 
omputed above (Beta times Beta). The term
p(θ1, θ2, a, b|y1, y2) 
an be 
omputed as

p(θ1, θ2, a, b|y1, y2) ∝ p(y1|θ1, a, b)p(y2|θ2, a, b)p(θ1, θ2|a, b)p(a, b)

= Bin(y1|n, θ1)Bin(y2|n, θ2)Beta(θ1|a, b)Beta(θ2|a, b)Exp(a|1)Exp(b|1)and thus p(a, b|y1, y2) 
an be 
omputed: The denominator has the produ
t of Beta distri-butions and the numerator has the produ
t of Binomial and Beta distributions. The θiterms 
an
el out. Also the Binomial 
onstants (n
yi

) 
an be dropped. The resulting distri-bution is

p(a, b|y1, y2) ∝ Exp(a|1)Exp(b|1)
[Γ(a + b)]2Γ(a + y1)Γ(b + n − y1)Γ(a + y2)Γ(b + n − y2)

[Γ(a)Γ(b)Γ(a + b + n)]21

This problem demonstrates how to do Bayesian Inferen
e on hierar
hi
al data. In parti) the problem splits into two subproblems, be
ause the prior parameters a, b are knownand observing y1 = 12 gives no information about θ2. But in part iii) observing y1 = 12gives information about the values a and b, whi
h then a�e
t θ2.Problem 2.i) The model is p(y|µ, σ2) = N(y|µ, σ2). In last week's exer
ises we showed that theJe�rey's prior for the mean of a Normal distribution is 
onstant, and for the varian
e itis p(σ2) ∝ σ−2. Thus the produ
t of Je�rey's priors is now p(µ, σ2) ∝ σ−2. The Bayes'theorem gives

p(µ, σ2|y) ∝ p(y|µ, σ2)p(µ, σ2) ∝ σ−1 exp

(

− 1

2σ2
(y − µ)2

)

σ−2 = σ−3 exp

(

− 1

2σ2
(y − µ)2

)

.ii) The 
onditional posterior p(µ|σ2, y) answers the question "What is the mean µ, whendata y is observed and the varian
e σ2 is known?". This was answered last week for the
ase of normal data model with known varian
e and a normal prior for the mean. Now we
an regard the 
onstant prior of µ as an in�nitely �at normal distribution. The posterioris then a normal distribution with mean given by a weighted average of prior mean anddata. The weights are the prior pre
ision and the data pre
ision σ−2. The uniform priorhas zero pre
ision and thus the posterior mean is y. The posterior pre
ision is the sum ofprior and data pre
isions. Again, prior pre
ision is zero so the posterior varian
e is σ2. So

p(µ|σ2, y) = N(µ|y, σ2).iii) Write the integral expli
itly as
p(σ2|y) =

∫

p(µ, σ2|y)dµ

∝
∫

σ−3 exp

(

− 1

2σ2
(y − µ)2

)

dµ

= σ−3
√

2πσ2

∫

1√
2πσ2

exp

(

− 1

2σ2
(y − µ)2

)

dµ

= σ−2
√

2π ∝ σ−2and thus the posterior of σ2 is of the same form as the prior.iv)

p(µ|y) ∝
∫

∞

0

σ−3 exp

(

− 1

2σ2
(y − µ)2

)

dσ2Substitute z = (y−µ)2

2σ2 = Aσ−2. Then the integration limits are swit
hed, and

dz = −Aσ−4dσ2 ⇒ −A−1σ4dz = dσ2.2



Also z−1/2 = A−1/2σ Then the integral is

p(µ|y) ∝
∫

∞

0

σ−3 exp(−z)A−1σ4dz

=

∫

∞

0

A−1σ exp(−z)dz

= A−1/2

∫

z−1/2 exp(−z)dz

= A−1/2Γ(1/2)The Gamma integral is 
onstant with respe
t to µ, so the posterior is

p(µ|y) ∝ A−1/2 =

[

(y − µ)2

2

]

−1/2

∝ 1

|y − µ|Problem 3.i) We are estimating the unknown mean θi of a Normal distribution with a known varian
e

σ2. The prior for θi is N(µ, τ 2) whi
h is known. The result was obtained before (Exer
ises6, Problem 1) and is

p(θ1|µ, σ, τ, D) = N

(

θ1

∣

∣

∣

∣

µ/τ 2 + (
∑

xi)/σ
2

1/τ 2 + n/σ2
, (1/τ 2 + n/σ2)−1

)Similarly for θ2 (in whi
h 
ase the number of observations is m).ii) Now we are estimating the unknown mean of N(µ, τ 2) when τ is known. The "data"arethe known values θ1, θ2. Sin
e µ has zero prior pre
ision (in�nite varian
e), the result is

p(µ|θ1, θ2, σ, τ, D) = N
(

µ|(θ1 + θ2)/2, τ 2/2
)iii) This time the varian
e σ2 is unknown, but the mean is known for ea
h observation.The prior is p(σ2) ∝ σ−2. This 
an be written as p(σ2) = IG(σ2|0, 0). Then use the hintgiven in the problem to 
ompute

p(σ2|θ1, θ2, µ, τ, D) = IG
(

σ2|(n + m)/2, (n + m)v/2
)where

v =
1

n + m

(

∑

i

(xi − θ1)
2 +

∑

j

(yj − θ2)
2

)

iv) Again, τ 2 is the unknown varian
e and µ is the known mean of a Normal distribution.The "data"is θ1, θ2, both known. The prior for τ 2 is p(τ 2) ∝ (τ 2)−1/2. Non-rigorously thisis p(τ 2) = IG(τ 2| − 1/2, 0). Then the posterior is
p(τ 2|θ1, θ2, µ, σ, D) = IG

(

τ 2

∣

∣

∣

∣

1/2,
1

2
[(θ1 − µ)2 + (θ2 − µ)2]

)

.3

Problem 4.The posterior

p(θ|y) =

∫

p(θ, σ2
1, . . . , σ

2
n|y)dσ2

1 . . . dσ2
nrequires the joint posterior p(θ, σ2

1 , . . . , σ
2
n|y). It is

p(θ, σ2
1, . . . , σ

2
n|y) ∝

∏

i

p(yi|θ, σ2
i )p(σ2

i ) =
∏

i

N(yi|θ, σ2
i )p(σ2

i ) =
∏

i

Gi.The term Gi is

Gi ∝ σ−8
i exp

(

−1/2σ−2
i (yi − θ)2

)

exp(−2σ−2
i ).Ea
h Gi 
ontains just the parameters σ2

i and θ, so to integrate out the varian
es, we 
ando it term by term:
Ji =

∫

Gidσ2
i ∝

∫

∞

0

σ−8
i exp

(

−σ−2
i (

1

2
(yi − θ)2 + 2)

)

dσ2
iLet us 
hange variables by setting z = σ−2

i

[

1
2
(yi − θ)2 + 2

]. For the di�erentials then

dz/dσ2
i = −σ−4

i

[

1

2
(yi − θ)2 + 2

]and the integration limits will 
hange, too. Substituting these into the integral we get

Ji =

∫ 0

∞

− exp(−z)σ−4
i []−1dz =

∫

∞

0

exp(−z)σ−2
i []−2zdz =

∫

∞

0

exp(−z)[]−3z2dz,where we have used the shorthand [] =
[

1
2
(yi − θ)2 + 2

]. The term [] does not depend on

σ2
i , so it 
an be taken out of the integral. The rest is a Gamma integral ∫∞

0
z2 exp(−z)dz,whi
h equals Γ(3) = 2!, independent of θ. The posterior of θ is then

p(θ|y) ∝
∏

i

[

1

2
(yi − θ)2 + 2

]

−3

.Given the data and θ = 0, the posterior value is 2−1510−3 ≈ 3 · 10−8, and for θ = 1 it is

[5/2]−15[13/2]−3 ≈ 4 · 10−9. Therefore θ = 0 has a higher posterior value.For 
omparison, we also determine whether θ = 0 or θ = 1 results in larger value oflikelihood p(y|θ, σ2) if the varian
e σ2 is 
onstant for all observations (σ2
i = σ2). Thelikelihood is a normal distribution and by the symmetry of the distribution around itsmean we 
an �nd the maximum likelihood estimate and see whether it is 
loser to θ = 0or θ = 1. The likelihood is

∏

i

p(yi|θ, σ2) ∝
∏

i

exp

(

−1

2
(yi − θ)σ−2

)

= exp

(

−1

2

∑

i

(yi − θ)2σ−2

)4



whose maximum is found at

∂

∂θ

[

−1

2
σ−2

∑

i

(yi − θ)2

]

= 0 ⇒ θ =
1

n

∑

i

yiwhi
h equals the mean 4/6 of the observations. This is 
loser to θ = 1, so the likelihood(or posterior probability with 
onstant prior) is higher for θ = 1.Comments: this is an example of a multivariate model whi
h 
an be solved and margina-lized in 
losed form. It also illustrates the �exibility of Bayesian inferen
e: we 
ould easilyallow the varian
e to depend on the sample yi. With a suitable prior for σ2
i , the result isa posterior whi
h has some robustness against outliers. This means that the single value

y = 4 did not make the more probable θ equal one, as opposed to the standard modelwith �xed varian
e.
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