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ise 9, 23.3.2007Problem 1.i) In variational learning, we maximize

C =

∫

log

(

p(y|θ)p(θ)

q(θ)

)

q(θ)dθwith respe
t to the distribution q(θ). C 
an be written as

∫

log

(

p(y|θ)p(θ)

q(θ)

)

q(θ)dθ =

∫

log

(

p(θ|y)p(y)

q(θ)

)

q(θ)dθ

=

∫

log

(

p(θ|y)

q(θ)

)

q(θ)dθ +

∫

log p(y) q(θ)dθ

= −D(q(θ)||p(θ|y)) + log p(y)Instead of dire
tly minimizing the Kullba
k-Leibler divergen
e D(q(θ)||p(θ|y)), in varia-tional learning one often maximizes C be
ause D(q(θ)||p(θ|y)) 
annot be 
omputed when

p(y) is unknown. But we see that maximizing C with respe
t to q(θ) results in minimizing

D(q(θ)||p(θ|y)), be
ause the term log p(y) does not depend on q(θ).ii) The data eviden
e p(y) is maximized when log p(y) is maximized. Write the log of eviden
eas

log p(y) = log

∫

p(y, θ)dθ

= log

∫

p(y|θ)p(θ)

q(θ)
q(θ)dθ

≥
∫

log

(

p(y|θ)p(θ)

q(θ)

)

q(θ)dθ

= CThe inequality is due to Jensen's inequality. So maximizing C maximizes a lower bound for
log p(y).Problem 2.The true posterior is p(θ|y) = a1p1(θ|y) + a2p2(θ|y) where pi is a Normal distribution
N(µi, σ

2
i ), i = 1, 2.In this problem we're going to minimise the KL-divergen
e between q and p. We argue thatsin
e the mixture 
omponents are well-separated, it is enough to 
onsider the 
ost fun
tionover ea
h of the mixture 
omponents separately as a good posterior approximation q to oneof the mixture 
omponents is almost zero at the other 
omponent,1

So assume q(θ) = N(θ|µ0, σ
2
0) and 
onsider one of pi(θ|y) = N(θ|µi, σ

2
i ) with 
oe�
ient ai. Inthis 
ase we use the KL-divergen
e between q(θ) and the true posteriori 
omponent aipi(θ|y)dire
tly as pi is known. We minimise the 
ost fun
tion

C = D(q(θ)|aipi(θ|y)) =

∫

log

[

q(θ)

aipi(θ|y)

]

q(θ)dθ = D(q(θ)|pi(θ|y)) − log aiw.r.t. q(θ). Now the KL-divergen
e term attains its minimum value 0 i� q = pi. As theterm − log ai is 
onstant in terms of q, the whole 
ost fun
tion is minimised by q = pi =
N(θ|µi, σ

2
i ), i.e. µ0 = µi and σ2

0 = σ2
i .So far we have seen that �tting a Normal distribution N(µ0, σ

2
0) to another Normal distri-bution N(µ, σ2) gives the 
orre
t parameters.What about the mixture 
omponents? Comparing the �ts to ea
h mixture 
omponent, it is
lear that the one minimizing − log ai wins, and this is the one with larger ai, regardless ofthe mean and varian
e. Sin
e ai measures dire
tly the posterior mass 
ontained in the 
om-ponent distribution, it seems that well-separated Normal-like modes are handled 
orre
tlyby variational learning: regardless of varian
e and mean, the mode with the largest posteriormass is found.Problem 3.i) Lapla
e approximation �ts a Normal distribution to the posterior distribution. The ap-proximating distribution is 
entered at the posterior mode.First we need to �nd the posterior mode. This is the value λ0 that maximizes

p(λ|k) ∝ p(k|λ)p(λ).Sin
e p(λ|k) ∝ e−λλk−1, its derivative is

p′(λ|k) ∝ −e−λλk−1 + e−λλk−2(k − 1).Setting it to zero gives the mode λ0 = k − 1. This be
omes the mean of the approximatingdistribution.Next we need the varian
e of the approximating distribution. The inverse of the varian
e σ2is 
al
ulated as σ−2 = [− log p(λ|k)]′′|λ=λ0

. First we need to 
al
ulate (log p)′′:

log p(λ|k) = −λ + (k − 1) log λ

(log p)′ = −1 + (k − 1)λ−1

(log p)′′ = −(k − 1)λ−2.Substituting the posterior mode λ0 = k − 1 gives

−(k − 1)(k − 1)−2 = −(k − 1)−1.This gives us σ2 = k − 1. This gives us the Lapla
e approximation N(λ|k − 1, k − 1).ii) Write l = log λ. Now we have

p(l|k) ∝ p(k|l) ∝ e−el

ekl2



be
ause the prior p(l) is 
onstant. The posterior mode is obtained by setting the derivativeequal to zero:

−ele−el

elk + e−el

kelk = 0

=⇒ ele−el

elk = e−el

kelk

=⇒ el = k

=⇒ l = log k.This gives us the mode l0 = log k.The logarithm of the posterior is

log p ∝ −el + lk,the �rst derivative is

(log p)′ ∝ −el + k,and the se
ond derivative is

(log p)′′ ∝ −el.Substituting the posterior mode l0 = log k, we obtain

(log p)′′|l=log k = −k.Now the varian
e is σ2 = k−1, and the Lapla
e approximation is N(l| log k, k−1).Comments: we 
an 
ompare the two approximations by 
omparing their means. The �rstgives λ = k−1 and the se
ond l = log λ = log k =⇒ λ = k. This example demonstrates thatthe parameterization matters when 
omputing Lapla
e (and most other) approximations.Problem 4.i) Minimize KL divergen
e

D(p‖q) =

∫

p log(p/q)dθSin
e ∫

p log p dθ is 
onstant with respe
t to θ0, one has to maximize

∫

p log q dθ (∗)Sin
e

q(θ) = N(θ|θ0, σ
2) =

1√
2πσ2

exp(− 1

2σ2
(θ − θ0)

2),its logarithm is

− 1

2σ2
(θ − θ0)

2where 
onstant terms are ignored. Then the maximization of (∗) is equivalent to minimizationof

∫

p(θ − θ0)
2dθ = E((θ − θ0)

2)So the solution is to 
hoose θ0 as the minimum mean-square estimate of θ.3

ii) Minimize

D(q‖p) =

∫

q log(q/p)dθSin
e ∫

q log q dθ = Eq(log q) ∝ Eq((θ−θ0)
2)/σ2 = 1 is 
onstant with respe
t to θ0, it remainsto maximize

∫

q log p dθ. (∗∗)Taylor-expand log p(θ|y) at θ0, whi
h gives
log p(θ|y) = log p(θ0|y) + (θ − θ0)(log p)′θ=θ0

+
1

2
(θ − θ0)

2(log p)′′θ=θ0
+ higher termsThe integral (∗∗) is an expe
tation E(log p) over the Normal distribution N(θ|θ0, σ

2). Ap-proximate by dropping the higher terms, whi
h gives
∫

q log p dθ = log p(θ0|y) +
1

2
σ2(log p)′′The value θ0 is 
hosen to maximize this expression. Note that when p itself is Normal, then

(log p)′′ is 
onstant w.r.t. θ0 and the solution is to maximize p(θ0|y). Other distributions 
anhave non-
onstant (log p)′′ so the posterior mode is not always optimal θ0.
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