Variational Bayesian Learning

Tapani Raiko

April I7, 2008
Machine learning:Advanced probabilistic methods

Motivation

- The main issue in probabilistic machine learning models is to find the posterior distribution over the model parameters and latent variables
- EM uses a point estimate for parameters which may be prone to over-fitting. Also, the E-step may not be solvable for some models.
- Sampling is prohibitively slow for large latent variable models
- Variational Bayesian (VB) learning is a good compromise

Overfitting

- An overfitted model explains the current data but does not generalize well to new data
- 6th order polynomial is fitted to 10 points by maximum likelihood and sampling

Posterior mass matters

- You want to make predictions about new data Y based on existing data X
- This is solved by fitting a model to the data and then predicting based on that

$$
p(\mathbf{Y} \mid \mathbf{X})=\int p(\mathbf{Y} \mid \mathbf{X}, \mathbf{Z}, \boldsymbol{\theta}) p(\mathbf{Z}, \boldsymbol{\theta} \mid \mathbf{X}) d \mathbf{Z} d \boldsymbol{\theta}
$$

- Note how you need to integrate over the posterior $p(\mathbf{Z}, \boldsymbol{\theta} \mid \mathbf{X})$
- If you need to select a single solution Z, θ, it should represent the posterior mass well

Why early stopping might help

Example: Probabilistic Principal Component Analysis (PCA)

$$
\begin{gathered}
\mathbf{x}_{j}=\mathbf{A} \mathbf{s}_{j}+\boldsymbol{\epsilon}_{j} \\
p\left(\mathbf{s}_{j}\right)=\mathcal{N}\left(\mathbf{s}_{j} ; 0, \mathbf{I}\right), \quad p\left(\boldsymbol{\epsilon}_{j}\right)=\mathcal{N}\left(\boldsymbol{\epsilon}_{j} ; 0, v \mathbf{I}\right)
\end{gathered}
$$

- Continuous-valued data vectors x are modelled as a linear mixture of source vectors s and noise
- Traditional PCA is the case where the noise goes to zero

Recap: EM-algorithm

- EM-algorithm solves latent variable models by alternating between two steps:
- E-step updates the distribution over the latent variables \mathbf{Z}
- M-step updates the estimate of parameters $\boldsymbol{\theta}$

E-step: $Q(\mathbf{Z}) \leftarrow P(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})$
M-step: $\boldsymbol{\theta} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} E_{Q(\mathbf{Z})}\{\ln P(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})\}$

EM for PPCA

(don't learn the formulas by heart)

- The source posterior is a Gaussian:

$$
p(\mathbf{S} \mid \mathbf{X}, \mathbf{A}, v)=\prod_{j=1}^{n} \mathcal{N}\left(\mathbf{s}_{j} ; \overline{\mathbf{s}}_{j}, \boldsymbol{\Sigma}_{\mathbf{s}}\right)
$$

- E-step:
$\overline{\mathbf{S}}=\boldsymbol{\Psi}^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{X}, \quad \boldsymbol{\Sigma}_{\mathbf{s}}=v \boldsymbol{\Psi}^{-1}, \quad \boldsymbol{\Psi}=\mathbf{A}^{\mathrm{T}} \mathbf{A}+v \mathbf{I}$.
- M-step:

$$
\mathbf{A}=\mathbf{X S}^{\mathrm{T}}\left(n \boldsymbol{\Sigma}_{\mathbf{s}}+\mathbf{S S}^{\mathrm{T}}\right)^{-1}
$$

$$
v=\frac{1}{n d} \sum_{i=1}^{d} \sum_{j=1}^{n}\left(x_{i j}-\mathbf{a}_{i}^{\mathrm{T}} \overline{\mathbf{s}}_{j}\right)^{2}+\frac{1}{d} \operatorname{tr}\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{s}} \mathbf{A}^{\mathrm{T}}\right)
$$

$X=A S!?$

- The model equation $X=A S$ is symmetric with respect to A and S
- Why are A and S treated so differently?
- Would it be possible to model the posterior of both A and S with a Gaussian?

VB-EM algorithm

- The VB-EM algorithm alternates between updates for the latent variables and parameters
- Steps are symmetric and they resemble the E-step of the EM algorithm
- VB-E step:

$$
q(\mathbf{Z}) \leftarrow \underset{q(\mathbf{Z})}{\operatorname{argmin}} E_{q(\boldsymbol{\theta})}\{\operatorname{KL}(q(\mathbf{Z}) \| p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}))\}
$$

- VB-M step:

$$
q(\boldsymbol{\theta}) \leftarrow \underset{q(\boldsymbol{\theta})}{\operatorname{argmin}} E_{q(\mathbf{Z})}\{\operatorname{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{Z}))\}
$$

Variational Bayes (key slide!)

- VB works by fitting a distribution q over the unknown variables to the true posterior by minimizing the KL divergence:

$$
\operatorname{KL}(q(\mathbf{Z}, \boldsymbol{\theta}) \| p(\mathbf{Z}, \boldsymbol{\theta} \mid \mathbf{X}))=E_{q(\mathbf{Z}, \boldsymbol{\theta})}\left\{\ln \frac{q(\mathbf{Z}, \boldsymbol{\theta})}{p(\mathbf{Z}, \boldsymbol{\theta} \mid \mathbf{X})}\right\}
$$

- The form of q can be chosen such that the expectations are tractable
- For instance, $q(\mathbf{Z}, \boldsymbol{\theta})=q(\mathbf{Z}) q(\boldsymbol{\theta})$ is assumed almost always, allowing the VB-EM algorithm

Example I

Example 2

VB-EM for PCA

(don't learn the formulas by heart)

$$
\begin{gathered}
q(\mathbf{A}, \mathbf{S})=\prod_{i=1}^{d} \mathcal{N}\left(\mathbf{a}_{i} ; \overline{\mathbf{a}}_{i}, \boldsymbol{\Sigma}_{\mathbf{a}}\right) \prod_{j=1}^{n} \mathcal{N}\left(\mathbf{s}_{j} ; \overline{\mathbf{s}}_{j}, \boldsymbol{\Sigma}_{\mathbf{s}}\right) \\
\overline{\mathbf{S}}=\mathbf{\Psi}^{-1} \overline{\mathbf{A}}^{\mathrm{T}} \mathbf{X}, \quad \boldsymbol{\Sigma}_{\mathbf{s}}=v \boldsymbol{\Psi}^{-1} \\
\boldsymbol{\Psi}=\overline{\mathbf{A}}^{\mathrm{T}} \overline{\mathbf{A}}+d \boldsymbol{\Sigma}_{\mathbf{a}}+v \mathbf{I} \\
\overline{\mathbf{A}}=\boldsymbol{\Phi}^{-1} \overline{\mathbf{S}} \mathbf{X}, \quad \boldsymbol{\Sigma}_{\mathbf{a}}=v \boldsymbol{\Phi}^{-1} \\
\mathbf{\Phi}=\overline{\mathbf{S S}}^{\mathrm{T}}+n \boldsymbol{\Sigma}_{\mathbf{s}}+v \operatorname{diag}\left(w_{k}^{-1}\right) \\
v=\frac{1}{n d} \sum_{i=1}^{d} \sum_{j=1}^{n}\left(x_{i j}-\overline{\mathbf{a}}_{i}^{\mathrm{T}} \overline{\mathbf{S}}_{j}\right)^{2}+\frac{1}{d} \operatorname{tr}\left(\overline{\mathbf{A}} \boldsymbol{\Sigma}_{\mathbf{s}} \overline{\mathbf{A}}^{\mathrm{T}}\right) \frac{1}{n} \operatorname{tr}\left(\overline{\mathbf{S}}^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{a}} \overline{\mathbf{S}}\right)+\frac{1}{n d} \operatorname{tr}\left(\boldsymbol{\Sigma}_{\mathbf{s}} \boldsymbol{\Sigma}_{\mathbf{a}}\right) .
\end{gathered}
$$

Compare to EM

- The source posterior is a Gaussian:

$$
p(\mathbf{S} \mid \mathbf{X}, \mathbf{A}, v)=\prod_{j=1}^{n} \mathcal{N}\left(\mathbf{s}_{j} ; \overline{\mathbf{s}}_{j}, \boldsymbol{\Sigma}_{\mathbf{s}}\right)
$$

- E-step:

$$
\overline{\mathbf{S}}=\boldsymbol{\Psi}^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{X}, \quad \boldsymbol{\Sigma}_{\mathbf{s}}=v \boldsymbol{\Psi}^{-1}, \quad \mathbf{\Psi}=\mathbf{A}^{\mathrm{T}} \mathbf{A}+v \mathbf{I}
$$

- M-step:

$$
\mathbf{A}=\mathbf{X} \mathbf{S}^{\mathrm{T}}\left(n \boldsymbol{\Sigma}_{\mathbf{s}}+\mathbf{S S}^{\mathrm{T}}\right)^{-1}
$$

$$
v=\frac{1}{n d} \sum_{i=1}^{d} \sum_{j=1}^{n}\left(x_{i j}-\mathbf{a}_{i}^{\mathrm{T}} \overline{\mathbf{s}}_{j}\right)^{2}+\frac{1}{d} \operatorname{tr}\left(\mathbf{A} \boldsymbol{\Sigma}_{\mathbf{s}} \mathbf{A}^{\mathrm{T}}\right) .
$$

Model selection

- The cost function that is minimized in practice is also includes a part for model evidence $p(X \mid M)$

$$
\begin{aligned}
\mathcal{C}_{V B} & =E_{q}\left\{\ln \frac{q(\mathbf{Z}, \boldsymbol{\theta})}{p\left(\mathbf{X}, \mathbf{Z}, \boldsymbol{\theta} \mid M_{i}\right)}\right\} \\
& =\operatorname{KL}\left(q(\mathbf{Z}, \boldsymbol{\theta}) \| p\left(\mathbf{Z}, \boldsymbol{\theta} \mid \mathbf{X}, M_{i}\right)\right)-\ln p\left(\mathbf{X} \mid M_{i}\right) \\
& \geq-\ln p\left(\mathbf{X} \mid M_{i}\right)
\end{aligned}
$$

- By minimizing the cost, we get a lower bound for the model evidence
- We can thus compare different models M

Learning algorithms

- q can be parameterized for instance by posterior means and covariances
- Those variational parameters can then be updated by any means to minimize to cost

$$
\mathcal{C}_{V B}=E_{q}\left\{\ln \frac{q(\mathbf{Z}, \boldsymbol{\theta})}{p\left(\mathbf{X}, \mathbf{Z}, \boldsymbol{\theta} \mid M_{i}\right)}\right\}
$$

- This is useful if the VB-EM updates are intractable
- Gradient based methods can be faster, too

Discrete models

- ConsiderVB learning of Bayesian networks
- Instead of a single set of parameters (conditional probability tables), we would have distribution $q(\boldsymbol{\theta})$ over the parameters
- The certainty of CPTs would be estimated
- The VB cost function could be used to select the best model structure (it penalizes complex models automatically)
- By restricting the form of $q(\mathbf{Z})$, the inference (E-step) can be made faster

Pros and cons ofVB

- + Robust against overfitting
- + Fast (compared to sampling)
- + Applicable to a large family of models
- - Intensive formulae (lots of integrals)
- - Prone to bad but locally optimal solutions
(lot of work with arranging good initializations and other tricks to avoid them)

Software packages for VB on Bayesian networks (I/2)

- VIBES by Winn and Bishop
- discrete and continuous values
- posterior approximation is factorized such that disjoint groups of variables are independent but dependencies within the group are modelled
- variational message passing algorithm

Software packages for VB on Bayesian networks (2/2)

- Bayes Block by Valpola et al.
- concentrates on continuous values
- fully factorial posterior approximation
- includes nonlinearities
- allows for variance modelling
- message passing with line searches for speed-up

