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Motivation
• The main issue in probabilistic machine learning 

models is to find the posterior distribution over 
the model parameters and latent variables

• EM uses a point estimate for parameters which 
may be prone to over-fitting.  Also, the E-step 
may not be solvable for some models.

• Sampling is prohibitively slow for large latent 
variable models

• Variational Bayesian (VB) learning is a good 
compromise



Overfitting
• An overfitted model explains the current 

data but does not generalize well to new 
data

• 6th order polynomial is fitted to 10 points 
by maximum likelihood and sampling

2.5. Approximations 27

Figure 2.2: A sixth order polynomial is fitted to 10 data points. Left: Maximum
likelihood solution. Right: Bayesian solution. The three curves present 5%, 50%
and 95% fractiles.

performance with unseen test data starts to get worse during the learning with
training data (Haykin, 1999; Bishop, 1995; Chen, 1990). The system starts to lose
its ability to generalise. The same can happen when increasing the complexity
of the model. The model is said to overfit to the data. In this case the model
becomes too complicated and concentrates on random fluctuations in the data.
The left subfigure of Figure 2.2 shows an example of overfitting.

When the model is too simple or the learning is stopped too early, the problem
is called underfitting or underlearning respectively. Balancing between over- and
underfitting has perhaps been the main difficulty in model building. There are
several ways to fight overfitting and overlearning (Haykin, 1999; Bishop, 1995;
Chen, 1990). A popular method is to select the best time to stop learning or the
best complexity of a model by cross-validation (Stone, 1974; Haykin, 1999). Part
of the training data is left for validation and the models are compared based on
their performance with the validation set.

The problems of overlearning and overfitting are mostly related to point estimates.
The example in Figure 2.2 is solved by using the whole posterior distribution in-
stead of a single solution. The use of a point estimate is to approximate integrals so
it should be sensitive to the probability mass rather than to the probability density.
Unfortunately, ML and MAP estimates are attracted to high but sometimes nar-
row peaks. Figure 2.3 shows a situation, where search for the MAP solution first
finds a good representative of the probability mass, but then moves to the highest
peak which is on the border. This type of situation seems to be very common and
the effect becomes stronger, when the dimensionality increases. Appendix D of
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Posterior mass matters
• You want to make predictions about new 

data Y based on existing data X

• This is solved by fitting a model to the data 
and then predicting based on that

• Note how you need to integrate over the 
posterior

• If you need to select a single solution      , it 
should represent the posterior mass well

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

p(Y | X) =
∫
p(Y | X,Z, θ)p(Z, θ | X)dZdθ

Z, θ

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{
ln
p(Z | X, θ)
q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{
ln

q(Z, θ)
p(X,Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X,Mi)) − ln p(X | Mi)
≥ − ln p(X | Mi)

p(sj) = N
(
sj; 0, I

)
, p(ε j) = N

(
εj; 0, vI

)
(1)

Fully observed data: The E-step estimates the conditional distribution of
the hidden variables given the data and the current values of the model
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Why early stopping might help
28 2. Bayesian probability theory

Figure 2.3: A hypothetical posterior pdf. A point estimate could first find a good
representative of the probability mass, but then overfits to a narrow peak.

Publication I gives an example where point estimates fail completely.

2.5.2 The Laplace approximation

Compared to the point estimates, a more accurate way to approximate the inte-
grals in Equations (2.2), (2.3), and (2.4) is to use the Laplace approximation (see
Bishop, 1995; MacKay, 2003). The basic idea is to find the maximum of the func-
tion to be integrated and apply a second order Taylor series approximation for the
logarithm of that function. In case of computing an expectation over the poste-
rior distribution, the maximum is the MAP solution and the second order Taylor
series corresponds to a Gaussian distribution for which integrals can be computed
analytically. The Laplace approximation can be used to select the best solution
in case several local maxima have been found since a broad peak is preferred over
a high but narrow peak. Unfortunately the Laplace approximation does not help
in situations where a good representative of the probability mass is not a local



Example: Probabilistic Principal 
Component Analysis (PCA)

• Continuous-valued data vectors x are 
modelled as a linear mixture of source 
vectors s and noise

• Traditional PCA is the case where the 
noise goes to zero

4 Probabilistic PCA

Probabilistic PCA (PPCA) [15] explicitly includes the noise term in a probabilistic model

xj = Asj + b + εj . (31)

Both the principal components sj and the noise εj are assumed Gaussian:

p(sj) = N (sj ; 0, I) , p(εj) = N (εj ; 0, vI) (32)

and the model parameters include A and b. The model can be identified by finding the maximum
likelihood (ML) estimate for the model parameters, for example, using the EM algorithm.

Fully observed data: The E-step estimates the conditional distribution of the hidden vari-
ables given the data and the current values of the model parameters:

p(S|X,A, v) =
n∏

j=1

N (sj; sj ,Σs) (33)

where the means can be summarized in a matrix S and the covariance Σ is same for each
column vector sj :

S = Ψ−1ATX , Σs = vΨ−1 , Ψ = ATA + vI . (34)

The M-step reestimates the model parameters as

A = XST(nΣs + SST)−1 (35)

v =
1
nd

d∑

i=1

n∑

j=1

(
xij − aT

i sj

)2 +
1
d

tr(AΣsAT) . (36)

Tipping and Bishop showed that A converges to the principal subspace [15]. In the zero-noise
limit, that is for v → 0, the iterations (34)–(35) reduce to the least-squares projections in (9)
[12]. Note also that the ML estimator for b is given by the row-wise mean of the data [15].
Therefore, it can be computed once and removed from the data in the preprocessing step.

The generalization to the case with missing values yields the following modifications to the EM-algorithm.
The E-step:

p(S|X,A,b, v) =
∏

j

N (sj; sj ,Σs,j) (37)

sj = Ψ−1
j AT

j (
◦
X:j − Bj) , Σs,j = vΨ−1

j (38)

Ψj = AT
j Aj + vI , j = 1, . . . , n . (39)

The M-step:

bi =
1

|Oi|
∑

j∈Oi

[
xij − aT

i sj

]
(40)

aT
i =

( ◦
Xi: − bi

)T S
T
i

(
SiS

T
i +

∑

j∈Oi

Σs,j

)−1
, i = 1, . . . , d (41)

v =
1
N

∑

ij∈O

(
xij − aT

i sj

)2 +
1
N

∑

ij∈O

aT
i Σs,jai , (42)

where Si is defined similarly to (13).

There are several important distinctions compared to the fully observed data: 1) Optimal b depends on
other parameters and therefore it has to be updated in the iterative procedure. 2) The covariance Σj

is different for each sj, which is a characteristic of nonlinear models. 3) Each row of A is recomputed
based only on those columns of S which contribute to the reconstruction of the observed values in the
corresponding row of the data matrix. The same applies to the computation of the columns of S. This
makes the computations much more involved.
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Recap: EM-algorithm
• EM-algorithm solves latent variable models 

by alternating between two steps:

• E-step updates the distribution over the 
latent variables Z

• M-step updates the estimate of parameters
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The EM algorithm is useful for latent variable models, where the model
defines P(X, Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ ← argmax
θ

EQ(Z) {ln P(X, Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

1. Given a Naı̈ve Bayes model with three binary variables defined by the
tables and data below, run an iteration of the EM algorithm.

P(C)
C=0 0.7
C=1 0.3
P(X1 | C) C=0 C=1

X1=0 0.5 0.8
X1=1 0.5 0.2

P(X2 | C) C=0 C=1
X2 = 0 0.6 0.3
X2 = 1 0.4 0.7

Data:
t X1t X2t

1 1 1
2 0 1

(continues on the next page)

θ



EM for PPCA 
(don’t learn the formulas by heart)

• The source posterior is a Gaussian:

• E-step:

• M-step:

4 Probabilistic PCA
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Fully observed data: The E-step estimates the conditional distribution of the hidden vari-
ables given the data and the current values of the model parameters:
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n∏

j=1
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column vector sj :

S = Ψ−1ATX , Σs = vΨ−1 , Ψ = ATA + vI . (34)

The M-step reestimates the model parameters as

A = XST(nΣs + SST)−1 (35)

v =
1
nd

d∑

i=1

n∑

j=1

(
xij − aT

i sj

)2 +
1
d

tr(AΣsAT) . (36)

Tipping and Bishop showed that A converges to the principal subspace [15]. In the zero-noise
limit, that is for v → 0, the iterations (34)–(35) reduce to the least-squares projections in (9)
[12]. Note also that the ML estimator for b is given by the row-wise mean of the data [15].
Therefore, it can be computed once and removed from the data in the preprocessing step.

The generalization to the case with missing values yields the following modifications to the EM-algorithm.
The E-step:

p(S|X,A,b, v) =
∏

j

N (sj; sj ,Σs,j) (37)

sj = Ψ−1
j AT

j (
◦
X:j − Bj) , Σs,j = vΨ−1

j (38)

Ψj = AT
j Aj + vI , j = 1, . . . , n . (39)

The M-step:

bi =
1

|Oi|
∑

j∈Oi

[
xij − aT

i sj

]
(40)

aT
i =

( ◦
Xi: − bi

)T S
T
i

(
SiS

T
i +

∑

j∈Oi

Σs,j

)−1
, i = 1, . . . , d (41)

v =
1
N

∑

ij∈O

(
xij − aT

i sj

)2 +
1
N

∑

ij∈O

aT
i Σs,jai , (42)

where Si is defined similarly to (13).

There are several important distinctions compared to the fully observed data: 1) Optimal b depends on
other parameters and therefore it has to be updated in the iterative procedure. 2) The covariance Σj

is different for each sj, which is a characteristic of nonlinear models. 3) Each row of A is recomputed
based only on those columns of S which contribute to the reconstruction of the observed values in the
corresponding row of the data matrix. The same applies to the computation of the columns of S. This
makes the computations much more involved.
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xij − aT

i sj

)2 +
1
d

tr(AΣsAT) . (36)

Tipping and Bishop showed that A converges to the principal subspace [15]. In the zero-noise
limit, that is for v → 0, the iterations (34)–(35) reduce to the least-squares projections in (9)
[12]. Note also that the ML estimator for b is given by the row-wise mean of the data [15].
Therefore, it can be computed once and removed from the data in the preprocessing step.

The generalization to the case with missing values yields the following modifications to the EM-algorithm.
The E-step:

p(S|X,A,b, v) =
∏

j

N (sj; sj ,Σs,j) (37)

sj = Ψ−1
j AT

j (
◦
X:j − Bj) , Σs,j = vΨ−1

j (38)

Ψj = AT
j Aj + vI , j = 1, . . . , n . (39)

The M-step:

bi =
1

|Oi|
∑

j∈Oi

[
xij − aT

i sj

]
(40)

aT
i =

( ◦
Xi: − bi

)T S
T
i

(
SiS

T
i +

∑

j∈Oi

Σs,j

)−1
, i = 1, . . . , d (41)

v =
1
N

∑

ij∈O

(
xij − aT

i sj

)2 +
1
N

∑

ij∈O

aT
i Σs,jai , (42)

where Si is defined similarly to (13).

There are several important distinctions compared to the fully observed data: 1) Optimal b depends on
other parameters and therefore it has to be updated in the iterative procedure. 2) The covariance Σj

is different for each sj, which is a characteristic of nonlinear models. 3) Each row of A is recomputed
based only on those columns of S which contribute to the reconstruction of the observed values in the
corresponding row of the data matrix. The same applies to the computation of the columns of S. This
makes the computations much more involved.
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X=AS!?

• The model equation X=AS is symmetric 
with respect to A and S

• Why are A and S treated so differently?

• Would it be possible to model the 
posterior of both A and S with a Gaussian?



VB-EM algorithm
• The VB-EM algorithm alternates between 

updates for the latent variables and 
parameters

• Steps are symmetric and they resemble the 
E-step of the EM algorithm

• VB-E step:

• VB-M step:

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

The EM algorithm is useful for latent variable models, where themodel
defines P(X,Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ ← argmax
θ

EQ(Z) {ln P(X,Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

VB-EM algorithm:

Cost: KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ) ln
p(Z | X, θ)
q(Z, θ)

(3)

(4)

VBE-step: q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))} (5)

VBM-step: q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))} (6)

1. Given a Naı̈ve Bayes model with three binary variables defined by the
tables and data below, run an iteration of the EM algorithm.

P(C)
C=0 0.7
C=1 0.3
P(X1 | C) C=0 C=1
X1=0 0.5 0.8
X1=1 0.5 0.2
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defines P(X,Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ ← argmax
θ

EQ(Z) {ln P(X,Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

VB-EM algorithm:

Cost: KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ) ln
p(Z | X, θ)
q(Z, θ)

(3)

(4)

VBE-step: q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))} (5)

VBM-step: q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))} (6)

1. Given a Naı̈ve Bayes model with three binary variables defined by the
tables and data below, run an iteration of the EM algorithm.

P(C)
C=0 0.7
C=1 0.3
P(X1 | C) C=0 C=1
X1=0 0.5 0.8
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Variational Bayes (key slide!)

• VB works by fitting a distribution q over the 
unknown variables to the true posterior by 
minimizing the KL divergence:

• The form of q can be chosen such that the 
expectations are tractable

• For instance,                           is assumed 
almost always, allowing the VB-EM algorithm

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

The EM algorithm is useful for latent variable models, where the model
defines P(X, Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ ← argmax
θ

EQ(Z) {ln P(X, Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

VB-stuff:

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{

ln
p(Z | X, θ)

q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X, Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{

ln
q(Z, θ)

p(X, Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X, Mi)) − ln p(X | Mi)

≥ − ln p(X | Mi)

T.61.5140 Machine Learning: Advanced Probablistic Methods
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p(Y | X) =
∫
p(Y | X,Z, θ)p(Z, θ | X)dZdθ

Z, θ

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{
ln

q(Z, θ)
p(Z, θ | X)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{
ln

q(Z, θ)
p(X,Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X,Mi)) − ln p(X | Mi)
≥ − ln p(X | Mi)

p(sj) = N
(
sj; 0, I

)
, p(ε j) = N

(
εj; 0, vI

)
(1)

Fully observed data: The E-step estimates the conditional distribution of
the hidden variables given the data and the current values of the model



Example 1
• model

• prior

• data

26 2. Bayesian probability theory
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).
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unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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Example 2
• model

• prior

• data
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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Figure 2.1: Posterior distributions of x and y are shown in black contours. Max-
imum a posterior estimate is plotted as a red star, Bayes estimate (or the expec-
tation over the posterior) is plotted as a red circle. Variational Bayesian solution
with a Gaussian posterior approximation with diagonal covariance is shown in
blue as a dot surrounded by ellipses. Left: model p(z) = N (z; xy, 0.02), obser-
vation z = 1, priors p(x) = N (x; 0, 1), p(y) = N (y; 0, 1). Right: model p(z) =
N (z; y, exp(−x)), observation z = 2, priors p(x) = N (x;−1, 5), p(y) = N (y; 0, 5).

Figure 2.1 shows two posterior distributions. The models are not particularly
meaningful (having just two unknown variables), but they are chosen to high-
light differences in various posterior approximations, which are described in the
following.

2.5.1 Point estimates

Point estimates use a single representative value to summarise the whole poste-
rior distribution. The maximum likelihood (ML) estimate (or solution) for the
unknown variables Θ is the point in which the likelihood p(X | Θ,H) is high-
est. The maximum a posteriori (MAP) estimate is the one with highest posterior
probability density p(Θ | X ,H). Note that a common and even simpler criterion,
the mean square error, is equivalent to the ML estimate assuming Gaussian noise
with constant variance (Bishop, 1995).

An iterative learning algorithm is said to overlearn the training data set, when its
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VB-EM for PCA
(don’t learn the formulas by heart)

The M-step reestimates the model parameters as

A = XS
T(nΣs + SS

T)−1 (4)

v =
1

nd

d

∑
i=1

n

∑
j=1

(
xij − aTi sj

)2 +
1

d
tr(AΣsA
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Compare to EM
• The source posterior is a Gaussian:

• E-step:

• M-step:

4 Probabilistic PCA

Probabilistic PCA (PPCA) [15] explicitly includes the noise term in a probabilistic model

xj = Asj + b + εj . (31)

Both the principal components sj and the noise εj are assumed Gaussian:

p(sj) = N (sj ; 0, I) , p(εj) = N (εj ; 0, vI) (32)

and the model parameters include A and b. The model can be identified by finding the maximum
likelihood (ML) estimate for the model parameters, for example, using the EM algorithm.

Fully observed data: The E-step estimates the conditional distribution of the hidden vari-
ables given the data and the current values of the model parameters:

p(S|X,A, v) =
n∏

j=1

N (sj; sj ,Σs) (33)

where the means can be summarized in a matrix S and the covariance Σ is same for each
column vector sj :

S = Ψ−1ATX , Σs = vΨ−1 , Ψ = ATA + vI . (34)

The M-step reestimates the model parameters as

A = XST(nΣs + SST)−1 (35)

v =
1
nd

d∑

i=1

n∑

j=1

(
xij − aT

i sj

)2 +
1
d

tr(AΣsAT) . (36)

Tipping and Bishop showed that A converges to the principal subspace [15]. In the zero-noise
limit, that is for v → 0, the iterations (34)–(35) reduce to the least-squares projections in (9)
[12]. Note also that the ML estimator for b is given by the row-wise mean of the data [15].
Therefore, it can be computed once and removed from the data in the preprocessing step.

The generalization to the case with missing values yields the following modifications to the EM-algorithm.
The E-step:

p(S|X,A,b, v) =
∏

j

N (sj; sj ,Σs,j) (37)

sj = Ψ−1
j AT

j (
◦
X:j − Bj) , Σs,j = vΨ−1

j (38)

Ψj = AT
j Aj + vI , j = 1, . . . , n . (39)

The M-step:

bi =
1

|Oi|
∑

j∈Oi

[
xij − aT

i sj

]
(40)

aT
i =

( ◦
Xi: − bi

)T S
T
i

(
SiS

T
i +

∑

j∈Oi

Σs,j

)−1
, i = 1, . . . , d (41)

v =
1
N

∑

ij∈O

(
xij − aT

i sj

)2 +
1
N

∑

ij∈O

aT
i Σs,jai , (42)

where Si is defined similarly to (13).

There are several important distinctions compared to the fully observed data: 1) Optimal b depends on
other parameters and therefore it has to be updated in the iterative procedure. 2) The covariance Σj

is different for each sj, which is a characteristic of nonlinear models. 3) Each row of A is recomputed
based only on those columns of S which contribute to the reconstruction of the observed values in the
corresponding row of the data matrix. The same applies to the computation of the columns of S. This
makes the computations much more involved.
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Model selection
• The cost function that is minimized in 

practice is also includes a part for model 
evidence p(X|M)

• By minimizing the cost, we get a lower 
bound for the model evidence

• We can thus compare different models M

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

The EM algorithm is useful for latent variable models, where the model
defines P(X, Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ ← argmax
θ

EQ(Z) {ln P(X, Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

VB-stuff:

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{

ln
p(Z | X, θ)

q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X, Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{

ln
q(Z, θ)

p(X, Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X, Mi)) − ln p(X | Mi)

≥ − ln p(X | Mi)



Learning algorithms
• q can be parameterized for instance by 

posterior means and covariances

• Those variational parameters can then be 
updated by any means to minimize to cost

• This is useful if the VB-EM updates are 
intractable

• Gradient based methods can be faster, too

T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

p(Y | X) =
∫
p(Y | X,Z, θ)p(Z, θ | X)dZdθ

Z, θ

KL (q(Z, θ) ‖ p(Z, θ | X)) = Eq(Z,θ)

{
ln
p(Z | X, θ)
q(Z, θ)

}

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))}

q(θ) ← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X,Z))}

q(Z, θ) = q(Z)q(θ)

CVB = Eq

{
ln

q(Z, θ)
p(X,Z, θ | Mi)

}

= KL (q(Z, θ) ‖ p(Z, θ | X,Mi)) − ln p(X | Mi)
≥ − ln p(X | Mi)

p(sj) = N
(
sj; 0, I

)
, p(ε j) = N

(
εj; 0, vI

)
(1)

Fully observed data: The E-step estimates the conditional distribution of
the hidden variables given the data and the current values of the model



Discrete models

• Consider VB learning of Bayesian networks

• Instead of a single set of parameters 
(conditional probability tables), we would 
have distribution       over the parameters 

• The certainty of CPTs would be estimated

• The VB cost function could be used to 
select the best model structure 
(it penalizes complex models automatically) 
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• By restricting the form of       , 
the inference (E-step) can be made faster
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Pros and cons of VB

• + Robust against overfitting

• + Fast (compared to sampling)

• + Applicable to a large family of models

• - Intensive formulae (lots of integrals)

• - Prone to bad but locally optimal solutions
(lot of work with arranging good 
initializations and other tricks to avoid them)



Software packages for VB on 
Bayesian networks (1/2)

• VIBES by Winn and Bishop

• discrete and continuous values

• posterior approximation is factorized such 
that disjoint groups of variables are 
independent but dependencies within the 
group are modelled

• variational message passing algorithm



Software packages for VB on 
Bayesian networks (2/2)

• Bayes Block by Valpola et al.

• concentrates on continuous values

• fully factorial posterior approximation

• includes nonlinearities

• allows for variance modelling

• message passing with line searches for 
speed-up


