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Solutions to exercise 9, 23.3.2007

Problem 1.

i) In variational learning, we maximize

C= / log (%) q(0)do

with respect to the distribution ¢(). C' can be written as

/ log <p4(y(‘121)’(9)) 4(0)d6 = / log <%> q(6)do

= [ s (%) o0)a0 + [ 10gp(s) a(0)d0
= —D(q(9)|p(0]y)) + log p(y)

Instead of directly minimizing the Kullback-Leibler divergence D(q(0)|[p(f]y)), in varia-
tional learning one often maximizes C' because D(¢(6)||p(f]y)) cannot be computed when
p(y) is unknown. But we see that maximizing C' with respect to ¢(f) results in minimizing
D(q(8)||p(8]y)). because the term log p(y) does not depend on ¢(f).

ii) The data evidence p(y) is maximized when log p(y) is maximized. Write the log of evidence
as

logp(y) = log / p(y, 0)do

— log/pi(yl?;];(e)qw)de

> [1og (’%) $(0)d6
=C

The inequality is due to Jensen’s inequality. So maximizing C' maximizes a lower bound for
log p(y).

Problem 2.

The true posterior is p(fly) = a1p1(0ly) + a2p2(fly) where p; is a Normal distribution
N(ui,0?),i=1,2.

In this problem we're going to minimise the KL-divergence between ¢ and p. We argue that
since the mixture components are well-separated, it is enough to consider the cost function
over each of the mixture components separately as a good posterior approximation ¢ to one
of the mixture components is almost zero at the other component,

So assume ¢(0) = N(0|po,02) and consider one of p;(0)y) = N (0|u;, 0?) with coefficient a;. In
this case we use the KL-divergence between ¢() and the true posteriori component a;p;(6]y)
directly as p; is known. We minimise the cost function

q(0)

C = D(q(8)|aip:(Bly)) = /10g [W

} 4(0)d6 = D(a(8) p.(8]y)) — log a;

w.r.t. ¢(). Now the KL-divergence term attains its minimum value 0 iff ¢ = p;. As the
term —loga; is constant in terms of ¢, the whole cost function is minimised by ¢ = p; =
N0, 02), i-e. po = p; and o} = o2

-

So far we have seen that fitting a Normal distribution N (g, 02) to another Normal distri-
bution N(u,0?) gives the correct parameters.

What about the mixture components? Comparing the fits to each mixture component, it is
clear that the one minimizing —log a; wins, and this is the one with larger a;, regardless of
the mean and variance. Since a; measures directly the posterior mass contained in the com-
ponent distribution, it seems that well-separated Normal-like modes are handled correctly
by variational learning: regardless of variance and mean, the mode with the largest posterior
mass is found.

Problem 3.

i) Laplace approximation fits a Normal distribution to the posterior distribution. The ap-
proximating distribution is centered at the posterior mode.

First we need to find the posterior mode. This is the value )y that maximizes
p(A|k) o< p(k|A)p(N).
Since p(Alk) o< e *AF~1 ] its derivative is
P (AE) oc —e N e AN (R - 1),
Setting it to zero gives the mode Ay = k — 1. This becomes the mean of the approximating

distribution.

Next we need the variance of the approximating distribution. The inverse of the variance o>

is calculated as 072 = [~ log p(A|k)]"|r=»,- First we need to calculate (logp)”:
logp(Alk) = =X+ (k — 1) log A
(logp)' = =14 (k= DA™

(logp)" = —(k — DA™=

Substituting the posterior mode \g = k& — 1 gives
—(k=1)(k-1)"2=—(k-1)""

This gives us o?

=k — 1. This gives us the Laplace approximation N(A|k — 1,k — 1).
ii) Write [ = log \. Now we have

—el Kkl
p(l[k) oc p(k|l) oc e e

2



because the prior p(l) is constant. The posterior mode is obtained by setting the derivative
equal to zero:

—dle e 4 e ket = 0
= e e = ¢ kel®
— e =k
= [ =logk.
This gives us the mode ly = log k.
The logarithm of the posterior is
logp oc —e' + Ik,
the first derivative is
(logp) o< —e! + k,

and the second derivative is

(logp)” o< —¢l.

Substituting the posterior mode Iy = log k, we obtain

(logp)"iziogk = —k-
Now the variance is 6% = k™!, and the Laplace approximation is N(I|logk, k™1).

Comments: we can compare the two approximations by comparing their means. The first
gives A = k—1 and the second | =log A = logk = X = k. This example demonstrates that
the parameterization matters when computing Laplace (and most other) approximations.

Problem 4.

i) Minimize KL divergence
D(pllg) = /plog(p/Q)dH

Since fplogde is constant with respect to 6y, one has to maximize

/ploqu@ (%)

Since

q(0) = N (610, 0*) 0 —00)*),

1 1
= Voo P8

its logarithm is
1

202
where constant terms are ignored. Then the maximization of (x) is equivalent to minimization
of

(0 — 0o)?

/p(9 —0p)2d6 = E((0 — 60)?)

So the solution is to choose fy as the minimum mean-square estimate of 6.

ii) Minimize
D(qllp) :/qlog(Q/p)d‘)

Since [ qlogqdf = E,(logq) o< E,((0—6,)?)/0* = 1is constant with respect to 6, it remains
to maximize

/qlogpdﬁ. ()
Taylor-expand logp(f|y) at 6y, which gives
1 .
log p(0ly) = log p(foly) + (6 — 6)(log p)o—g, + 5(6’ — 6’0)2(10gp)g:90 + higher terms

The integral (x*) is an expectation E(logp) over the Normal distribution N(6|6y,0?). Ap-
proximate by dropping the higher terms, which gives

1
/qlogpd9 = logp(foly) + 502(10gp)”

The value 6y is chosen to maximize this expression. Note that when p itself is Normal, then
(log p)” is constant w.r.t. 6y and the solution is to maximize p(6p|y). Other distributions can
have non-constant (logp)” so the posterior mode is not always optimal 6.



