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The EM algorithm is useful for latent variable models, where the model
defines P(X, Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ← argmax
θ

EQ(Z) {ln P(X, Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

1. Given a Naı̈ve Bayes model with three binary variables defined by the
tables and data below, run an iteration of the EM algorithm.

P(C)
C=0 0.7
C=1 0.3

P(X1 | C) C=0 C=1
X1=0 0.5 0.8
X1=1 0.5 0.2

P(X2 | C) C=0 C=1
X2 = 0 0.6 0.3
X2 = 1 0.4 0.7

Data:
t X1t X2t

1 1 1
2 0 1
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Hint: In Problem 2 of the previous exercise session, we already solved:

P(C1 | X11, X21) =

(

0.769
0.231

)

(3)

P(C2 | X12, X22) =

(

0.455
0.545

)

(4)

2. (a) Run k-means (page 424) until convergence in a one-dimensional
problem with five data points (see table below). Use k = 2 and initialize
with µ1 = 3.5 and µ2 = 4.8. (b) Fit a mixture-of-Gaussians (MoG, page
430) to the result by doing an M-step. MoG is a model with a cluster label
C and a Gaussian distribution for the observation given the cluster label:

p(x | C = i) =
1

√

2πσ2
i

exp

[

−
(x− µi)

2

2σ2
i

]

. (5)

You can fit the Gaussians by computing the mean µ = E(x) and variance
σ2 = E(x2)− E(x)2 of the data in each cluster. (c) Compute P(C | x = 3).

Data:

t xt

1 1.0
2 2.0
3 4.0
4 5.0
5 6.0

3. Prove Equation (9.70) in the book: For any choise of Q(Z),

ln P(X | θ) = L(Q, θ) + KL (Q ‖ P) , (6)

where

L(Q, θ) = ∑
Z

Q(Z) ln
P(X, Z | θ)

Q(Z)
(7)

KL (Q ‖ P) = −∑
Z

Q(Z) ln
P(Z | X, θ)

Q(Z)
. (8)

Note that L is a functional because one of its arguments, Q, is a function.

4. Show that (a) the E-step (Eq. 1) maximizes L(Q, θ) w.r.t. Q, and (b) the
M-step (Eq. 2) maximizes L(Q, θ) w.r.t. θ, and that (c) after convergence,
L(Q, θ) = ln P(X | θ). Hint: KL (Q ‖ P) ≥ 0 for all distributions Q and P.


