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Agenda

Introduction to image restoration
Linear Space-Invariant restoration filters

Inverse filtering
Power Spectrum Equalization
Wiener filter
Constrained least-squared restoration
Metz filter

Deblurring
Blind Deblurring
Iterative Blind Deblurring (Method of Rabie)
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Agenda / 2

Deconvolution
Homomorphic Deconvolution

Space variant restoration
Sectioned image restoration
Adaptive-neighborhood deblurring
Kalman filter

Restoration of nuclear medicine images
SPECT images of the brain (example)
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The Big Picture

ImagesImages qualityquality improvementimprovement

• Enhancement techniques
Better looking images satisfying some subjective criteria

The processed image may not be closer to the true image

• Restoration
Try to find the best possible estimate of the original (and unknown) 
image following objective criteria

Possibility to exploit all the additional knowledge about the 
original image, imposing constraints to limit the solution
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Image Restoration

Try to remove or minimize some known degradations
in an image.

In order to do this, we should have:
Precise information about the degrading phenomenon
Analysis of the system that produced the degraded image

Typical items of information required:
Models of the impulse response of the degrading filter
PSD of the original image
PSD of the noise

IntroductionIntroduction
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If we assume that the degrading phenomenon is linear and 
shift-invariant, the simplest model of image degradation is

),(),(),(),( yxyxfyxhyxg η+∗=
),(),(),(),( vuvuFvuHvuG η+⋅=

f  original image
linear shift-invariant

system h + g  degraded image

η noise

LinearLinear SpaceSpace--InvariantInvariant restorationrestoration filtersfilters

Image Restoration

How to come back to the original image?



7

Inverse Inverse filteringfiltering

Let’s consider the degradation model expressed as
g = hּf

We want to estimate f knowing g and h

1. Let’s consider an approximation to f
2. Minimize the squared error between the observed
response g and the response obtained with the input
3. Find that minimizes the squared error ε2

g~ f~

f~

f~

Image Restoration
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Inverse Inverse filteringfiltering [2][2]
The error between g and    is given by

The squared error is given as

Now, let’s find that minimizes ε2
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Inverse Inverse filteringfiltering [3][3]
Setting this expression to zero, we get

If h is square, non-singular (i.e., invertible) and circulant (or 
block circulant), than the previous one becomes

ghhhf TT 1)(~ −=

DFT of g (with a 
scale factor of 1/N)

Point by point transform-domain
filtering with the DFT of g

Inverse DFT

:  where,gWWDghf h
111~ −−− ==
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hD

W

diagonal matrix whose
elements are the 
eigenvalues of h

matrix of the 
eigenvectors of h

Image Restoration
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Inverse Inverse filteringfiltering [4][4]
These considerations lead us to the formulation of the 
inverse filter,

that may be expressed as

Moreover, if we have noise, we get

),(
),(),(~

vuH
vuGvuF =

),(
1),(

vuH
vuLI =

IMPIMP: if H(u,v) has zeros,  
the filter fails!
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),(),(),(~

vuH
vuvuFvuF η

+=
uniformly distributed

lowpass function

Image Restoration
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Inverse Inverse filteringfiltering [5] [5] -- ExampleExample

Image Restoration

MSE = 28.1355

original image blurred image (length = 25, theta = 15)



12

Inverse Inverse filteringfiltering [6] [6] -- ExampleExample

Image Restoration

original image

MSE = 0.0401

restored image (Inverse filtering)
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Inverse Inverse filteringfiltering [7] [7] -- ExampleExample

Image Restoration

original image

MSE = 29.3082

blurred image (length = 25, theta = 15)
+ gaussian noise (σ2 = 0,01)
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Inverse Inverse filteringfiltering [8] [8] -- ExampleExample

Image Restoration

original image

MSE = 32.4683

restored image (Inverse filtering)
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Power Power SpectrumSpectrum EqualizationEqualization (PSE)(PSE)
Let’s come back again to our degradation model:

The model of power spectrum equalization (PSE) try to find
a linear transform L in order to obtain an estimate

subject to the constraint

),(),(),(),( yxyxfyxhyxg η+∗=

),(),(),(),( vuvuFvuHvuG η+⋅=

)],([),(~ yxgyxf  L=

),(),(~ vuvu ff Φ=Φ

Image Restoration
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Power Power SpectrumSpectrum EqualizationEqualization (PSE) [2](PSE) [2]
Applying L to the degradation model, we’ll obtain

where L(u,v) is the Modulation Transfer Function (MTF) of 
the filter L.

Deriving L(u,v) from this expression, the final result is
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Power Power SpectrumSpectrum EqualizationEqualization (PSE) [3](PSE) [3]
CharacteristicsCharacteristics of the PSE of the PSE filterfilter

Requires knowledge of the PSDs of the original image and noise
processes
If the noise PSD tends to zero, the PSE filter tends to the inverse filter
Only restoration in the spectral magnitude (no phase correction)
Its gain is not affected by zeros in H(u,v) as long as Φη(u,v) is also not
zero at the same frequencies
The gain of the PSE filter tends to zero wherever the original image
PSD is zero (possibility to control the noise)
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The The WienerWiener filterfilter
Provides optimaloptimal filtering by taking into account the 
statistical characteristics of the image and noise processes

The basic degradation model used is
g = hּf + η

where f and η are stationary linear stochastic processes
with known spectral characteristics or known
autocorrelation

optimal = best achievable result under the conditions
imposed and the information provided

Image Restoration
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The The WienerWiener filterfilter [2][2]
ApproachApproach
We want to derive a filter L in order to obtain a linear
estimate            to f from the given image g
The criterion used to minimize the MSE is

First, we express the MSE as the trace of the outer product
matrix of the error vector
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Image Restoration
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The The WienerWiener filterfilter [3][3]
ApproachApproach
Because the trace of a sum of matrices is equal to the sum
of their traces, the E and Tr operator may be interchanged.

Now, exploiting some relationships, we’ll get that the MSE 
can be even written as

Note that here the MSE is no longer a function of f, g or η, 
but depends only on the statistical characteristics of f and 
η, as well as on h and L

)2(2 TTT
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Image Restoration
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The The WienerWiener filterfilter [4][4]
In order to derive the optimal filter L, we can calculate

which leads to the optimal Wiener filter function

ProblemProblem: making the inversion of this matrix is not easy
PossiblePossible solutionsolution: let’s try to write the matrix as a product of 
diagonal and unitary matrices
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The The WienerWiener filterfilter [5][5]
First of all, we know that h is block circulant and that Φf can 
be usually approximated by a block circulant matrix
As a consequence,

h = WDhW-1

Φf = WDfW-1

Moreover, Фη is a diagonal matrix if η is white:
Φη = WDηW-1

The Wiener filter is then given by
11** )( −−+= WDDDDDWDL hfhhfW η

Image Restoration
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The The WienerWiener filterfilter [6][6]
So, the Minimum Mean Squared Error (MMSE) estimate is
given by

gWDDDDDWDgLf hfhhfW
11** )(~ −−+== η

DFT of g (with a 
scale factor of 1/N)

PSD Φf (u,v) of the 
original image

PSD Φη(u,v) of the 
noise process

Transfer function H(u,v)
of the degrading system
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The The WienerWiener filterfilter [7][7]

Without noise, we have Φη(u,v)=0, and this filter reduces
to the inverse filter
This is the inverse of the SNR ratio; consequently, also if
the SNR is high the Wiener filter is close to the inverse
If there is no blurring (i.e. H(u,v)=1), then
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The The WienerWiener filterfilter [8] [8] -- ExampleExample

Image Restoration

MSE = 28.1355

original image blurred image (length = 25, theta = 15)



26MSE = 12.3747

original image

The The WienerWiener filterfilter [9] [9] -- ExampleExample

Image Restoration

restored image (Wiener filtering)



27MSE = 29.3082

original image

The The WienerWiener filterfilter [10] [10] -- ExampleExample

Image Restoration

blurred image (length = 25, theta = 15)
+ gaussian noise (σ2 = 0,01)



28MSE = 29.5374

original image

The The WienerWiener filterfilter [11] [11] -- ExampleExample

Image Restoration

restored image (Wiener filtering)
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Comparative Comparative AnalysisAnalysis: inverse, PSE, : inverse, PSE, WienerWiener
When the noise PSD is zero, the PSE filter is equivalent to
the inverse filter
When the noise PSD is zero, the Wiener filter is equivalent to
the inverse filter
The gains of the inverse, PSE and Wiener filters are related
as
The PSE filter is the geometric mean of the inverse and 
Wiener filters, 
Because , the PSE filter admits more 
high-frequency components with larger gain than the Wiener
The PSE filter doesn’t have a phase component. Phase
correction, if required, must be applied separately

),(),(),( vuLvuLvuL WPSEI >>

[ ] 2/1),(),(),( vuLvuLvuL WIPSE =
),(),( vuLvuL WPSE >

Image Restoration
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ConstrainedConstrained leastleast--squaressquares restorationrestoration
Wiener filter is optimal, generally, only for the class of 
images represented by the statistical entities used, but it
can be unsatisfactory for other specific images

The Constrained least-squared restoration (CLSR), 
instead, is an optimal procedure for every specific image
given, under particular constraints that are imposed

Called L a linear filter operator and using again the 
degradation model g = h f + η, the restoration problem is to
minimize subject to

2~fL 22~ η=− fhg

Image Restoration
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ConstrainedConstrained leastleast--squaressquares restorationrestoration [2][2]
Using the method of Lagrange multipliers, we want to find
that minimizes the function

where α is the Lagrange multiplier. 
Taking the derivative of          with respect to and setting
it equal to zero, at the end we get

where
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Image Restoration
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ConstrainedConstrained leastleast--squaressquares restorationrestoration [3][3]
Using the Laplacian operator, we can construct L as a 
block circulant matrix
Now, L is diagonalized by the 2D DFT as DL=W-1LW, where
DL is a diagonal matrix

Exploiting this property, at the end we get

where L(u,v) is the transfer function related to the constraint
operator L
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ConstrainedConstrained leastleast--squaressquares restorationrestoration [4][4]

ConsiderationsConsiderations::
• The PSDs of the image and noise processes are not required

It’s necessary to have an estimate of the mean and of the 
variance of the noise process (in order to determine the 
optimal value for γ)
If γ=0, the filter reduces to the inverse filter

),(
),(),(

),(),(~
22

*

vuG
vuLvuH

vuHvuF
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

γ

Image Restoration



34

ConstrainedConstrained leastleast--squaressquares restorationrestoration [5][5]
HowHow toto determinedetermine γγ ??
Let’s define a residual vector as
We want to find γ such that

1. Choose an initial value for γ
2. Compute and
3. Form the residual vector r and compute

4. Increment γ if , decrement it if
and return to step 2. Stop if

fhgr ~
−=

εη ±= 22r

),(~ vuF f~
2r

εη −< 22r
εη ±= 22r

εη +> 22r

total energy of the 
noise process

factor of 
accuracy

Image Restoration
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The Metz The Metz filterfilter
Modification of the inverse filter for application to nuclear
medicine images, including noise suppression at high 
frequencies

χ is a factor that controls how much up with the 
frequencies we can go to have a predominance of the 
inverse filter (after that, the noise-suppression feature
becomes stronger)

χ can be selected in order to minimize the MSE 
between the filtered and the ideal images
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Image Restoration
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InformationInformation requiredrequired forfor imageimage restorationrestoration

),(
1),(

vuH
vuLI =INVERSE FILTER

2
1

2

),(
),(

),(

1),(

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Φ
Φ

+
=

vu
vu

vuH
vuL

f

PSE
η

POWER 
SPECTRUM 
EQUALIZATION

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Φ
Φ

+
=

),(
),(

),(

),(),(
2

*

vu
vu

vuH

vuHvuL

f

W
η

WIENER FILTER

MTF 

PSD of the noise

PSD of the original
image

MTF of the degradation
process

PSF

PSF 

Original image and 
noise autocorrelation
matrices

Image Restoration



37

BlindBlind DeblurringDeblurring
Sometimes it’s not possible to obtain distinct models of 
the degradation phenomena
We need to derive information from the degraded image

PSE: divide the given degraded image N x N into M x M 
segments

Blurring across the boundaries of adjacent subimages is ignored
Average PSDs over all the Q2 available segments

No necessity to know MTF & PSD of the noise, but only
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Iterative Iterative BlindBlind DeblurringDeblurring
Assumptions:

MTF of the LSI system causing the degradation has zero phase
The magnitude of the LSI system is a smoothly varying function
of frequency

The Fourier representation of a signal is affected by the 
blur function but edge locations don’t change in the phase

Method of Rabie: try to recover the original magnitude
spectrum using the edge information preserved in the 
phase

Deblurring
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MethodMethod of of RabieRabie

1. Mg(u,v) is smoothed with the assumption that Mh(u,v) is smooth
2. Mf(u,v) is initially approximated like

3. Iterate the formula to refine Mf(u,v) : 

Note: this method uses the entire image, not sections!
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Deblurring
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MethodMethod of of RabieRabie [2][2]
Problem: in this way a unit constant is being added to the 

spectral magnitude at all frequencies: infact

Production of a noisy initial approximation of Mf
(amplification of the high frequency components)
Mf can be better approximated by the formula

1~ 0 += gf MM
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Deblurring
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MethodMethod of of RabieRabie [3] [3] -- SummarySummary
Obtain an initial estimate of Mf with

Update the estimate iteratively using

Stop when the MSE between two consecutives iterations
is less than a certain limit
Combine the best estimate of Mf with the phase function, 
obtaining the Fourier transform of the restored image
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42MSE = 28.1355

original image

Image Restoration

Iterative Iterative BlindBlind DeblurringDeblurring -- ExampleExample
blurred image (length = 25, theta = 15)



43MSE = 21.6977

original image

Image Restoration

Iterative Iterative BlindBlind DeblurringDeblurring -- ExampleExample



44MSE = 15.5829

original image

Image Restoration

Iterative Iterative BlindBlind DeblurringDeblurring -- ExampleExample



45MSE = 12.2869

original image

Image Restoration

Iterative Iterative BlindBlind DeblurringDeblurring -- ExampleExample
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HomomorphicHomomorphic DeconvolutionDeconvolution
An image that is given by the convolution of two images:

g(x,y) = h(x,y)* f(x,y)

),(),(),( vuFvuHvuG ×= )],(log[)],(log[)],(log[ vuFvuHvuG +=[ ] [ ] [ ])],(log[)],(log[)],(log[ 111 vuFFvuHFvuGF −−− +=SEPARATION OF THE PIECESREVERSE TRANSFORMATION  FILTERED IMAGENote: Homomorphic convolution can be used, for example, to remove
repeated versions of a basic pattern in an image (visual echo)

Deconvolution
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SpaceSpace--variantvariant RestorationRestoration
Problems of restoration techniques like PSE, Wiener:

Assumption that the image can be modeled by a stationary
(random) field;
Necessity to know the PSD of the image

The deblurred image suffer from artifacts at the boundaries

Several adaptive techniques for space-variant restoration
have been proposed:

Sectioned image restoration
Adaptive-neighborhood deblurring
Kalman filter

Image Restoration
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SectionedSectioned imageimage restorationrestoration
The input image is divided into small P x P sections
For each section, the MAP (maximum-a-posteriori
probability) is estimated suppression of the noise
Each small section is now close to a stationary process

Wiener, PSE
Combine all the sections together to form the final 
deblurred image
Limitations:

Stationarity of each section may not be satisfied
Sections cannot be arbitrarily small (must be larger than the 
Region of Support of the blur PSF)  artifacts could arise at 
the section boundaries

Image Restoration
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AdaptiveAdaptive--neighborhoodneighborhood deblurringdeblurring
The input image is treated as being made up of a 
collection of regions of relatively uniform gray levels
An adaptive neighborhood is determined for each pixel in 
the image
Assuming that each region is larger than the Region of 
Support of the PSF,

Next, each adaptive-neighborhood region is centred
within a rectangular region of the same size as the input 
image, and the area surrounding the region is padded
with its mean in order to reduce edge artifacts

),(),(),(~),( ,,, qpqpfqphqpg nmnmnm η+∗−

Image Restoration
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AdaptiveAdaptive--neighborhoodneighborhood deblurringdeblurring [2][2]
FFT

2D Hamming window wH(p,q)

Noise estimation

where Am,n(u,v) is a frequency domain, magnitude-only
scale factor that depends on the spectral characteristics
of the adaptive-neighborhood region grown
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AdaptiveAdaptive--neighborhoodneighborhood deblurringdeblurring [3][3]

• Imposing the PSDs of the original and of the estimate 
noise to be equal, we get
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KalmanKalman filterfilter
The signals or items of information involved are 
represented as a state vector f(n) and an observation
vector g(n)

The input is
generated by a 
process noise
source ηd(n)

OBSERVATION 
MATRIX

STATE TRANSITION 
MATRIX

)()(),1()1( nnfnnanf dη++=+
The output is affected
by an observation noise
source ηo(n)

)()()( nnfnh oη+=

Image Restoration
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KalmanKalman filterfilter [2][2]

Kalman filtering problem: given a series of the 
observations for each , find
the MMSE estimate of the state vector f(l)
The innovation process

Suppose that, after n-1 observations g(1), g(2), g(n-1), the 
MMSE estimate                    of f(n-1) has been obtained
Given a new observation g(n), we could update the previous
vector and obtain a new state vector
Bacause f(n) and g(n) are related via the observation system, 
defined the estimate of g(n) given Gn-1, the innovation
process is
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Image Restoration
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KalmanKalman filterfilter [3] [3] -- SummarySummary
Data available: the observation vectors
System parameters assumed to be known:

The state transition matrix a(n+1,n)
The observation system matrix h(n)
The AutoCorrelation Function matrix of the driving noise
The ACF matrix of the observation noise

Initial conditions:
.
The ACF matrix of the predicted state error,                    , is
diagonal per n=0
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KalmanKalman filterfilter [4] [4] –– ComputationalComputational StepsSteps
1. Compute the Kalman gain matrix as

2. Obtain the innovation process vector using

3. Update the estimate of the state vector as

4. Compute the ACF matrix of the filtered state error as

5. Update the ACF matrix of the predicted state error as
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RestorationRestoration of of NuclearNuclear Medicine Medicine ImagesImages
Nuclear medicine images are useful in functional imaging of 
several organs, but are severely affected by several factors
that degrade their quality and resolution.
Causes of degradation:

Poor quality control Blurring
Poor statistics Low SNR
Photon-counting (Poisson) noise Noise amplification
Gamma-ray attenuation Attenuating effect
Compton scattering Background noise
Poor spatial resolution Low efficiency in photon

detection

Image Restoration
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ReviewReview: : whatwhat isis SPECT?SPECT?

Image Restoration

Acronym for Single Photon Emission Computerized
Tomography
A radioactive isotope is bound to a substance that is
readily taken up by the cells in the brain
A small amount of this compound is injected into the 
patient's vein and is taken up by certain receptor sites in 
the brain. The patient then lies on a table for 14-16 
minutes while a SPECT "gamma" camera rotates slowly
around his head
A supercomputer then reconstructs 3-D images of brain
activity levels
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ExampleExample: SPECT : SPECT imagesimages of the of the brainbrain

SPECT

Radioactive isotope: 99mTc-chloride
44 planar projections, each of size 64x64 pixels

Radius of rotation: 20cm
Time for acquisition: 30s

Transverse SPECT images have been reconstructed after 
performing geometric averaging of conjugate projections
and restoration using the Wiener, PSE, and Metz filters
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ExampleExample: SPECT : SPECT imagesimages of the of the brainbrain [2]  [2]  

SPECT

SPECT image
of the brain

Wiener PSE Metz

PRERECONSTRUCTION 
RESTORATION
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ExampleExample: SPECT : SPECT imagesimages of the of the brainbrain [3]  [3]  

SPECT image
of the brain

GEOMETRIC 
AVERAGING AND 
PRERECONSTRUCTION 
RESTORATION

Wiener PSE Metz

SPECT
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Conclusions

Image degradation is present in even the most
sophisticated and expensive imaging system
Several techniques have been implemented to try to
solve the problem
Most of the restoration techniques require detailed and 
specific information about the original image and the 
degradation phenomena
Several additional constraints may also be applied
Always difficult to obtain the necessary accurate 
information
The quality of the result depends on the quality of the 
information and of the constraints applied
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Conclusions

A good solution of the problem is possible
only with a good understanding of it
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QUESTIONS?

Thank you!
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