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ise 8, 16.3.2007Problem 1.Assume that the posterior p(θ|y) is an N-dimensional Normal N(θ|0, σ2I), and for g(θ)we use another Normal N(θ|0, σ2
gI) to do reje
tion sampling on the posterior.First, let us look at the varian
es of p(θ|y) and g(θ). There must be a known 
onstant Mfor whi
h
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=
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g ))Now the argument of exp must be negative so that the quotient of p(θ|y) and g(θ) doesnot grow without bounds. This gives σ−2 −σ−2
g > 0 and thus σ2 < σ2

g ; the varian
e of thesampling distribution must be larger than the posterior varian
e. We 
hoose σg = (1+ ǫ)σwhere ǫ > 0.Now M ≥ p(θ|y)
g(θ)

should hold for all θ. Espe
ially when θ = 0, the exp(. . .) term is largest(now that we have 
hosen σ2
g > σ2), namely then exp(. . .) = 1. In this 
ase

M = (
σg

σ
)N = exp(N log

σg

σ
) = exp(N log(1 + ǫ)) ≈ exp(Nǫ) when ǫ is smallFor example, if N = 1000 and ǫ = 0.1 we obtain M ≈ 2.5 · 1041. A sample θ is a

eptedwith probability p(θ|y)

Mg(θ)

, so in this 
ase about one in 1041 samples will be a

epted. Wesee that reje
tion sampling is di�
ult espe
ially in high dimensions. On the other hand,reje
tion sampling is the only simple method for obtaining samples dire
tly from p(θ|y).Problem 2.Sin
e we assume that there is a unique stationary distribution for the Markov 
hain, itis enough to show that the posterior p(θ|y) is stationary. Assume that θn is from theposterior distribution. Choose any values θ1 and θ2 su
h that

p(θ1|y) ≥ p(θ2|y). (1)First we 
ompute the probability that the simulation is at θ2 at time n and at θ1 at time
n + 1. This is

P21 = p(θn = θ2, θ
n+1 = θ1|y)

= p(θn+1 = θ1|θ
n = θ2, y)p(θn = θ2|y).1

The �rst probability is the transition probability from θ2 to θ1: this is J(θ1|θ2)pr. These
ond probability is by assumption p(θ2|y). Sin
e r is at least one by (1) and thus pr = 1,the transition probability will be

P21 = p(θ2|y)J(θ1|θ2).The probability

P12 = p(θn = θ1, θ
n+1 = θ2|y)
an be obtained as above, but now r is at most one (and thus pr = r):

P12 = p(θ1|y)J(θ2|θ1)r.Substituting r = p(θ2|y)/p(θ1|y) we obtain
P12 = p(θ2|y)J(θ2|θ1).Sin
e J is symmetri
, we get P12 = P21. This means that the distribution p(θn, θn+1|y) issymmetri
 w.r.t. θn and θn+1. We know that p(θn|y) = p(θ|y). Then

p(θn+1|y) =

∫

p(θn, θn+1|y)dθn

=

∫

p(θn, θn+1|y)dθn+1

= p(θn|y) = p(θ|y).This means that if the simulation has the posterior distribution at time n, then it willhave it at time n + 1, showing that it is stationary.If the posterior has two or more separate areas as in the problem statement (p1 and p2),then it is possible that there is more than one stationary distribution for the Markov
hain. For example, if the jumping distribution prevents jumps of distan
e 1 or more,it is impossible to jump from p1 to p2, and vi
e versa. This is avoided if the jumpingdistribution 
an jump to any point with positive probability. Normal distribution is onesu
h jumping distribution.Comments: With quite general assumptions, mainly that the simulation has a positiveprobability of rea
hing any point θ, one 
an show that the simulation a
tually 
onvergesto the stationary distribution. In pra
ti
e, by 
hoosing a suitable jumping distributionthe assumptions are ful�lled.Problem 3.i) First 
ompute p(µ|σ, y). This is again the posterior for inferring the mean of a Normaldistribution when the varian
e is known. The results obtained earlier give

p(µ|σ, y) = N(µ|
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The distribution p(σ2|µ, y) is the posterior for inferring the unknown Normal varian
ewhen the mean µ is known. Sin
e the prior p(σ2) is Inverse-Gamma, then the posterior is

p(σ2|µ, y) = IG(σ2|
n

2
+ a,
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2
(2b + ny))ii) The posterior mean of µ is E(µ|y) =

∫

µp(µ|y)dµ (∗)Sin
e the simulated values obtained via Gibbs sampling approximate the full posterior

p(µ, σ|y), it is not ne
essarily trivial how the expe
tation (∗) is approximated. If we hadsamples z1, . . . , zN from p(µ|y), then (*) 
ould be Monte Carlo-approximated asE(µ|y) ≈
1

N

∑

i

ziWrite (∗) using the full posterior asE(µ|y) =

∫

µp(µ|y)dµ

=

∫

µ

∫

p(µ, σ2|y)dσ2dµ

=

∫ ∫

µp(µ, σ2|y)dσ2dµNow we have an integral over the full posterior. If we 
hoose the fun
tion to be integratedover as h(µ, σ2) = µ, then we obtain the posterior mean E(µ|y) as an integral over thefull posterior. But Monte Carlo approximation is nowE(µ|y) ≈
1

N

∑

i

h(µi, σ
2
i ) =

1

N

∑

i

µiThis holds in general, meaning that marginalization is trivial when using simulated pos-teriors θ1, . . . , θN : just ignore the 
omponents of θi you are not interested in.Problem 4.i) The posterior is zero when any yi is less than a. Therefore as one of the two s
alarfun
tions determining the posterior we must use is y∗ = min yi. This gives the posterioras

p(a, b|y) ∝ p(y|a, b)p(a, b) =

{

0, y∗ < a

b−1
∏n

i=1 b exp(−b(yi − a)), y∗ ≥ aThe 
ase y∗ ≥ a 
an be written as

bn−1 exp(−b
∑

i

yi) exp(abn)3

so the se
ond s
alar fun
tion is ∑

i yi. In statisti
s, y∗ and ∑

i yi are 
alled su�
ientstatisti
s be
ause they summarise all the information data 
ontains about the unknownquantities.ii) First we 
ompute p(b|a, y). Using Bayes' Theorem we get
p(b|a, y) ∝ p(y|a, b)p(b|a)

= b−1
∏

i

b exp(−b(yi − a)), when y∗ ≥ a

= bn−1 exp(−
∑

i

(yi − a)b)

= Gamma(b|n,
∑

i

(yi − a))This 
an be simulated when ∑

i yi and a are known.Then 
ompute p(a|b, y). Similarly to above, this would be
p(a|b, y) ∝ p(y|a, b)p(a|b) = p(y|a, b)p(a, b)/p(b).Suppose this was di�
ult to simulate. We 
an use the fa
t that we don't have to dire
tlysimulate a: we 
ould as well simulate a fun
tion of a and b, provided that we 
an solve afrom it. Write z = exp(abn). Then

p(z|b, y) ∝ p(y|z, b)p(z|b) = p(y|a, b)p(z|b) = bn exp(−
∑

i

(yi−a)b)p(z|b) = bn exp(−b
∑

i

yi)zp(z|b)To 
ompute p(z|b) = p(exp(abn)|b) we need to use the formula for transforming variables:

p(z) = p(a)
∣

∣

da
dz

∣

∣ Sin
e a = (bn)−1 log z, we get da/dz = (bnz)−1. Also, p(a) ∝ 1 so we get

p(z|b) = p(z) ∝ z−1Then
p(z|b, y) ∝ bn exp(−b

∑

i

yi)whi
h is independent of z and a. Therefore z has a uniform distribution. It remains to�nd the interval where this distribution is uniform. First, sin
e a > 0, it follows that

z > 1. The likelihood is zero when a > y∗ so it must hold that z = exp(abn) ≤ exp(y∗bn).Therefore p(z|b, y) = U(1, exp(y∗bn)).Now the Gibbs Sampler is ready:1. Choose initial values a0 and b0.2. Simulate b1 from the Gamma distribution using a03. Simulate z1 = exp(a1b1n) from the uniform distribution using b1.4. Solve a1 by (b1n)−1 log z1.5. Iterate by going ba
k to 2.
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