

Image Analysis in Neuroinformatics

Pattern Classification

Pavan Ramkumar

Xavier Mínguez Bernal

Table of contents

- Introduction: Classification Problem
 - Objects / Features / Data set
 - Pre-processing
 - Discriminant
 - Train & Test
- Unsupervised / Supervised Classification
 - K-means
 - Probabilistic models
 - Nearest neighbor
 - Neural networks
- Measures of diagnostic accuracy
 - Reciver Operating Characteristics
 - Separability of classes

Introduction

Classification of objects into a number of categories

Aim

classification of objects into a number of categories or classes

based on

statistical information priori knowledge

extracted from the classified or described patterns.

Modeling

1. Definition of the different classes whose the objects are going to be fit in

Example:

Segmentation of brain structure using structural MRI and PET

4 classes

- Gray matter
- White Matter
- CSF (Cerebro-Spinal Fluid)
- Background pixels

Pre-processing

- Segmentation
- Denoising
- Outliers
- Values spread in different dynamic ranges

Features

- Identify the measurable quantities that make the classes distinct from the others
- All the features used in the classification form the feature vector

$$\underline{x} = [x_1, x_2, x_3 \dots x_l]^T$$

 Each of the feature vectors identifies uniquely a single pattern (object)

Features selection

- How many features to select for a given problem, given set of training patterns?
- Curse of dimensionality: Over-training. Classifier may learn more than generalizable aspects of the dataset.
- Features may be ranked by PCA and selected based on classification accuracy

Features in the example

Database construction: labeling

Likelihood for each pixel to belongs to each class

Database and space of features

Discriminant functions

- Generate optimal decision boundaries
- Apply discriminant functions to a feature vectors of unknown classes to classify them

$g_i(\underline{x})$

• The classifier is said to assign a feature vector $\underline{\mathbf{x}}$ to class C_i if

$$g_i(\underline{x}) > g_j(\underline{x})$$
 for all $j \neq i$

Discriminant functions II

Training and Testing (Bootstrapping)

- Training: Process by which classifier learns the properties of each class so that it may discriminate an arbitrary pattern. A set of patterns with apriori known classes are used for this purpose.
- Testing: Process by which performance of the classifier is evaluated.
 Patterns with known classes are given to the trained classifier in order to test it's accuracy.
- How does splitting into training and testing sets affect classifier design?
- Leave one out method
 - (N-I) training, I test. Repeated with each pattern as test pattern
 - Gives least biased estimate of classification accuracy

Unsupervised classification: k-means

 No prior training information is available and we have to classify the set of feature vectors into unknown number of categories

K-means algorithm

- I. Assign each object randomly to one of the clusters k = 1, ..., K.
- 2. Compute the means of each of the clusters
- 3. Reassign each object to the cluster with the closest mean
- 4. Return to step 2 until the means of the clusters do not change anymore

Unsupervised classification: k-means results

Probabilistic Models

- How do we know that heuristic methods are optimal?
- We use a (multivariate) statistical model for the distribution of patterns
- Training dataset is used to estimate model parameters

Prior, Likelihood, Posterior

- Prior: Apriori probability of occurrence of class. Given by $P(C_i)$
- Likelihood: Given that a pattern \mathbf{x} belongs to class C_i what is the probability of occurrence of \mathbf{x} . Given by

 $P(x/C_i)$

• Posterior: Given a pattern x, what is the probability that it belongs to class C_i

 $P(C_i / x)$

Statistical Decision

- Classification penalty: A loss L_{ij} is defined as the loss incurred by a classifier by labelling a pattern coming from class i into class j. $L_{ii} = 0$, or some fixed operational cost.
- Conditional Average Risk: Average loss in classifying pattern x to class C_i. Given by:

$$R_{j}(x) = \sum_{i=1}^{M} L_{ij} P(C_{i} / x)$$

Bayes' Classifier

- Minimizes the conditional average risk
- Posterior probability can be calculated from the Bayes' formula

$$P(C_i / x) = \frac{P(C_i)P(x / C_i)}{P(x)}$$

• Denominator is independent of C_i and may be left out in the minimization.

Bayes' classifier II

 In the two class problem, the two risks may be written as:

$$r_{1}(x) = L_{11}P(C_{1} / x) + L_{21}P(C_{2} / x)$$

$$r_{2}(x) = L_{12}P(C_{1} / x) + L_{22}P(C_{2} / x)$$

$$x \in C_{1} \text{ if } r_{1}(x) < r_{2}(x)$$

• Thus, the Bayes' Classifier can be written as a series of discriminant functions

Naïve Bayes' Classifier

 If the loss is assumed to be the same for all erroneous classifications, then we can define

$$L_{ii} = 0, L_{ij} = 1, i.e.$$
 $L_{ij} = 1 - \delta_{ij}$

• Then, the Bayes' classifier essentially minimizes

$$p(x) - p(x/C_i)P(C_i)$$

• Or maximizes

$$p(x/C_i)P(C_i)$$

• Which is the posterior probability. This is the same as MAP estimate. However, by Bayes' theorem this is the same as

$$p(C_i / x)P(x)$$

• Since p(x) is not dependent on C_i , this is the same as the ML estimate.

Naïve Bayes' with normal pdfs

For class with multivariate normal pdfs with mean m_i and covariance C_i

$$p(x/C_i) = \frac{1}{(2\pi)^{n/2}} \left| C_i \right|^{1/2} \exp \left[-\frac{1}{2} (x - m_i)^T C_i^{-1} (x - m_i) \right]$$

• The log-posterior densities can be written as

$$d_i(x) = \ln P(C_i) - \frac{1}{2} \ln(C_i) - \frac{1}{2} \Big[(x - m_i)^T C_i^{-1} (x - m_i) \Big]$$

 This takes on a quadratic form (called hyperquadric). If the covariances are equal, i.e. Ci = C for all i, it reduces to a linear

$$d_i(x) = \ln P(C_i) + x^T C^{-1} m_i - \frac{1}{2} m_i^T C^{-1} m_i$$

Naïve Bayes' Results

Error Test= 0.1582

Logistic Regression

- Typically used in two class problems, though may be extended to multi class problems.
- Does not directly assign a class, but a membership value to all classes
- Likelihood (or posterior) is expressed as a sigmoid function of the parameter vector, which is then maximized using a training set

$$P(C_i / x) = \frac{1}{1 + \exp(-b_i^T x)}$$

• Since it is non-linear, an iterative algorithm is reqd. to estimate the co-efficients of the model

Nearest Neighbor Classifier

• A vector x of unknown class is assigned to the class of the nearest sample of known class.

 $x \in C_i$ if $D(s_i, x) = \min(D(s_j, x)), j=1,2...N$

- We rely entirely on the class of one observation. It would be more reliable if we used k nearest samples, and assigned the majority class instead. This is the k-nearest neighbor classifier.
- There are many variants of the k-NN classifier such as the weighted k-NN, in which contributions of samples in the k-neighborhood towards determining the class of the sample are weighted by their distance from the sample.

Nearest Neighbor Classifier Results

Multilayer neural network

 Interconnected group of artificial neurons that uses a computational model for information processing

$$g_k(\underline{x}) \equiv \underline{z}_k = f\left(\sum_{j=1}^{nH} w_{kj} f\left(\sum_{i=1}^d w_{ji} x_i + w_{j0}\right) + w_{k0}\right) \quad J(\underline{w}) \equiv \frac{1}{2} \sum_{k=1}^c (t_k - z_k)^2 = \frac{1}{2} \left(\underline{t} - \underline{z}\right)^T \left(\underline{t} - \underline{z}\right)$$

Multilayer neural network: results

Levenberg-Marquad one hidden layer 5 neurons per layer

LEARNING CURVES: Neural Nets

15

20

Number of Iberations

25

Backpropagation one hidden layer 5 neurons per layer

MNN:Topology discussion

• Network architecture. Choices in the number of hidden layers, units and feedback connections

I hidden layer 10 neurons

3 hidden layer 2 neurons

I hidden layer 2 neurons

3 hidden layer 5 neurons

2 hidden layers 5 neurons

3 hidden layer 15 neurons

Measures of diagnostic accuracy

- Two class problem: Pathology detector: Abnormal (positive) vs Normal (negative)
- True Positive(TP): 'Hit'; Test is positive, subject has abnormality
- True Negative(TN): Test is negative, subject is normal
- False Negative(FN): 'Miss'; Test is negative, subject has abnormality
- False Positive(FP): Test is positive, subject is normal
- S^+ = True Positive Fraction = $P(T^+/A) = (No. of TP)/(No. of A)$
- S^- = True Negative Fraction = $P(T^-/N) = (No. of TN)/(No. of N)$
- FNF = $P(T^{-}/A)$
- FPF = P(T⁺/N)
- Accuracy = $S^+P(A) + S^-P(N)$

Receiver Operating Characteristics

- S⁺ (sensitivity): Represents how sensitive the classifier is to a TP
- S⁻ (specificity): Represents how specific the classifier is to a TP
- Ideally we want both to be high so that there are no false negatives or false positives
- The ROC curve maps (FPF,TPF) i.e. (I S⁻, S⁺). The effectiveness of the test is measured by the area under the ROC curve
- More separable the data, closer to ideal ROC curve

ROC illustrations

-6

-4

-2

2

4

6

× 10⁵

ROC ldc: b(test) r(train)

Statistical Separability of classes

- How far apart are the classes statistically?
- Normalized distance between pdfs
 - $D = |m| m2|/(\sigma | + \sigma 2)$
 - In fact the Fischer Linear Discriminant is trained to maximize D
 - Vanishes for identical means
- Jeffries-Matusita Distance

$$Jij = \left\{ \int_{x} \left[\sqrt{p(x/C_i)} - \sqrt{p(x/C_j)} \right]^2 dx \right\}^{1/2}$$

• Gives theoretical upper and lower bounds on classification error

End of the presentation Questions round