**T-61.5090 - Image Analysis in Neuroinformatics** 

## Deconvolution, Deblurring and Restoration

Igor Lissandron, 18.04.07



- Introduction to image restoration
- Linear Space-Invariant restoration filters
  - Inverse filtering
  - Power Spectrum Equalization
  - Wiener filter
  - Constrained least-squared restoration
  - Metz filter
- Deblurring
  - Blind Deblurring
  - Iterative Blind Deblurring (Method of Rabie)

## Agenda / 2

#### Deconvolution

- Homomorphic Deconvolution
- Space variant restoration
  - Sectioned image restoration
  - Adaptive-neighborhood deblurring
  - Kalman filter
- Restoration of nuclear medicine images
- SPECT images of the brain (example)



# **The Big Picture**

## Images quality improvement

#### Enhancement techniques

Better looking images satisfying some <u>subjective</u> criteria  $\rightarrow$  The processed image may not be closer to the true image

#### Restoration

*Try to find the best possible estimate of the original (and unknown) image following objective criteria* 

 $\rightarrow$  Possibility to exploit all the additional knowledge about the original image, imposing constraints to limit the solution

#### Introduction

# Try to remove or minimize some known degradations in an image.

In order to do this, we should have:

- Precise information about the degrading phenomenon
- Analysis of the system that produced the degraded image

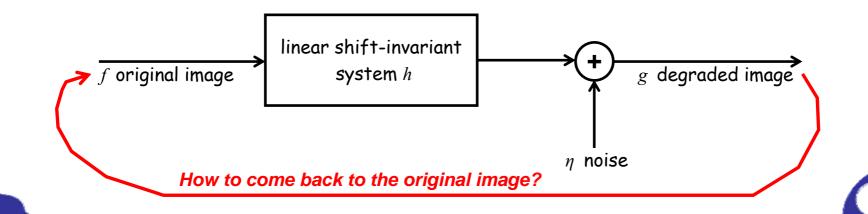
#### Typical items of information required:

- $\rightarrow$  Models of the impulse response of the degrading filter
- $\rightarrow$  PSD of the original image
- $\rightarrow$  PSD of the noise

#### **Linear Space-Invariant restoration filters**

If we assume that the degrading phenomenon is linear and shift-invariant, the simplest model of image degradation is

$$g(x, y) = h(x, y) * f(x, y) + \eta(x, y)$$
$$G(u, v) = H(u, v) \cdot F(u, v) + \eta(u, v)$$



### **Inverse filtering**

Let's consider the degradation model expressed as

 $g = h \cdot f$ 

We want to estimate f knowing g and h

1. Let's consider an approximation  $\tilde{f}$  to f2. Minimize the squared error between the observed response g and the response  $\tilde{g}$  obtained with the input  $\tilde{f}$ 3. Find  $\tilde{f}$  that minimizes the squared error  $\varepsilon^2$ 

## **Inverse filtering [2]**

The error between g and  $\tilde{g}$  is given by  $\mathcal{E} = g - \tilde{g} = g - h \cdot \tilde{f}$ 

The squared error is given as

$$\varepsilon^{2} = \varepsilon^{T} \varepsilon = (g - h\tilde{f})^{T} (g - h\tilde{f})$$
$$= g^{T} g - \tilde{f}^{T} h^{T} g - g^{T} h\tilde{f} + \tilde{f}^{T} h^{T} h\tilde{f}$$

Now, let's find  $\tilde{f}$  that minimizes  $\varepsilon^2$ 

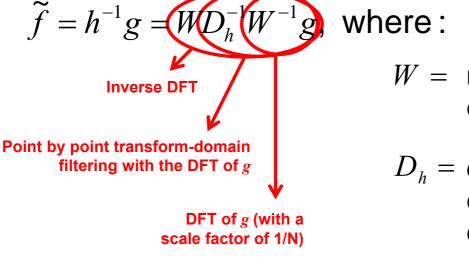
$$\frac{\partial \varepsilon^2}{\partial \tilde{f}} = -2h^T g + 2h^T h \tilde{f}$$

## **Inverse filtering [3]**

Setting this expression to zero, we get

$$\widetilde{f} = (h^T h)^{-1} h^T g$$

If h is square, non-singular (i.e., invertible) and circulant (or block circulant), than the previous one becomes



- W = matrix of the eigenvectors of h
- $D_h$  = diagonal matrix whose elements are the eigenvalues of h



## **Inverse filtering [4]**

These considerations lead us to the formulation of the inverse filter,

$$\widetilde{F}(u,v) = \frac{G(u,v)}{H(u,v)}$$

that may be expressed as

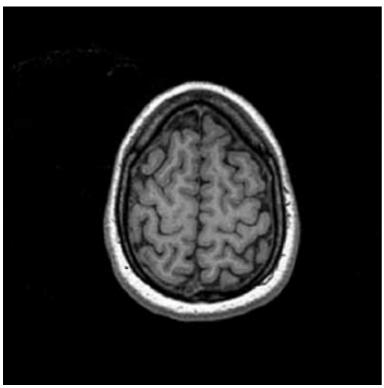
$$L_{I}(u,v) = \underbrace{1}_{H(u,v)} \longrightarrow \underline{IMP}: \text{ if } H(u,v) \text{ has zeros,} \\ \text{ the filter fails!}$$

Moreover, if we have noise, we get

$$\widetilde{F}(u,v) = F(u,v) + \underbrace{\eta(u,v)}_{H(u,v)} \rightarrow \text{ uniformly distributed}$$
 In the second s

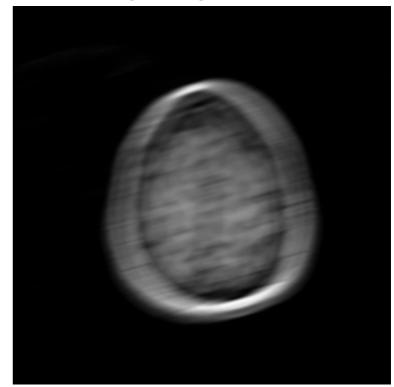


### **Inverse filtering [5] - Example**



#### original image

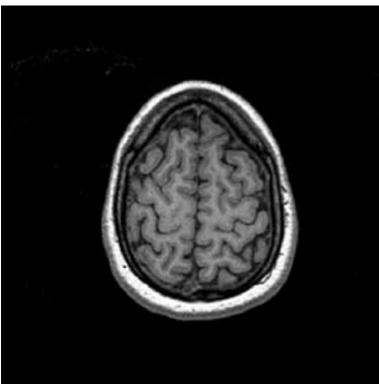
blurred image (length = 25, theta = 15)



#### **MSE = 28.1355**

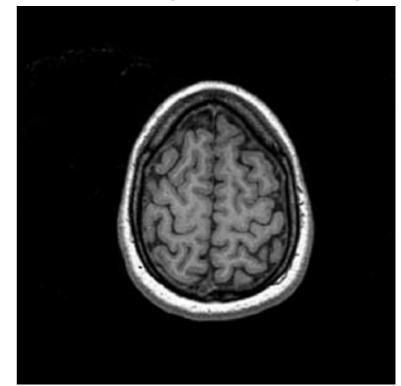


## **Inverse filtering [6] - Example**



#### original image

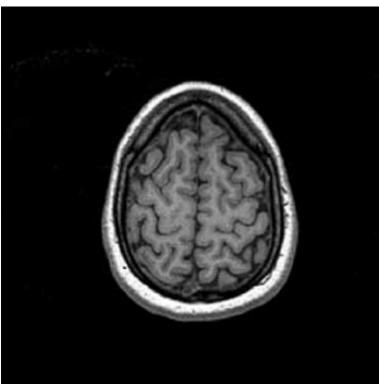
#### restored image (Inverse filtering)



#### MSE = 0.0401



### **Inverse filtering [7] - Example**



original image

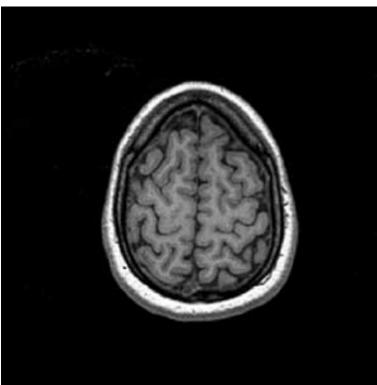
blurred image (length = 25, theta = 15) + gaussian noise ( $\sigma^2$  = 0,01)



#### **MSE = 29.3082**

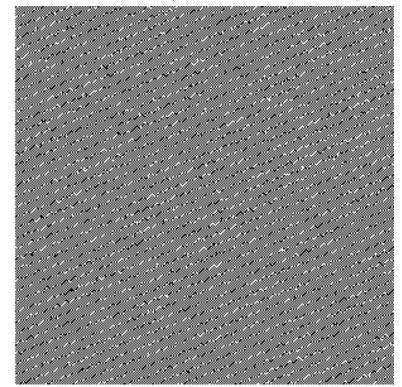


## **Inverse filtering [8] - Example**



original image

#### restored image (Inverse filtering)



#### **MSE = 32.4683**

### **Power Spectrum Equalization (PSE)**

Let's come back again to our degradation model:

 $g(x, y) = h(x, y) * f(x, y) + \eta(x, y)$ 

 $G(u, v) = H(u, v) \cdot F(u, v) + \eta(u, v)$ 

The model of power spectrum equalization (PSE) try to find a linear transform  $\mathcal{L}$  in order to obtain an estimate

$$\widetilde{f}(x, y) = \mathcal{L}[g(x, y)]$$

subject to the constraint

$$\Phi_{\tilde{f}}(u,v) = \Phi_f(u,v)$$

## **Power Spectrum Equalization (PSE) [2]**

Applying  $\mathcal{L}$  to the degradation model, we'll obtain

$$\Phi_{\tilde{f}}(u,v) = |L(u,v)|^2 ||H(u,v)|^2 \Phi_f(u,v) + \Phi_\eta(u,v)| = \Phi_f(u,v)$$
  
where  $L(u,v)$  is the Modulation Transfer Function (MTF) of  
the filter  $f_{i}$ .

Deriving L(u,v) from this expression, the final result is

$$L_{PSE}(u,v) = |L(u,v)| = \left[\frac{1}{|H(u,v)|^2 + \frac{\Phi_{\eta}(u,v)}{\Phi_f(u,v)}}\right]^{1/2}$$

### **Power Spectrum Equalization (PSE) [3]**

Characteristics of the PSE filter

 $L_{PSE}(u,v) = |L(u,v)| = \begin{vmatrix} 1 \\ H(u,v) \\ + \Phi_{f}(u,v) \end{vmatrix} = \frac{1}{H(u,v)} = \frac{1}{H(u,v)}$ 

- Requires knowledge of the PSDs of the original image and noise processes
- If the noise PSD tends to zero, the PSE filter tends to the inverse filter
- Only restoration in the spectral magnitude (no phase correction)
- Its gain is not affected by zeros in H(u,v) as long as  $\Phi_n(u,v)$  is also not zero at the same frequencies
- The gain of the PSE filter tends to zero wherever the original image PSD is zero (possibility to control the noise)

### **The Wiener filter**

Provides <u>optimal</u> filtering by taking into account the statistical characteristics of the image and noise processes

optimal = best achievable result under the conditions imposed and the information provided

The basic degradation model used is

$$g = h \cdot f + \eta$$

where f and n are stationary linear stochastic processes with known spectral characteristics or known autocorrelation

## **The Wiener filter [2]**

#### Approach

We want to derive a filter *L* in order to obtain a linear estimate  $\tilde{f} = Lg$  to *f* from the given image *g* 

The criterion used to minimize the MSE is

$$\varepsilon^{2} = \left[ E \left\| f - \widetilde{f} \right\|^{2} \right]$$

First, we express the MSE as the trace of the outer product matrix of the error vector

$$\varepsilon^{2} = E\left\{Tr\left[\left(f - \tilde{f}\right)\left(f - \tilde{f}\right)^{T}\right]\right\}$$

## **The Wiener filter [3]**

#### Approach

Because the trace of a sum of matrices is equal to the sum of their traces, the E and Tr operator may be interchanged.

Now, exploiting some relationships, we'll get that the MSE can be even written as

$$\varepsilon^{2} = Tr(\phi_{f} - 2\phi_{f}h^{T}L^{T} + Lh\phi_{f}h^{T}L^{T} + L\phi_{\eta}L^{T})$$

Note that here the MSE is no longer a function of f, g or n, but depends only on the statistical characteristics of f and n, as well as on h and L

## **The Wiener filter [4]**

In order to derive the optimal filter L, we can calculate

$$\frac{\partial \varepsilon^2}{\partial L} = -2\phi_f h^T + 2Lh\phi_f h^T + 2L\phi_\eta = 0$$

which leads to the optimal Wiener filter function

$$L_W = \phi_f h^T (h\phi_f h^T + \phi_\eta)^{-1}$$

<u>Problem</u>: making the inversion of this matrix is not easy <u>Possible solution</u>: let's try to write the matrix as a product of diagonal and unitary matrices

## **The Wiener filter [5]**

First of all, we know that *h* is block circulant and that  $\Phi_f$  can be usually approximated by a block circulant matrix As a consequence,

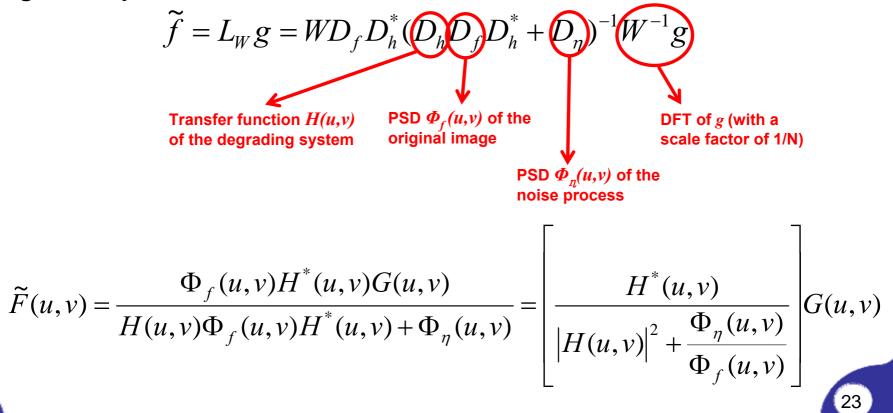
$$h = WD_h W^{-1}$$
$$\Phi_f = WD_f W^{-1}$$

$$\Phi_n = W D_n W^{-1}$$

The Wiener filter is then given by  $L_W = W D_f D_h^* (D_h D_f D_h^* + D_\eta)^{-1} W^{-1}$ 

## **The Wiener filter [6]**

# So, the Minimum Mean Squared Error (MMSE) estimate is given by



### The Wiener filter [7]

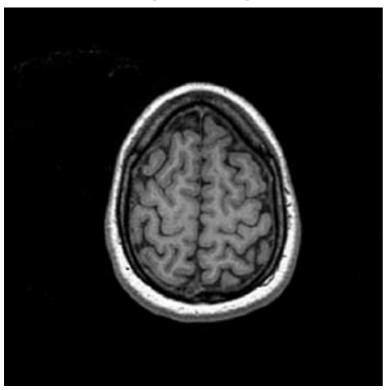
$$L_{W}(u,v) = \left[\frac{H^{*}(u,v)}{\left|H(u,v)\right|^{2} + \frac{\Phi_{\eta}(u,v)}{\Phi_{f}(u,v)}}\right]$$

- Without noise, we have  $\Phi_n(u,v)=0$ , and this filter reduces to the inverse filter
- This is the inverse of the SNR ratio; consequently, also if the SNR is high the Wiener filter is close to the inverse
- If there is no blurring (i.e. H(u,v)=1), then

$$L_W(u,v) = \left[\frac{\Phi_f(u,v)}{\Phi_f(u,v) + \Phi_\eta(u,v)}\right]$$

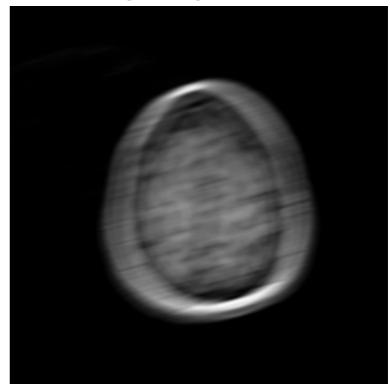


## **The Wiener filter [8] - Example**



original image

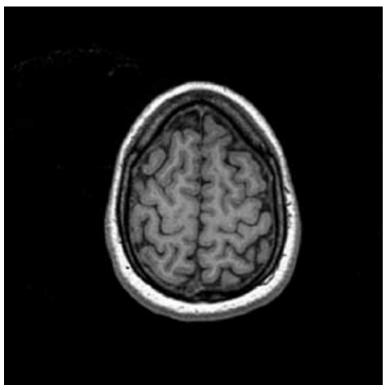
blurred image (length = 25, theta = 15)



#### **MSE = 28.1355**

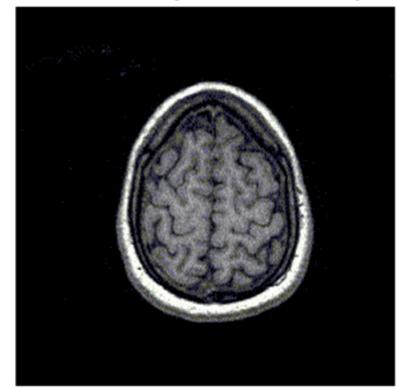


## **The Wiener filter [9] - Example**



original image

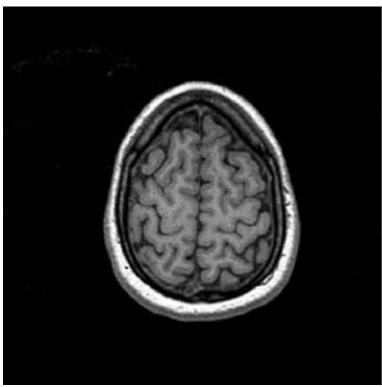
#### restored image (Wiener filtering)



#### **MSE = 12.3747**



### The Wiener filter [10] - Example



original image

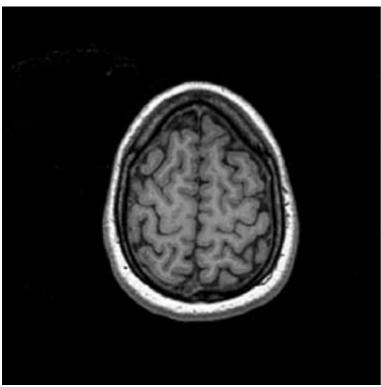
blurred image (length = 25, theta = 15) + gaussian noise ( $\sigma^2$  = 0,01)



#### **MSE = 29.3082**

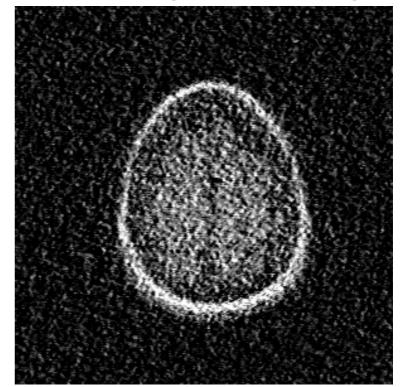


## The Wiener filter [11] - Example



original image

#### restored image (Wiener filtering)



#### **MSE = 29.5374**

#### **Comparative Analysis: inverse, PSE, Wiener**

- When the noise PSD is zero, the PSE filter is equivalent to the inverse filter
- When the noise PSD is zero, the Wiener filter is equivalent to the inverse filter
- The gains of the inverse, PSE and Wiener filters are related as  $|L_I(u,v)| > |L_{PSE}(u,v)| > |L_W(u,v)|$
- The PSE filter is the geometric mean of the inverse and Wiener filters,  $L_{PSE}(u,v) = [L_I(u,v)L_W(u,v)]^{1/2}$
- Because  $|L_{PSE}(u,v)| > |L_{W}(u,v)|$ , the PSE filter admits more high-frequency components with larger gain than the Wiener
- The PSE filter doesn't have a phase component. Phase correction, if required, must be applied separately



#### **Constrained least-squares restoration**

Wiener filter is optimal, generally, only for the class of images represented by the statistical entities used, but it can be unsatisfactory for other specific images

The Constrained least-squared restoration (CLSR), instead, is an optimal procedure for every specific image given, under particular constraints that are imposed

Called *L* a linear filter operator and using again the degradation model  $g = h f + \eta$ , the restoration problem is to minimize  $\|L\tilde{f}\|^2$  subject to  $\|g - h\tilde{f}\|^2 = \|\eta\|^2$ 

## **Constrained least-squares restoration [2]**

Using the method of Lagrange multipliers, we want to find  $\tilde{f}$  that minimizes the function

$$J(\widetilde{f}) = \left\| L\widetilde{f} \right\|^2 + \alpha \left[ \left\| g - h\widetilde{f} \right\|^2 - \left\| \eta \right\|^2 \right]$$

where  $\alpha$  is the Lagrange multiplier.

Taking the derivative of  $J(\tilde{f})$  with respect to  $\tilde{f}$  and setting it equal to zero, at the end we get

$$\widetilde{f} = (h^T h + \gamma L^T L)^{-1} h^T g$$

where  $\gamma = \frac{1}{\alpha}$ 

### **Constrained least-squares restoration [3]**

Using the Laplacian operator, we can construct L as a block circulant matrix

Now, *L* is diagonalized by the 2D DFT as  $D_L = W^{-1}LW$ , where  $D_L$  is a diagonal matrix

Exploiting this property, at the end we get

$$\widetilde{F}(u,v) = \left[\frac{H^*(u,v)}{\left|H(u,v)\right|^2 + \gamma \left|L(u,v)\right|^2}\right] G(u,v)$$

where L(u,v) is the transfer function related to the constraint operator L



**Constrained least-squares restoration [4]** 

$$\widetilde{F}(u,v) = \left\lfloor \frac{H^*(u,v)}{\left|H(u,v)\right|^2 + \gamma \left|L(u,v)\right|^2} \right\rfloor G(u,v)$$

#### **Considerations:**

- The PSDs of the image and noise processes are not required
- It's necessary to have an <u>estimate of the mean and of the</u> <u>variance of the noise process</u> (in order to determine the optimal value for γ)
- If  $\gamma = 0$ , the filter reduces to the inverse filter

### **Constrained least-squares restoration [5]**

#### How to determine $\gamma$ ?

Let's define a residual vector as  $r = g - h\tilde{f}$ We want to find  $\gamma$  such that  $||r||^2 = (|\eta||^2 \pm \varepsilon) \rightarrow \frac{factor}{accuration}$ 

> total energy of the noise process

- 1. Choose an initial value for  $\gamma$
- 2. Compute  $\widetilde{F}(u, v)$  and  $\widetilde{f}$
- 3. Form the residual vector *r* and compute  $||r||^2$
- 4. Increment  $\gamma$  if  $||r||^2 < ||\eta||^2 \varepsilon$ , decrement it if  $||r||^2 > ||\eta||^2 + \varepsilon$ and return to step 2. Stop if  $||r||^2 = ||\eta||^2 \pm \varepsilon$

### **The Metz filter**

Modification of the inverse filter for application to nuclear medicine images, including noise suppression at high frequencies lowpass filter highpass filter lowpass filter  $L_M(u,v) = \frac{1 - (1 - H^2(u,v)^2)}{L_M(u,v)}$ 

H(u,v)

•  $\chi$  is a factor that controls how much up with the frequencies we can go to have a predominance of the inverse filter (after that, the noise-suppression feature becomes stronger)

 $\chi$  can be selected in order to minimize the MSE between the filtered and the ideal images



#### Information required for image restoration

**INVERSE FILTER**  $L_I(u,v) = \frac{1}{H(u,v)}$   $\succ$  **MTF of the degradation** process  $\succ$  **PSF**  $L_{PSE}(u,v) = \begin{bmatrix} \frac{1}{\left|H(u,v)\right|^{2} + \frac{\Phi_{\eta}(u,v)}{\Phi_{f}(u,v)}} \end{bmatrix}^{\frac{1}{2}} \rightarrow \text{MTF} \\ \Rightarrow \text{ PSD of the noise} \\ \Rightarrow \text{ PSD of the original image} \end{bmatrix}$ POWER SPECTRUM EQUALIZATION WIENER FILTER

### **Blind Deblurring**

- Sometimes it's not possible to obtain distinct models of the degradation phenomena
- We need to derive information from the degraded image  $\Phi_g(u,v) = |H(u,v)|^2 \Phi_f(u,v) + \Phi_\eta(u,v)$
- PSE: divide the given degraded image N x N into M x M segments  $g_l(m,n)$ ,  $l=1,2,...,Q^2$  where Q=N/M $\Phi_{g_l}(u,v) = |H(u,v)|^2 \Phi_{f_l}(u,v) + \Phi_{\eta_l}(u,v)$

Blurring across the boundaries of adjacent subimages is ignored

Average PSDs  $\Phi_{g_l}$  over all the Q<sup>2</sup> available segments  $\frac{1}{O^2} \sum_{l=1}^{Q^2} \Phi_{g_l}(u,v) = H(u,v) \Big|^2 \widetilde{\Phi}_f(u,v) + \widetilde{\Phi}_\eta(u,v) \xrightarrow{\text{DENOMINATOR}} \Phi_{g_l}(u,v) \xrightarrow{\text{DENOMINATOR}} \Phi_{g_l}(u,$ 

No necessity to know MTF & PSD of the noise, but only  $\Phi$ 



### **Iterative Blind Deblurring**

### Assumptions:

- MTF of the LSI system causing the degradation has zero phase
- The magnitude of the LSI system is a smoothly varying function of frequency
- The Fourier representation of a signal is affected by the blur function but edge locations don't change in the phase
- Method of Rabie: try to recover the original magnitude spectrum using the edge information preserved in the phase

### **Method of Rabie**

$$\begin{split} M_g(u,v) &= M_f(u,v) M_h(u,v) \quad M_f(u,v), M_g(u,v) \text{ spectral magnitudes} \\ \theta_g(u,v) &= \theta_f(u,v) \quad M_h(u,v) \text{ degradation MTF (zero phase)} \end{split}$$

1.  $M_g(u,v)$  is smoothed with the assumption that  $M_h(u,v)$  is smooth 2.  $M_f(u,v)$  is initially approximated like

$$M_f(u,v) \cong M_g(u,v) \frac{S[M_f(u,v)]}{S[M_g(u,v)]}, \quad S \text{ smoothing operator}$$

3. Iterate the formula to refine  $M_f(u,v)$ :  $\tilde{M}_f^{l+1} = M_g \frac{S[M_f]}{S[M_g]}$ 

Note: this method uses the entire image, not sections!

### Method of Rabie [2]

<u>Problem</u>: in this way a unit constant is being added to the spectral magnitude at all frequencies: infact

$$\tilde{M}_f^0 = M_g + 1$$

- Production of a noisy initial approximation of  $M_f$  (amplification of the high frequency components)
- $= M_f$  can be better approximated by the formula

$$\tilde{M}_f^0 = M_g + \frac{M_f}{S[M_f]}$$

### Method of Rabie [3] - Summary

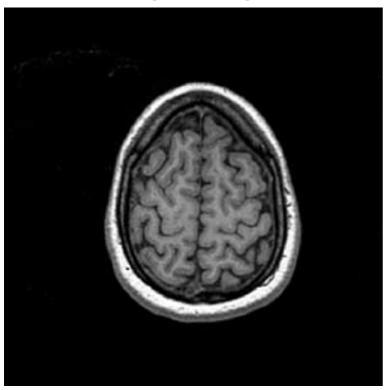
- Obtain an initial estimate of  $M_f$  with

$$\widetilde{M}_{f}^{0} = M_{g} + \frac{M_{f}}{S[M_{f}]}$$

- Update the estimate iteratively using  $\tilde{M}_{f}^{l+1} = M_{g} \frac{S[\tilde{M}_{f}^{l}]}{S[M_{g}]}$
- Stop when the MSE between two consecutives iterations is less than a certain limit
- Combine the best estimate of  $M_f$  with the phase function, obtaining the Fourier transform of the restored image

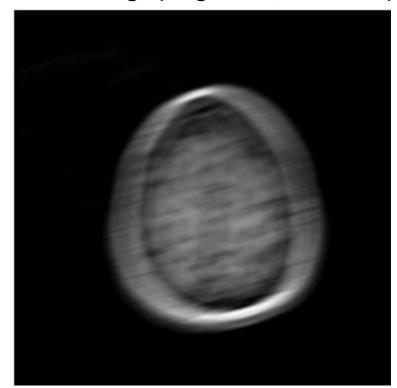
$$\widetilde{F}(u,v) = \widetilde{M}_f(u,v) \exp[j\theta_f(u,v)]$$





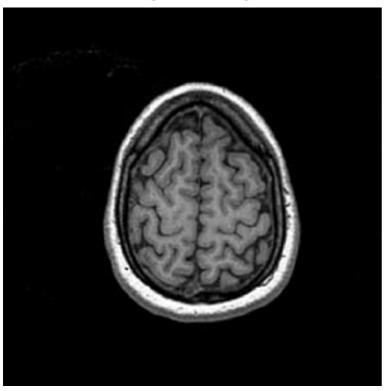
#### original image

blurred image (length = 25, theta = 15)



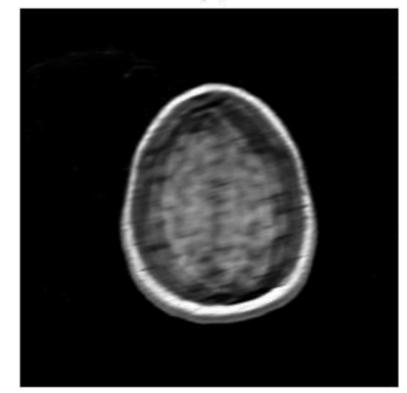
### **MSE = 28.1355**





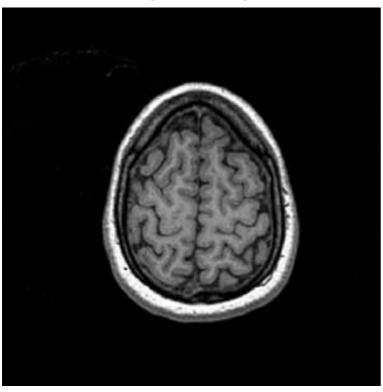
#### original image

Restored Image, NUMIT = 10



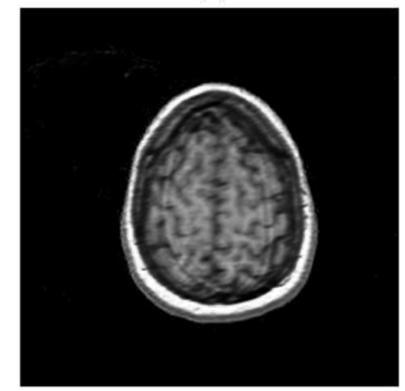
### **MSE = 21.6977**





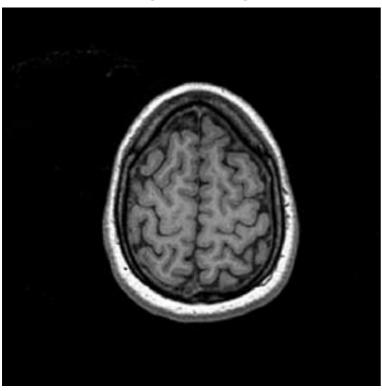
original image

Restored Image, NUMIT = 25



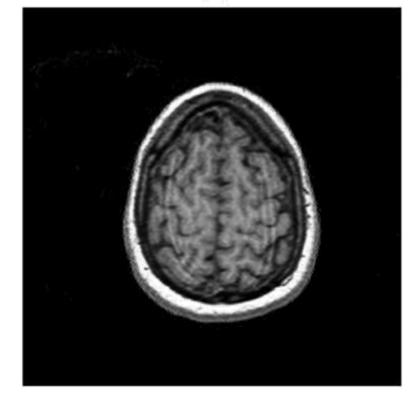
### **MSE = 15.5829**





#### original image

Restored Image, NUMIT = 50



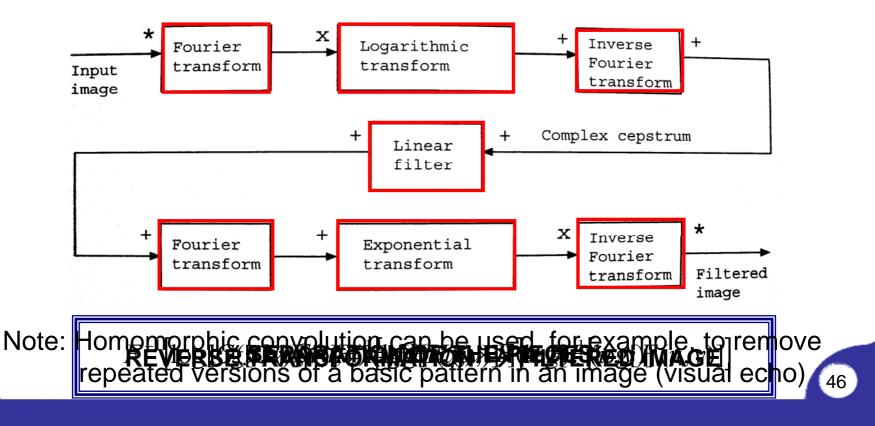
#### **MSE = 12.2869**

## Deconvolution

### **Homomorphic Deconvolution**

An image that is given by the convolution of two images:

$$g(x,y) = h(x,y) * f(x,y)$$



### **Space-variant Restoration**

- Problems of restoration techniques like PSE, Wiener:
  - Assumption that the image can be modeled by a stationary (random) field;
  - Necessity to know the PSD of the image
  - The deblurred image suffer from artifacts at the boundaries

Several adaptive techniques for space-variant restoration have been proposed:

- Sectioned image restoration
- Adaptive-neighborhood deblurring
- Kalman filter

### **Sectioned image restoration**

- The input image is divided into small P x P sections
- For each section, the MAP (maximum-a-posteriori probability) is estimated  $\rightarrow$  suppression of the noise
- Each small section is now close to a stationary process
   → Wiener, PSE
- Combine all the sections together to form the final deblurred image
- Limitations:
  - Stationarity of each section may not be satisfied
  - Sections cannot be arbitrarily small (must be larger than the Region of Support of the blur PSF) → artifacts could arise at the section boundaries



## Adaptive-neighborhood deblurring

- The input image is treated as being made up of a collection of regions of relatively uniform gray levels
- An adaptive neighborhood is determined for each pixel in the image
- Assuming that each region is larger than the Region of Support of the PSF,

 $g_{m,n}(p,q) \simeq h(p,q) * f_{m,n}(p,q) + \eta_{m,n}(p,q)$ 

Next, each adaptive-neighborhood region is centred within a rectangular region of the same size as the input image, and the area surrounding the region is padded with its mean in order to reduce edge artifacts

### Adaptive-neighborhood deblurring [2] FFT $G_{m,n}(u,v) \simeq H(u,v)F_{m,n}(u,v) + \eta_{m,n}(u,v)$

# 2D Hamming window $w_H(p,q)$ $w_H(p,q) = \left[ 0.54 - 0.46 \cos\left(\frac{2\pi \cdot p}{M-1}\right) \right] \left[ 0.54 - 0.46 \cos\left(\frac{2\pi \cdot q}{M-1}\right) \right]$

 $g_{m,n}(p,q)w_{H}(p,q) \simeq [h(p,q) * f_{m,n}(p,q)]w_{H}(p,q) + \eta_{m,n}(p,q)w_{H}(p,q)$ 

#### Noise estimation

$$\widetilde{\eta}_{m,n}(u,v) = A_{m,n}(u,v)G_{m,n}(u,v)$$

where  $A_{m,n}(u,v)$  is a frequency domain, magnitude-only scale factor that depends on the spectral characteristics of the adaptive-neighborhood region grown

### **Adaptive-neighborhood deblurring [3]**

$$\widetilde{F}_{m,n}(u,v) = \frac{G_{m,n}(u,v)}{H(u,v)} [1 - A_{m,n}(u,v)]$$

 Imposing the PSDs of the original and of the estimate noise to be equal, we get

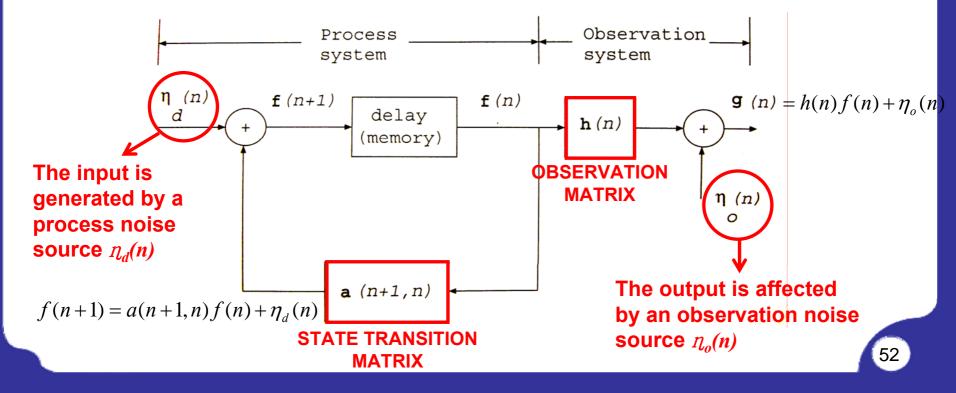
$$\Phi_{\eta_{m,n}}(u,v) = A_{m,n}^{2}(u,v)\Phi_{g_{m,n}}(u,v)$$

$$A_{m,n}(u,v) = \left(\frac{\Phi_{\eta}(u,v)}{|H(u,v)|^{2}\Phi_{f_{m,n}}(u,v) + \Phi_{\eta}(u,v)}\right)^{1/2}$$

$$\widetilde{F}_{m,n}(u,v) = \frac{G_{m,n}(u,v)}{H(u,v)}\left[1 - \left(\frac{\Phi_{\eta}(u,v)}{\Phi_{g_{m,n}}(u,v)}\right)^{1/2}\right]$$

### **Kalman filter**

The signals or items of information involved are represented as a state vector f(n) and an observation vector g(n)



## Kalman filter [2]

 $g(n) = h(n)f(n) + \eta_o(n)$ 

Kalman filtering problem: given a series of the observations  $G_n = \{g(1), g(2), ..., g(n)\}$  for each  $n \ge 1$ , find the MMSE estimate of the state vector f(l)

#### The innovation process

- Suppose that, after *n*-1 observations g(1), g(2), g(n-1), the MMSE estimate  $\tilde{f}(n-1|G_{n-1})$  of f(n-1) has been obtained
- Given a new observation g(n), we could update the previous vector and obtain a new state vector  $\tilde{f}(n|G_n)$
- Bacause f(n) and g(n) are related via the observation system, defined  $\tilde{g}(n|G_{n-1})$  the estimate of g(n) given  $G_{n-1}$ , the innovation process is

$$\xi(n) = g(n) - \tilde{g}(n | G_{n-1}), \quad n = 1, 2, \dots$$

### Kalman filter [3] - Summary

- Data available: the observation vectors  $G_n = \{g(1), g(2), ..., g(n)\}$
- System parameters assumed to be known:
  - The state transition matrix a(n+1,n)
  - The observation system matrix h(n)
  - The AutoCorrelation Function matrix of the driving noise  $\phi_{\eta_d}(n)$
  - The ACF matrix of the observation noise  $\phi_{\eta_a}(n)$
  - Initial conditions:
    - $\widetilde{f}(1|G_0) = E[f(1)] = 0$
    - The ACF matrix of the predicted state error,  $\phi_{\varepsilon_p}(n+1,n)$ , is diagonal per n=0

$$\phi_{\varepsilon_p}(1,0)=D_0$$

## Kalman filter [4] – Computational Steps

- 1. Compute the Kalman gain matrix as  $K(n) = a(n+1,n)\phi_{\varepsilon_p}(n,n-1)h^T(n) \Big[h(n)\phi_{\varepsilon_p}(n,n-1)h^T(n) + \phi_{\eta_o}(n)\Big]^{-1}$
- 2. Obtain the innovation process vector using  $\zeta(n) = g(n) h(n)\tilde{f}(n|G_{n-1})$
- 3. Update the estimate of the state vector as  $\tilde{f}(n+1|G_n) = a(n+1,n)\tilde{f}(n|G_{n-1}) + K(n)\zeta(n)$
- 4. Compute the ACF matrix of the filtered state error as  $\phi_{\varepsilon_p}(n) = \phi_{\varepsilon_p}(n, n-1) - a(n, n+1)K(n)h(n)\phi_{\varepsilon_p}(n, n-1)$
- 5. Update the ACF matrix of the predicted state error as  $\phi_{\varepsilon_p}(n+1,n) = a(n+1,n)\phi_{\varepsilon_p}(n)a^T(n+1,n) + \phi_{\eta_d}(n)$

### **Restoration of Nuclear Medicine Images**

Nuclear medicine images are useful in functional imaging of several organs, but are severely affected by several factors that degrade their quality and resolution.

- Causes of degradation:
- Poor quality control  $\rightarrow$  Blurring
- Poor statistics  $\rightarrow$  Low SNR
- Photon-counting (Poisson) noise  $\rightarrow$  Noise amplification
- Gamma-ray attenuation  $\rightarrow$  Attenuating effect
- Compton scattering  $\rightarrow$  Background noise
- Poor spatial resolution → Low efficiency in photon detection

### **Review: what is SPECT?**

- Acronym for Single Photon Emission Computerized Tomography
- A radioactive isotope is bound to a substance that is readily taken up by the cells in the brain
- A small amount of this compound is injected into the patient's vein and is taken up by certain receptor sites in the brain. The patient then lies on a table for 14-16 minutes while a SPECT "gamma" camera rotates slowly around his head
- A supercomputer then reconstructs 3-D images of brain activity levels

## SPECT



### **Example: SPECT images of the brain**

- Radioactive isotope: <sup>99m</sup>Tc-chloride
- 44 planar projections, each of size 64x64 pixels
  - Radius of rotation: 20cm
  - Time for acquisition: 30s

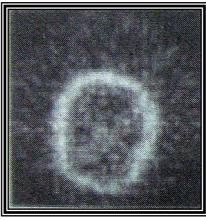
Transverse SPECT images have been reconstructed after performing geometric averaging of conjugate projections and restoration using the Wiener, PSE, and Metz filters

## SPECT

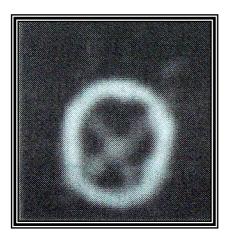


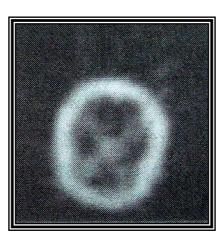
### **Example: SPECT images of the brain [2]**

#### PRERECONSTRUCTION RESTORATION



## SPECT image of the brain







Wiener

**PSE** 

## SPECT

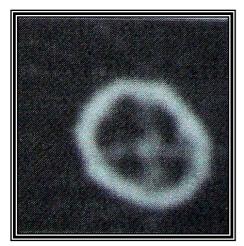


### **Example: SPECT images of the brain [3]**

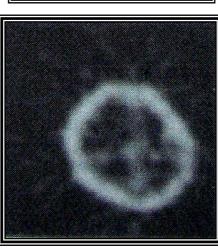
#### GEOMETRIC AVERAGING AND PRERECONSTRUCTION RESTORATION



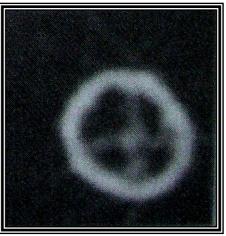
# SPECT image of the brain



Wiener



**PSE** 



## Conclusions

- Image degradation is present in even the most sophisticated and expensive imaging system
- Several techniques have been implemented to try to solve the problem
- Most of the restoration techniques require detailed and specific information about the original image and the degradation phenomena
- Several additional constraints may also be applied
- Always difficult to obtain the necessary accurate information
- The quality of the result depends on the quality of the information and of the constraints applied



### A good solution of the problem is possible only with a good understanding of it

