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Solutions to exercise 8, 16.3.2007

Problem 1.

we use another Normal N(G\O,aﬁ]) to do rejection sampling on the posterior.

Assume that the posterior p(f]y) is an N-dimensional Normal N (6|0, 02I), and for g()

First, let us look at the variances of p(f|y) and g(6). There must be a known constant M
for which
e T i)
g(0) o7V exp(—5607(021)710)

= (%)% exp(~3070(0% = 0,)

g

Now the argument of exp must be negative so that the quotient of p(f|y) and g(6) does
not grow without bounds. This gives =2 — 03‘2 > 0 and thus 02 < 0‘3; the variance of the
sampling distribution must be larger than the posterior variance. We choose o, = (1+¢€)o
where € > 0.

Now M > % should hold for all 0. Especially when 6 = 0, the exp(...) term is largest
(now that we have chosen g2 > %), namely then exp(...) = 1. In this case

M = (U—‘)N = exp(N log ﬁ) = exp(Nlog(1l + ¢€)) =~ exp(Ne) when € is small
o o

For example, if N = 1000 and € = 0.1 we obtain M ~ 2.5-10*". A sample 0 is accepted
with probability ]‘C}i%}), so in this case about one in 10*! samples will be accepted. We
see that rejection sampling is difficult especially in high dimensions. On the other hand,

rejection sampling is the only simple method for obtaining samples directly from p(6|y).

Problem 2.

Since we assume that there is a unique stationary distribution for the Markov chain, it
is enough to show that the posterior p(f|y) is stationary. Assume that 6" is from the
posterior distribution. Choose any values #; and 6 such that

p(01ly) > p(Oa]y). (1)
First we compute the probability that the simulation is at fy at time n and at #; at time
n + 1. This is
Py =p(0" = 9279n+1 =0ily)
=p(0""" = 01]0" = 05, y)p(0" = O2ly).

The first probability is the transition probability from 6y to 6;: this is J(6,|62)p,. The
second probability is by assumption p(f2|y). Since r is at least one by (1) and thus p, = 1,
the transition probability will be

Par = p(0:2]y)J (61]62).

The probability
P12 = p(@" = 91, 6"+1 = Gg\y)

can be obtained as above, but now r is at most one (and thus p, = r):

Pry = p(6hly)J (02101)r.
Substituting r = p(fa]y)/p(61|y) we obtain

Py = p(6a]y)J (02161).
Since J is symmetric, we get Pjy = Py;. This means that the distribution p(6™, 0"*1|y) is
symmetric w.r.t. " and 6"+, We know that p(6"|y) = p(d|y). Then

p("+ly) = / p(6",6741|y)d6"

— /p(en 9n+1‘y)d9n+1
=p(0"ly) = p(Oly)-

This means that if the simulation has the posterior distribution at time n, then it will
have it at time n 4 1, showing that it is stationary.

If the posterior has two or more separate areas as in the problem statement (p; and ps),
then it is possible that there is more than one stationary distribution for the Markov
chain. For example, if the jumping distribution prevents jumps of distance 1 or more,
it is impossible to jump from p; to po, and vice versa. This is avoided if the jumping
distribution can jump to any point with positive probability. Normal distribution is one
such jumping distribution.

Comments: With quite general assumptions, mainly that the simulation has a positive
probability of reaching any point 6, one can show that the simulation actually converges
to the stationary distribution. In practice, by choosing a suitable jumping distribution
the assumptions are fulfilled.

Problem 3.

i) First compute p(p|o,y). This is again the posterior for inferring the mean of a Normal
distribution when the variance is known. The results obtained earlier give
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The distribution p(o?|y,y) is the posterior for inferring the unknown Normal variance
when the mean p is known. Since the prior p(c?) is Inverse-Gamma, then the posterior is

p(o®|p,y) = IG(o 2\*+a (2b+ny))

ii) The posterior mean of y is

E(uly) :/up(uly)du (%)

Since the simulated values obtained via Gibbs sampling approximate the full posterior
p(u, oly), it is not necessarily trivial how the expectation (x) is approximated. If we had
samples 21, ..., zy from p(ply), then (*) could be Monte Carlo-approximated as

Bluly) ~ Zz

Write (x) using the full posterior as

E(uly) = /up(uly)du

= /u/p(,u,7 o?|y)do?dpu
://up(m o’ly)do*dp

Now we have an integral over the full posterior. If we choose the function to be integrated
over as h(u,0?) = p, then we obtain the posterior mean E(u|y) as an integral over the
full posterior. But Monte Carlo approximation is now

1
E(uly) ~ Nzhun ; fﬁzi:m

This holds in general, meaning that marginalization is trivial when using simulated pos-
teriors 61, ...,0N: just ignore the components of &’ you are not interested in.

Problem 4.

i) The posterior is zero when any y; is less than a. Therefore as one of the two scalar
functions determining the posterior we must use is y* = miny;. This gives the posterior
as

5

0 Yy <a
p(a,bly) o p(yla, b)p(a,b) = .
( ( ‘ - Hz 1 bexp( b(yl - a))7 Yy >a

The case y* > a can be written as

b exp(—b Z y;) exp(abn)

so the second scalar function is Y, ;. In statistics, y* and 3, y; are called sufficient
statistics because they summarise all the information data contains about the unknown
quantities.

ii) First we compute p(b|a,y). Using Bayes” Theorem we get
p(bla,y) o< p(yla, b)p(bla)
=bt H bexp(—b(y; — a)), when y* > a
=" exp(= ) (4 — a)b)

i

= Gamma(b|n, Z(yz —a))

i
This can be simulated when )", y; and a are known.

Then compute p(a|b,y). Similarly to above, this would be

p(alb, y) o« p(yla, b)p(alb) = p(y|a, b)p(a, b) /p(b).

Suppose this was difficult to simulate. We can use the fact that we don’t have to directly
simulate a: we could as well simulate a function of a and b, provided that we can solve a
from it. Write z = exp(abn). Then

P(=1b,y) o< pyl2, b)p(21) = p(yla, b)p(2Ib) = b" exp(= 3 (yi—a)b)p(2|b) = " exp(=b 3 yi)zp(=ID)

i

To compute p(z|b) = p(exp(abn)|b) we need to use the formula for transforming variables:
p(z) = p(a) |2 = (bn)~'log 2, we get da/dz = (bnz)~'. Also, p(a) o< 1 so we get

p(zlb) = p(z) oc 27

Then
p(z]b,y) o< b" exp(—b Z Yi)

which is independent of z and a. Therefore z has a uniform distribution. It remains to
find the interval where this distribution is uniform. First, since a > 0, it follows that
z > 1. The likelihood is zero when a > y* so it must hold that z = exp(abn) < exp(y*bn).
Therefore p(z|b,y) = U(1, exp(y*bn)).

Now the Gibbs Sampler is ready:

Choose initial values ag and by.

Simulate b; from the Gamma distribution using ag

Simulate z; = exp(a;byn) from the uniform distribution using b;.
Solve a; by (byn)~!log z.

Tterate by going back to 2.
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