Image Analysis in Neuroinformatics

Removal of Artifacts

Pavan Ramkumar

Xavier Mínguez Bernal

Table of contents

- Characterization of Arfitacts
- Statistics
- Diferent types
- Matrix Representation of Images
- Images
- Transforms
- Convolutions
- Denoising Techniques
- Mutliframe Averaging
- Spatial convolutions and order statistics
- Frequency domain filters
- Optimal filtering:Wiener

Characterization of Arfitacts

Characterization of Artifacts I

Random noise

.Pdf

$$
\boldsymbol{p}_{\eta}(\boldsymbol{\eta})
$$

-Mean

$$
\mu_{\eta}=E[\eta]=\int_{-\infty}^{\infty} \eta p_{\eta}(\eta) \delta \eta
$$

- Variance

$$
\begin{aligned}
& \sigma_{\eta}^{2}=E\left[\left(\boldsymbol{\eta}-\mu_{\eta}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(\boldsymbol{\eta}-\mu_{\eta}\right)^{2} \boldsymbol{p}_{\boldsymbol{\eta}}(\boldsymbol{\eta}) \delta \boldsymbol{\eta} \\
& \boldsymbol{\sigma}_{\eta}^{2}=E\left[\eta^{2}\right]-E[\eta]^{2}
\end{aligned}
$$

Characterization of Artifacts II

- Image
$g(x, y)=f(x, y)+\boldsymbol{\eta}(x, y)$

$$
\begin{gathered}
E\lfloor g\rfloor=\mu_{g}=\mu_{f}+\mu_{\eta} \\
E\left[\left(g-\mu_{g}\right)^{2}\right]=\sigma_{g}^{2}=\sigma_{f}^{2}+\sigma_{\eta}^{2}
\end{gathered}
$$

Characterization of Artifacts III

- Statistical expectation

- Estimated mean (M observations)

$$
\mu_{f}\left(x_{1}, y_{1}\right)=\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{k=1}^{M} f_{k}\left(x_{1}, y_{1}\right)
$$

- Autocorrelation function

$$
\begin{gathered}
r_{f}\left(x_{1}, x_{1}+\alpha, y_{1}, y_{1}+\beta\right)=E\left[f^{*}\left(x_{1}, y_{1}\right) f\left(x_{1}+\alpha, y_{1}+\beta\right)\right] \\
\check{\mathrm{r}}(\alpha, \beta)=\frac{1}{X Y} \sum_{x_{1}=0}^{X} \sum_{y_{1}=0}^{Y} f^{*}\left(x_{1}, y_{1}\right) f\left(x_{1}+\alpha, y_{1}+\beta\right) \\
r_{f}(0,0) \Rightarrow \text { energy }
\end{gathered}
$$

Characterization of Artifacts IV

- Stationarity in strict sense

Statistics not affected by a shift in time or space

- Stationarity in wide sense

Constant mean and autocorrelation depends only upon the shift in time or space

$$
\begin{gathered}
\mu_{f}(k)=\mu_{f} \\
r_{f}\left(t_{1}, \boldsymbol{t}_{1}+\tau\right) \Rightarrow r_{f}(\tau) \\
r_{f}\left(x_{1}, x_{1}+\alpha, y_{1}, y_{1}+\beta\right) \Rightarrow r_{f}(\alpha, \beta)
\end{gathered}
$$

Characterization of Artifacts V

- Ergodicity
- Temporal statistics independent of the sample observed
- Statistics may be computed from a single observation

Gaussian noise I

- Completely specified by the mean and variance
- Important \square central limit teorem
- Termal noiseelectronic components

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\left(\frac{\left(x-\mu_{x}\right)^{2}}{2 \sigma^{2} x}\right)}
$$

Gaussian noise II

Uniform distributed noise

Quantization noise

$$
N \propto\left(\frac{\text { dinamic range }}{2^{Q}}\right)^{2}
$$

Laplacian distributed noise

- Errors in linear prediction

$$
p_{x}(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\left(\frac{\sqrt{2}\left|x-\mu_{x}\right|}{\sigma_{x}}\right)}
$$

Poisson noise

- Quantum noise, photon noise
- Signal dependant
- Systems in low-light conditions
$\boldsymbol{p}(\boldsymbol{k})=\frac{\boldsymbol{\mu}^{\boldsymbol{k}}}{\boldsymbol{k}!} \boldsymbol{e}^{-\boldsymbol{\mu}}$
- Degraded image

$$
p\left(g_{0}(m, n) \mid f(m, n), \lambda\right)=\frac{[\lambda f(m, n)]^{g_{0}(m, n)}}{g_{0}(m, n)!} e^{-\lambda f(m, n)}
$$

Speckle noise

- Caused by roughness surface
- Signal depedant
- Rayleigh distributed

$$
p_{x}(x)=\frac{2}{b}(x-a) e^{-\left(\frac{(x-a)^{2}}{b}\right)} u(x-a)^{\infty}
$$

Other types of noise and artifact

- Structured noise
- Power line interference
- Grid artifact \square parallel periodic strips
- Surgical implants
- Physiological interference
- Effect of breathing
- Cardiovascular activity
- Others
- Salt and pepper noise
- Shot noise

Matrix Representation of Images

Matrix Representation of Images

- $F=\{F(m, n), m=0 \ldots M-I, n+0 \ldots N-I\}$
- Non-negativity and Upperbound Constraint
- Fmin <= $F(m, n)$ <= Fmax
- Finite energy
- $€ F=\Sigma \Sigma F 2(m, n)<=E \max$
- Smoothness
- $\mathrm{F}(\mathrm{m}, \mathrm{n})-\operatorname{mean}(\operatorname{Fnbd}(\mathrm{m}, \mathrm{n}))<=\mathrm{S}$

Vectorization

- Useful representation prior to application of transformation, estimation, optimization
- $\mathrm{F}=[12$
- 3 4]
- Row ordering
- $f=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\top}$
- Column ordering
- $f=\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]^{\top}$
$\circ \mathrm{F}$ is MxN , f is MNxI

Some definitions

- Energy $\epsilon=\mathrm{fTf}=\operatorname{Tr}[\mathrm{ff}]$
- Mean $\mu=\mathrm{E}[f]$
- Covariance $\sigma=\mathrm{E}[(\mathrm{f}-\mu)(\mathrm{f}-\mu) \mathrm{T}]=\mathrm{E}[\mathrm{ff}]-\mu \mu \mathrm{T}$
- Auto Correlation or scatter matrix

$$
\Phi=E[f f T]
$$

- For 2 images f,g we can define:
- Uncorrelatedness, Orthogonality, Statistical Independence (look up last week's slides)

Matrix Representation of Transforms I

- ID Transforms
- A signal may be represented as a linear combination of orthogonal basis functions

$$
\begin{gathered}
f(t)=\sum_{k=0}^{\infty} a_{k} \boldsymbol{\varphi}_{k}(t) \\
\int_{t_{0}}^{t_{0}+T} \varphi_{k}(t) \varphi_{l}^{*}(t) d t=1, k=l, 0, \text { otherwise } \\
a_{k}=\int_{t_{0}}^{t_{0}+T} f(t) \varphi_{k} *(t)
\end{gathered}
$$

Matrix Representation of Transforms II

- ID Transforms
- The set \{ak\} represents a ‘Transform space’
- If a ID signal is sampled at N points, the transform may be represented as matrix multiplication

$$
\begin{gathered}
F=L f \\
f=L^{*} f \\
L(k, n)=\varphi_{k}(n)
\end{gathered}
$$

Matrix Representation of Transforms III

- 2D Transforms
- For an NxN image $\mathrm{f}(\mathrm{m}, \mathrm{n})$ and its transform $\mathrm{F}(\mathrm{k}, \mathrm{l})$ are related by

$$
\begin{aligned}
& F(k, l)=\frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} f(m, n) \varphi(m, n, k, l) \\
& f(m, n)=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} F(k, l) \psi(m, n, k, l)
\end{aligned}
$$

- $\phi(\mathrm{m}, \mathrm{n}, \mathrm{k}, \mathrm{l})$ is the forward kernel and
- $\Psi(m, n, k, l)$ is the inverse kernel

2D Transforms I

- If $\phi(m, n, k, l)=\phi I(m, n) \phi 2(k, l), \phi$ is said to be separable
- If $\phi I(m, n)=\phi 2(m, n)$, it is said to be symmetric
- If ϕ is symmetric and separable, the 2D transform can be computed as 2 ID transforms sequentially

$$
\begin{aligned}
& F_{1}(m, l)=\sum_{n=0}^{N-1} f(m, n) \varphi(n, l) \\
& F(k, l)=\sum_{m=0}^{N-1} F_{1}(m, l) \varphi(m, k)
\end{aligned}
$$

2D Transforms II

- Example of separable, symmetric kernels:
- 2D DFT

$$
\begin{aligned}
& \varphi(m, n, k, l)=\exp \left[-j \frac{2 \pi}{N}(m k+n l)\right] \\
& \varphi(m, n, k, l)=\exp \left[-j \frac{2 \pi}{N} m k\right] \exp \left[-j \frac{2 \pi}{N} n l\right]
\end{aligned}
$$

- f is the $N x N$ image, W is a symmetric $N x N$ matrix and F is the NxN 2D DFT

$$
W(k, m)=\exp \left[-j \frac{2 \pi}{N} k m\right]
$$

Matrix Representation of Convolutions I

- ID Convolution with Causal IIR filter

$$
g(n)=\sum_{\alpha=0}^{n} f(\alpha) h(n-\alpha)
$$

- Can be represented in matrix form as

$$
\left(\begin{array}{c}
g(0) \\
g(1) \\
\vdots \\
g(N)
\end{array}\right)=\left(\begin{array}{cccc}
h(0) & 0 & \cdots & 0 \\
h(1) & h(0) & \vdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
h(N) & h(N-1) & \cdots & h(0)
\end{array}\right)\left(\begin{array}{c}
f(0) \\
f(1) \\
\vdots \\
f(N)
\end{array}\right)
$$

Matrix Representation of Convolutions II

- ID Convolution with Non-Causal FIR filter

$$
g(n)=\sum_{\alpha=0}^{M} f\left(\alpha+n-\frac{M}{2}\right) h\left(\frac{M}{2}-\alpha\right)
$$

- Can be represented in matrix form as

Matrix Representation of Convolutions III

- Periodic or circular convolution for finite, periodic $f(n)$ and $h(n)$

$$
g(n)=\sum_{\alpha=0}^{n} f(\alpha) h([n-\alpha] \bmod N)
$$

- Circular convolution of 2 signals of duration N is of length N (obtained also by IDFT of product of 2 DFTs)
- Linear convolution of 2 signals of duration N is of length 2 N -I
- Circular and linear convolution can be made identical by zero padding the signals to length 2 N - I

Matrix Representation of Convolutions IV

- Circular convolution in matrix form

$$
\left(\begin{array}{c}
g(0) \\
g(1) \\
\vdots \\
g(N-2) \\
g(N-1)
\end{array}\right)=\left(\begin{array}{ccccc}
h(0) & h(N-1) & \cdots & h(2) & h(1) \\
h(1) & h(0) & \ddots & h(3) & h(2) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
h(N-2) & h(N-1) & \ddots & h(0) & h(N-1) \\
h(N-1) & h(N-2) & \cdots & h(1) & h(0)
\end{array}\right)\left(\begin{array}{c}
f(0) \\
f(1) \\
\vdots \\
f(N-2) \\
f(N-1)
\end{array}\right)
$$

- This is called a circulant matrix.
- Important property: Diagonalized by DFT

2D Convolution I

- 2D LSI convolution

$$
g(m, n)=\sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} f(\alpha, \beta) h(m-\alpha, n-\beta)
$$

- 2D Circular convolution

$$
g(m, n)=\sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} f(\alpha, \beta) h([m-\alpha] \bmod M,[n-\beta] \bmod N)
$$

2D Convolution II

- Matrix representation

$$
g=\mathbf{h f}
$$

- Representation of \mathbf{h} as block circulant matrix
- Insert eqn 3.102 (pg. 22I)
- Submatrices $\mathbf{h}_{\mathbf{m}}$ are given by
- Insert eqn. 3.103 (pg. 22I)
- Each $\mathbf{h}_{\mathbf{m}}$ is circulant and \mathbf{h} is block circulant

Denoising Techniques

Mutliframe Averaging I

- Gated ensemble averaging
- Successive frames which are gated (phase locked) to a 'physiological state' in a recurring cycle are averaged to remove additive noise
- 'Recurring physiological state' is not very clearly defined as far as the brain is concerned!

$$
g=f+\eta
$$

- Law of large numbers suggests

$$
\sigma(g)=I / \operatorname{sqrt}(N) \sigma(\eta)
$$

Multiframe Averaging II

5 zero mean Gaussian noise ($\sigma=5$) frames were added to an anatomical image and averaged

Gaussian noised image
($\mathrm{MSE}=24.87$)

Multiframe avgd. Image (MSE = 4.85)

Spatial Domain Local Statistics Filters

- Cannot rely on ensemble of images to obtain properties of the image
- A (spatially) moving window is used to gather local statistics
- If the statistic is a linear combination of intensities in the nbd, it can be expressed as a LSI convolution

Mean Filter

- A local neighbourhood of each pixel is considered as an ensemble
- Each pixel is substituted by its local spatial average

Raw image

Gaussian noised image (MSE = 99.03)

Mean filter: 3×3

Mean filtered image (MSE = 80.09)

Oversmoothing may be avoided by selectively applying to 'non edge' pixels. This however, makes the filter non linear

Median Filter

- Each pixel is replaced by the median of its local neighborhood
- Uselful to remove outliers in the histogram (eg. Impulse noise)

Raw image

S\&P noised image (MSE = 2903.I)

Median filtered image (MSE = .2) 9

Order Statistics Filters

- A class of non linear filters
- The pixels in the nbd are ordered by intensity
- i-th entry is the output of the i-th order statistic filter
- Eg. $\left.\right|^{\text {st }}$ entry is the min-filter
- $2^{\text {nd }}$ entry is the max-filter
- Middle entry is the median-filter
- α trimmed mean filter: α percent of the top and bottom of the list are rejected and the mean of the rest is chosen

Frequency-domain filters

Take advantage using the frequency domain

Most image vary slowly and smootly across space

Energy concentrated in small region around $(k, l)=0$

Remove high-frecuency components

Procedure

- 2D Fourier transform of the image, padding the image with 0 - $\mathbf{F}(\mathbf{k}, \mathbf{l})$
- Design or select the appropiate 2D filter transfer function - H(k,l)
- Obtain the filtered image in Fourier Domain (center or fold) - $\mathbf{G}(\mathbf{k}, \mathbf{l})=\mathbf{H}(\mathbf{k}, \mathbf{l}) \mathbf{F}(\mathbf{k}, \mathbf{l})$
- Inverse Fourier Fourier Transform of G(k,l), (unfold)
- $\mathbf{G}(\mathbf{m}, \mathbf{n})$
- Trim the resulting image $g(m, n)$, if it was zero-padded

Ideal lowpass filter

$$
D 0=20
$$

$$
H(u, v)=\left\{\begin{array}{cc}
1, & D(k, l)<D_{0} \\
0, & \text { otherwise }
\end{array} \quad D(k, l)=\sqrt{k^{2}+l^{2}}\right.
$$

Butterworth lowpass filter

$n=5 \quad D 0=20$

$$
H(k, l)=\frac{1}{1+(\sqrt{2}-1)\left[\frac{D(k, l)}{D_{0}}\right]^{2 n}} \quad \begin{aligned}
& D(k, l)=\sqrt{k^{2}+l^{2}} \\
& D_{0} \rightarrow D(k, l)=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Removal of high-frequency noise

Ideal Filtered $\mp T$

Ideal Filtered image

Removal of peridodic artifacts

Raw image

Ideal Filtered image

Optimal filtering: Wiener filtering

Aim \Rightarrow minimize the mean square error

Wiener filtering: equations I

$$
\begin{gathered}
\xi=E\left\{\varepsilon(n)^{2}\right\}=E\left\{|(d-y)|^{2}\right\}=E\left\{|(f-\hat{f})|^{2}\right\} \\
\xi=E\left\{\left|\left(f-h^{H} g\right)\right|^{2}\right\}=P_{f}+h^{h} E\left\{g g^{T}\right\} h-h^{H} E\left\{f g^{H}\right\}-E\left\{g f^{H}\right\} h \\
\text { if } P=E\left\{f g^{H}\right\} \Longrightarrow \xi=P_{f}+h^{H} R_{g} h-h^{H} P-P^{H} h \\
\Delta_{h^{H}} \xi=R_{g} \boldsymbol{h}-\boldsymbol{P}=\mathbf{0} \\
h_{\text {optim }}=R_{g}^{-1} P=R_{g}^{-1} f g^{H} \quad h_{\text {optim,book }}=R_{f}\left(R_{f}+R_{n}\right)^{-1}
\end{gathered}
$$

Wiener filtering: equations II

$$
y=\hat{f}=h_{\text {opt }}{ }^{H} g=P^{H} R_{g}{ }^{-1} g \quad y=\hat{f}_{\text {book }}={ }_{\text {opt }}{ }^{H} g=R_{f}\left(R_{f}+R_{n}\right)^{-1} g
$$

Mse:

$$
\xi_{\min }=P_{f}-P^{H} R_{g}{ }^{-1} P
$$

Fourier domain:

$$
\widetilde{F(k, l)}=\left[\frac{1}{1+\frac{S_{\eta(k, l)}}{S_{f(k, l)}}}\right] G(k, l)
$$

Wiener filtering: more aplications

Removal of noise with Wiener filtering

Raw image

Gaussian noise

End of the presentation

Questions round

