T.61.5140 Machine Learning: Advanced Probablistic Methods

Hollmén, Raiko (Spring 2008)
Problem session, 25th of January, 2008
http:/ /www.cis.hut.fi/Opinnot/T-61.5140/

1. Consider a bent coin and how to estimate the probability of tails μ. The random variable $X \in\{0,1\}$ (heads $=0$, tails $=1$) is distributed accoring to the Bernoulli distribution with the parameter μ (see page 685 in Bishop, 2006).
(a) Derive a maximum likelihood estimator for μ and estimate $\hat{\mu}$ for the data set from the lecture (7 heads and 5 tails out of 12 tosses).
(b) Using a fair coin, what is the probability that out of 12 tosses, strictly more than 10 are heads (see Binomial distribution, page 686).
2. Compute the probability $P(C \mid X)$ of using each coin in the guessing game from the lecture (see Bayes' theorem, p. 15). There are two bent coins $\left(C \in\left\{c_{1}, c_{2}\right\}\right)$ with different properties and the player guesses which coin was used after learning whether the toss was head or tails. The properties of the coins are: $P\left(X=t \mid C=c_{1}\right)=\theta_{1}$ and $P\left(X=t \mid C=c_{2}\right)=\theta_{2}$. The used coin is chosen randomly by $P\left(C=c_{1}\right)=\pi_{1}$ and $P\left(C=c_{2}\right)=\pi_{2}$ with $\pi_{1}+\pi_{2}=1$.
3. The Naïve Bayes model has a class label C and observations $X_{1}, X_{2}, \ldots, X_{6}$ such that $P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, C\right)=P(C) P\left(X_{1} \mid C\right) P\left(X_{2} \mid C\right) \ldots P\left(X_{6} \mid C\right)$.
(a) Simplify $P\left(X_{1} \mid C, X_{2}\right)$
(b) Solve the classification problem: $P\left(C \mid X_{1}, X_{2}, \ldots, X_{6}\right)$
4. Draw a graphical representation of the models in problems 1, 2, and 3 where nodes represent random variables and arrows represent direct dependencies (see Bayesian Networks, page 360).
