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CharacterizationCharacterization of of ArfitactsArfitacts



CharacterizationCharacterization of of ArtifactsArtifacts II

Random noise

•Pdf

•Mean

•Variance



CharacterizationCharacterization of of ArtifactsArtifacts IIII

� Image

Detected image Image frame
Noise

(typically additive)  



CharacterizationCharacterization of of ArtifactsArtifacts IIIIII

� Statistical expectation

• Estimated mean ( M observations)

• Autocorrelation function



CharacterizationCharacterization of of ArtifactsArtifacts IVIV

� Stationarity in strict sense
Statistics not affected by a shift in time or space

� Stationarity in wide sense
Constant mean and autocorrelation depends onlyConstant mean and autocorrelation depends only
upon the shift in time or space



CharacterizationCharacterization of of ArtifactsArtifactsVV

� Ergodicity

• Temporal statistics independent of the sample
observed

• Statistics may be computed from a single observationStatistics may be computed from a single observation

Original realization of a stationary 

and ergodic process

Two half duration realizations 



GaussianGaussian noisenoise II

� Completely specified by the mean and variance

� Important central limit teorem

� Termal noise electronic components� Termal noise electronic components



GaussianGaussian noisenoise IIII
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UniformUniform distributeddistributed noisenoise

� Quantization noise
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LaplacianLaplacian distributeddistributed noisenoise

� Errors in linear prediction
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PoissonPoisson noisenoise

� Quantum noise, photon noise

� Signal dependant

� Systems in low-light conditions
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SpeckleSpeckle noisenoise

� Caused by roughness surface

� Signal depedant

� Rayleigh distributed
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OtherOther typestypes of of noisenoise and and artifactartifact

� Structured noise
� Power line interference

� Grid artifact parallel periodic strips

� Surgical implants

� Physiological interference� Physiological interference
� Effect of breathing

� Cardiovascular activity

� Others
� Salt and pepper noise

� Shot noise



Matrix Representation of ImagesMatrix Representation of ImagesMatrix Representation of ImagesMatrix Representation of Images



Matrix Representation of ImagesMatrix Representation of Images

� F = {F(m,n), m = 0…M-1, n + 0…N-1}

� Non-negativity and Upperbound Constraint

◦ Fmin <= F(m,n) <= Fmax

� Finite energy

◦ ЄF = ΣΣF2(m,n) <= Emax

� Smoothness

◦ F(m,n) – mean(Fnbd(m,n)) <= S



VectorizationVectorization

� Useful representation prior to application of 
transformation, estimation, optimization

� F = [1 2

� 3 4]

◦ Row ordering◦ Row ordering

� f = [1 2 3 4]T

◦ Column ordering

� f = [1 3 2 4]T

◦ F is MxN, f is MNx1



Some definitionsSome definitions

� Energy Є = fTf = Tr[ffT]

� Mean μ = E[f]

� Covariance σ = E[(f - μ)(f – μ)T] = E[ffT] – μμT

� Auto Correlation or scatter matrix
Φ = E[ffT]

� For 2 images f,g we can define:

� Uncorrelatedness, Orthogonality, Statistical 
Independence (look up last week’s slides)



Matrix Representation of Transforms IMatrix Representation of Transforms I

� 1D Transforms

� A signal may be represented as a linear 
combination of orthogonal basis functions
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Matrix Representation of Transforms IIMatrix Representation of Transforms II

� 1D Transforms

� The set {ak} represents a ‘Transform space’

� If a 1D signal is sampled at N points, the 
transform may be represented as matrix 
multiplicationmultiplication

F Lf=

*f L f=

( , ) ( )kL k n nϕ=



Matrix Representation of Transforms IIIMatrix Representation of Transforms III

� 2D Transforms
� For an NxN image f(m,n) and its transform 
F(k,l) are related by
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� φ(m,n,k,l) is the forward kernel and
� Ψ(m,n,k,l) is the inverse kernel
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2D Transforms I2D Transforms I

� If φ(m,n,k,l) = φ1(m,n) φ2(k,l), φ is said to be 
separable

� If φ1(m,n) = φ2(m,n), it is said to be symmetric

� If φ is symmetric and separable, the 2D 
transform can be computed as 2 1D transforms transform can be computed as 2 1D transforms 
sequentially 

1

1
0

1

1
0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

N

n

N

m

F m l f m n n l

F k l F m l m k

ϕ

ϕ

−

=

−

=

=

=

∑

∑



2D Transforms II2D Transforms II

� Example of separable, symmetric kernels:

� 2D DFT

2
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� f is the NxN image, W is a symmetric NxN
matrix and F is the NxN 2D DFT
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Matrix Representation of Convolutions IMatrix Representation of Convolutions I

� 1D Convolution with Causal IIR filter

� Can be represented in matrix form as
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� Can be represented in matrix form as



Matrix Representation of Convolutions IIMatrix Representation of Convolutions II

� 1D Convolution with Non-Causal FIR filter

� Can be represented in matrix form as
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( ) ( ) ( )

M M M
g n f n h

α
α α

=

= + − −∑

Can be represented in matrix form as



Matrix Representation of Convolutions IIIMatrix Representation of Convolutions III

� Periodic or circular convolution for finite, periodic f(n) 
and h(n)

0
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� Circular convolution of 2 signals of duration N is of 
length N (obtained also by IDFT of product of 2 DFTs)

� Linear convolution of 2 signals of duration N is of length 
2N-1

� Circular and linear convolution can be made identical by 
zero padding the signals to length 2N-1



Matrix Representation of Convolutions IVMatrix Representation of Convolutions IV

� Circular convolution in matrix form

� This is called a circulant matrix. 

� Important property: Diagonalized by DFT



2D Convolution I2D Convolution I

� 2D LSI convolution
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2D Convolution II2D Convolution II

� Matrix representation

� Representation of h as block circulant
matrix

g = hf

� Insert eqn 3.102 (pg. 221)

� Submatrices hm are given by

� Insert eqn. 3.103 (pg. 221)

� Each hm is circulant and h is block 
circulant



DenoisingDenoisingTechniquesTechniquesDenoisingDenoisingTechniquesTechniques



MutliframeMutliframe Averaging IAveraging I

� Gated ensemble averaging

� Successive frames which are gated (phase locked) to a 
‘physiological state’ in a recurring cycle are averaged to 
remove additive noise

� ‘Recurring physiological state’ is not very clearly defined 
as far as the brain is concerned!

g = f + η

� Law of large numbers suggests

σ(g) = 1/sqrt(N) σ(η)



MultiframeMultiframe Averaging IIAveraging II

5 zero mean Gaussian noise (σ=5) frames were 
added to an anatomical image and averaged

Raw image Gaussian noise Multiframe
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Raw image Gaussian noised image 
(MSE = 24.87)

Multiframe avgd. Image 
(MSE = 4.85)



Spatial Domain Local Statistics FiltersSpatial Domain Local Statistics Filters

� Cannot rely on ensemble of images to obtain properties 
of the image

� A (spatially) moving window is used to gather local 
statistics

� If the statistic is a linear combination of intensities in � If the statistic is a linear combination of intensities in 
the nbd, it can be expressed as a LSI convolution



Mean FilterMean Filter

� A local neighbourhood of each pixel is considered as an 
ensemble

� Each pixel is substituted by its local spatial average

Raw image Gaussian noise Mean filter: 3x3
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Raw image Gaussian noised image 
(MSE = 99.03)

Mean filtered image (MSE = 
80.09)

Oversmoothing may be avoided by selectively applying to ‘non edge’ pixels. This 
however, makes the filter non linear



Median FilterMedian Filter

� Each pixel is replaced by the median of its local 
neighborhood

� Uselful to remove outliers in the histogram (eg. Impulse 
noise)

Raw image Salt and pepper noise corrupted image Median filtered image of SnP noise
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Raw image S&P noised image (MSE = 
2903.1)

Median filtered image (MSE 
= .2)9



Order Statistics FiltersOrder Statistics Filters

� A class of non linear filters

� The pixels in the nbd are ordered by intensity

� i-th entry is the output of the i-th order statistic filter

Eg. 1st entry is the min-filter� Eg. 1st entry is the min-filter

� 2nd entry is the max-filter

� Middle entry is the median-filter

� α trimmed mean filter: α percent of the top and bottom 
of the list are rejected and the mean of the rest is 
chosen



FrequencyFrequency--domaindomain filtersfilters

Take advantage using the frequency domain

Most image vary slowly and smootly across space

Energy concentrated in small region around (k,l)=0

Remove high-frecuency components



ProcedureProcedure

1

• 2D Fourier transform of the image, padding the image with 0 
• F(k,l) 

2

• Design or select the appropiate 2D filter transfer function
• H(k,l)

3

• Obtain the filtered image in Fourier Domain (center or fold)
• G(k,l)=H(k,l)F(k,l)

4

• Inverse Fourier FourierTransform of G(k,l), (unfold)
• G(m,n)

5
• Trim the resulting image g(m,n),  if it was zero-padded



Ideal Ideal lowpasslowpass filterfilter

D0 = 20

Ideal Mask
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ButterworthButterworth lowpasslowpass filterfilter

n=5  D0 = 20

Butterworth Mask
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RemovalRemoval of of highhigh--frequencyfrequency noisenoise

Ideal Filtered image
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RemovalRemoval of of peridodicperidodic artifactsartifacts

Raw image
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OptimalOptimal filteringfiltering:  :  WienerWiener filteringfiltering

Aim minimize the mean square error

h

+

+

Reference
d=



WienerWiener filteringfiltering: : equationsequations II



WienerWiener filteringfiltering: : equationsequations IIII

Mse:

Fourier 
domain:



WienerWiener filteringfiltering: more : more aplicationsaplications



RemovalRemoval of of noisenoise withwithWienerWiener filteringfiltering

Gaussian noise
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EndEnd of of thethe presentationpresentation

Questions round


