T.61.5140 Machine Learning: Advanced Probablistic Methods

Hollmén, Raiko (Spring 2008)
Problem session, 25th of April, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

1. Show that the EM algorithm is a special case of the VB-EM algorithm where the family of approximate distributionis $q(\boldsymbol{\theta})$ for the parameters is restricted to delta distributions (distributions where the whole probability mass is concentrated on a single point). Some assumptions have to be made: The family of approximate distribution $q(\mathbf{Z})$ for latent variables \mathbf{Z} should include the true posterior $p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})$. KL-divergence will go to infinity, so the minimization has to be considered as a limiting process (in practice by ignoring the term $q \ln q$ that can be considered constant). Also, VB-EM usually has a prior for $\boldsymbol{\theta}$, while EM does not. Let us consider the version of EM with a prior for the parameters.

EM algorithm with a prior for parameters:

$$
\begin{align*}
q(\mathbf{Z}) & \leftarrow p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) \tag{1}\\
\boldsymbol{\theta} & \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} E_{q(\mathbf{Z})}\{\ln p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\theta})\} \tag{2}
\end{align*}
$$

VB-EM algorithm:

$$
\begin{align*}
& q(\mathbf{Z}) \leftarrow \underset{q(\mathbf{Z})}{\operatorname{argmin}} E_{q(\boldsymbol{\theta})}\{\operatorname{KL}(q(\mathbf{Z}) \| p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}))\} \tag{3}\\
& q(\boldsymbol{\theta}) \leftarrow \underset{q(\boldsymbol{\theta})}{\operatorname{argmin}} E_{q(\mathbf{Z})}\{\operatorname{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{Z}))\} \tag{4}
\end{align*}
$$

Kullback-Leibler divergence:

$$
\begin{equation*}
\operatorname{KL}(q(x) \| p(x))=E_{q(x)}\left\{\ln \frac{q(x)}{p(x)}\right\} \tag{5}
\end{equation*}
$$

2. Consider two extensions of probabilistic principal component analysis (PPCA) with mixture models. The model equation $\mathbf{x}_{j}=\mathbf{A} \mathbf{s}_{j}+\boldsymbol{\epsilon}_{j}$ and the noise model $p\left(\boldsymbol{\epsilon}_{j}\right)=N\left(\boldsymbol{\epsilon}_{j} \mid \mathbf{0}, v \mathbf{I}\right)$. The parameters are fixed to $\mathbf{A}=$ $\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right), v=0.01$, and mixture coefficients $\pi=0.5$ in all cases. The sources \mathbf{s}_{j} are distributed according to the mixture of Gaussians. The two cases are: (a) The mixing coefficients π_{k} are shared among the two sources $s_{1 j}$ and $s_{2 j}$

$$
\begin{align*}
p\left(\mathbf{s}_{j}\right) & =\sum_{k=1}^{2} \pi_{k} N\left(\mathbf{s}_{j} \mid \mu_{k}, \Sigma_{k}\right) \tag{7}\\
\mu_{1} & =\binom{0}{0}, \quad \mu_{2}=\binom{3}{0} \tag{8}\\
\Sigma_{1} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \Sigma_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) . \tag{9}
\end{align*}
$$

(b) The mixture is done individually to the two sources $s_{1 j}$ and $s_{2 j}$.

$$
\begin{align*}
p\left(s_{1 j}\right) & =\sum_{k=1}^{2} \pi_{1 k} N\left(s_{1 j} \mid \mu_{1 k}, \sigma_{1 k}^{2}\right) \tag{10}\\
p\left(s_{2 j}\right) & =\sum_{k=1}^{2} \pi_{2 k} N\left(s_{2 j} \mid \mu_{2 k}, \sigma_{2 k}^{2}\right) \tag{11}\\
\mu_{11} & =0, \quad \mu_{12}=0, \quad \mu_{21}=0, \quad \mu_{22}=0 \tag{12}\\
\sigma_{11} & =1, \quad \sigma_{12}=0.3, \quad \sigma_{21}=1, \quad \sigma_{22}=0.3 \tag{13}
\end{align*}
$$

Sketch $p\left(\mathbf{x}_{j} \mid \mathbf{A}, v\right)$ in both cases.

