T.61.5140 Machine Learning: Advanced Probablistic Methods Hollmén, Raiko (Spring 2008) Problem session, 29th of February, 2008 http://www.cis.hut.fi/Opinnot/T-61.5140/

1. Given a Naïve Bayes model with four binary variables C, X_1 , X_2 , X_3 , that is $P(C, X_1, X_2, X_3) = P(C)P(X_1 | C)P(X_2 | C)P(X_3 | C)$ and a dataset with five samples t = 1...5 (see table below), write the likelihood function $P(C, X_1, X_2, X_3 | \theta)$ of the model parameters θ (the values in the conditional probability tables). Find P(C) and $P(X_1 | C = 1)$ that maximize the likelihood (use the notation $\theta_1 = P(C = 1)$ and $\theta_2 = P(X_1 = 1 | C = 1)$).

	t	C_t	X_{1t}	X_{2t}	X_{3t}
Data:	1	0	1	0	1
	2	1	0	1	0
	3	0	0	1	0
	4	1	0	1	1
	5	1	1	1	0

2. Given a Naïve Bayes model with three binary variables defined by the tables below, classify the data set below. Classification is defined as $C^* = \arg \max_C P(C \mid X_1, X_2)$.

P(C)	Ì				/	
C=0 0.7						
C=1	0.	3				
$P(X_1$	C	:)	C=	=0	C=1	
X ₁ =0			0.	5	0.8	
<i>X</i> ₁ =1			0.	5	0.2	
1						
$P(X_2$.)	C=	=0	C=1	
-	C	2)	C=	-	C=1 0.3	
$P(X_2$	C = 0	2)	-	6	_	
$\frac{P(X_2)}{X_2}$	C = 0		0. 0.	$\frac{1}{6}$ 4 X_2	0.3 0.7	
$\frac{P(X_2)}{X_2}$	C = 0 = 1	X	0. 0.	6 4	0.3 0.7	

3. Run an iteration of the EM-algorithm for the model in Problem 2. The E-step is to compute $P(C \mid X_1, X_2)$ and the M-step is to maximize the expected likelihood over the distribution from the E-step.

4. (a) Run k-means (page 424) until convergence in a one-dimensional problem with five data points (see table below). Use k = 2 and initialize with $\mu_1 = 3.5$ and $\mu_2 = 4.8$. (b) Fit a mixture-of-Gaussians (MoG, page 430) to the result. MoG is a model with a cluster label *C* and a Gaussian distribution for the observation given the cluster label:

$$p(x \mid C = i) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right].$$
 (1)

You can fit the Gaussians by computing the mean $\mu = E(x)$ and variance $\sigma^2 = E(x^2) - E(x)^2$ of the data in each cluster. (c) Compute $P(C \mid x = 3)$.

$$\begin{array}{c|ccc} t & x_t \\ \hline 1 & 1.0 \\ 2 & 2.0 \\ 3 & 4.0 \\ 4 & 5.0 \\ 5 & 6.0 \end{array}$$