T.61.5140 Machine Learning: Advanced Probablistic Methods Hollmén, Raiko (Spring 2008) Problem session, 14th of March, 2008 http://www.cis.hut.fi/Opinnot/T-61.5140/

The EM algorithm is useful for latent variable models, where the model defines $P(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})$, where **X** is the data set, **Z** are latent variables, and $\boldsymbol{\theta}$ are the model parameters. One would like find the parameters $\boldsymbol{\theta}$ that maximize the likelihood $P(\mathbf{X} \mid \boldsymbol{\theta})$, but the latent variables **Z** make the direct treatment of $P(\mathbf{X} \mid \boldsymbol{\theta})$ difficult. For example, in a mixture model, **Z** describes to which cluster each data sample belongs to, while $\boldsymbol{\theta}$ describes the general properties of the clusters. EM-algorithm solves the problem by alternating between the following two steps:

E-step:
$$Q(\mathbf{Z}) \leftarrow P(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})$$
 (1)

M-step:
$$\boldsymbol{\theta} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} E_{Q(\mathbf{Z})} \left\{ \ln P(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \right\},$$
 (2)

where E_Q is the expectation over the distribution Q.

1. Given a Naïve Bayes model with three binary variables defined by the tables and data below, run an iteration of the EM algorithm.

P(C)					
C=0	0.2	7			
C=1	0.3	3			
$P(X_1$	C) C	=0	C=1	
X ₁ =0		0	.5	0.8	
$X_1 = 1$		0	.5	0.2	
$P(X_2 \mid C)$) C	=0	C=1	
$X_2 = 0$		0	.6	0.3	
$X_2 = 1$		0	.4	0.7	
t X_{1t} X_{2t}					
Data:	1	1	1	(co	ntinues on the next page)
	2	0	1		

Hint: In Problem 2 of the previous exercise session, we already solved:

$$P(C_1 \mid X_{11}, X_{21}) = \begin{pmatrix} 0.769\\ 0.231 \end{pmatrix}$$
(3)

$$P(C_2 \mid X_{12}, X_{22}) = \begin{pmatrix} 0.455\\ 0.545 \end{pmatrix}$$
(4)

2. (a) Run k-means (page 424) until convergence in a one-dimensional problem with five data points (see table below). Use k = 2 and initialize with $\mu_1 = 3.5$ and $\mu_2 = 4.8$. (b) Fit a mixture-of-Gaussians (MoG, page 430) to the result by doing an M-step. MoG is a model with a cluster label *C* and a Gaussian distribution for the observation given the cluster label:

$$p(x \mid C = i) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{(x - \mu_i)^2}{2\sigma_i^2}\right].$$
 (5)

You can fit the Gaussians by computing the mean $\mu = E(x)$ and variance $\sigma^2 = E(x^2) - E(x)^2$ of the data in each cluster. (c) Compute $P(C \mid x = 3)$.

$$\begin{array}{c|cccc} t & x_t \\ \hline 1 & 1.0 \\ 2 & 2.0 \\ 3 & 4.0 \\ 4 & 5.0 \\ 5 & 6.0 \end{array}$$

3. Prove Equation (9.70) in the book: For any choise of $Q(\mathbf{Z})$,

$$\ln P(\mathbf{X} \mid \boldsymbol{\theta}) = \mathcal{L}(Q, \boldsymbol{\theta}) + \mathrm{KL}(Q \parallel P), \qquad (6)$$

where

$$\mathcal{L}(Q, \theta) = \sum_{\mathbf{Z}} Q(\mathbf{Z}) \ln \frac{P(\mathbf{X}, \mathbf{Z} \mid \theta)}{Q(\mathbf{Z})}$$
(7)

$$\operatorname{KL}(Q \parallel P) = -\sum_{\mathbf{Z}} Q(\mathbf{Z}) \ln \frac{P(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})}{Q(\mathbf{Z})}.$$
(8)

Note that \mathcal{L} is a functional because one of its arguments, Q, is a function.

4. Show that (a) the E-step (Eq. 1) maximizes $\mathcal{L}(Q, \theta)$ w.r.t. Q, and (b) the M-step (Eq. 2) maximizes $\mathcal{L}(Q, \theta)$ w.r.t. θ , and that (c) after convergence, $\mathcal{L}(Q, \theta) = \ln P(\mathbf{X} \mid \theta)$. Hint: KL $(Q \parallel P) \ge 0$ for all distributions Q and P.