T.61.5140 Machine Learning: Advanced Probablistic Methods

Hollmén, Raiko (Spring 2008)
Problem session, 14th of March, 2008
http:/ /www.cis.hut.fi/Opinnot/T-61.5140/
The EM algorithm is useful for latent variable models, where the model defines $P(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$, where \mathbf{X} is the data set, \mathbf{Z} are latent variables, and $\boldsymbol{\theta}$ are the model parameters. One would like find the parameters $\boldsymbol{\theta}$ that maximize the likelihood $P(\mathbf{X} \mid \boldsymbol{\theta})$, but the latent variables \mathbf{Z} make the direct treatment of $P(\mathbf{X} \mid \boldsymbol{\theta})$ difficult. For example, in a mixture model, \mathbf{Z} describes to which cluster each data sample belongs to, while $\boldsymbol{\theta}$ describes the general properties of the clusters. EM-algorithm solves the problem by alternating between the following two steps:

$$
\begin{align*}
& \text { E-step: } Q(\mathbf{Z}) \leftarrow P(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) \tag{1}\\
& \text { M-step: } \boldsymbol{\theta} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} E_{Q(\mathbf{Z})}\{\ln P(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})\}, \tag{2}
\end{align*}
$$

where E_{Q} is the expectation over the distribution Q.

1. Given a Naïve Bayes model with three binary variables defined by the tables and data below, run an iteration of the EM algorithm.

Hint: In Problem 2 of the previous exercise session, we already solved:

$$
\begin{align*}
& P\left(C_{1} \mid X_{11}, X_{21}\right)=\binom{0.769}{0.231} \tag{3}\\
& P\left(C_{2} \mid X_{12}, X_{22}\right)=\binom{0.455}{0.545} \tag{4}
\end{align*}
$$

2. (a) Run k-means (page 424) until convergence in a one-dimensional problem with five data points (see table below). Use $k=2$ and initialize with $\mu_{1}=3.5$ and $\mu_{2}=4.8$. (b) Fit a mixture-of-Gaussians (MoG, page 430) to the result by doing an M-step. MoG is a model with a cluster label C and a Gaussian distribution for the observation given the cluster label:

$$
\begin{equation*}
p(x \mid C=i)=\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left[-\frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right] \tag{5}
\end{equation*}
$$

You can fit the Gaussians by computing the mean $\mu=E(x)$ and variance $\sigma^{2}=E\left(x^{2}\right)-E(x)^{2}$ of the data in each cluster. (c) Compute $P(C \mid x=3)$.

Data: | t | x_{t} |
| :---: | :---: |
| | 1 |
| 2 | 1.0 |
| 3 | 2.0 |
| | 4.0 |
| 4 | 5.0 |
| 5 | 6.0 |

3. Prove Equation (9.70) in the book: For any choise of $Q(\mathbf{Z})$,

$$
\begin{equation*}
\ln P(\mathbf{X} \mid \boldsymbol{\theta})=\mathcal{L}(Q, \boldsymbol{\theta})+\mathrm{KL}(Q \| P), \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{L}(Q, \boldsymbol{\theta}) & =\sum_{\mathbf{Z}} Q(\mathbf{Z}) \ln \frac{P(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})}{Q(\mathbf{Z})} \tag{7}\\
\mathrm{KL}(Q \| P) & =-\sum_{\mathbf{Z}} Q(\mathbf{Z}) \ln \frac{P(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})}{Q(\mathbf{Z})} . \tag{8}
\end{align*}
$$

Note that \mathcal{L} is a functional because one of its arguments, Q, is a function.
4. Show that (a) the E-step (Eq. (1) maximizes $\mathcal{L}(Q, \theta)$ w.r.t. Q, and (b) the M-step (Eq. (2) maximizes $\mathcal{L}(Q, \boldsymbol{\theta})$ w.r.t. $\boldsymbol{\theta}$, and that (c) after convergence, $\mathcal{L}(Q, \boldsymbol{\theta})=\ln P(\mathbf{X} \mid \boldsymbol{\theta})$. Hint: $\mathrm{KL}(Q \| P) \geq 0$ for all distributions Q and P.

