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Mixture models and the EM algorithm

Mixture models as (very) simple Bayesian networks
I Observed variables and a hidden variable
I Factorization of the joint probability distribution

Mixture models as probabilistic clustering models
I Similarities with k-means algorithm
I Differences with k-means algorithm
I (k-means is NOT a probabilistic model)



k-means algorithm

Ingredients for the k-means clustering algorithm
I Data {x1, . . . , xn}
I Prototypes c1, . . . , cK, K < n
I Distance measure d(xn, ck), usually Euclidean

distance
The goal of the k-means algorithm is to use

I k prototypes to represent n data points
I minimize a distortion ∑N

n=1 ∑K
k=1 rnk‖xn − ck‖2

I rnk indicates whether xn is closest to ck, rnk ∈ {0, 1}



k-means algorithm

k-means algorithm in brief
I Calculate d(xi, cj), i = 1, . . . , n, j = 1, . . . , K
I Determine rnk, what does this mean?
I Calculate new ck = ∑n rnkxn

∑ rnk

I repeat until convergence: no apparent changes in
c1, . . . , cK

Example



Mixture models

Mixture model as a very simple Bayesian network
I Observed d-dimensional variables x1, . . . , xd
I Hidden variable S
I Factorization of the joint distribution:

P(X, S) = P(S)P(X|S)
I P(X) = ∑J

j=1 P(S = j)P(X|S = j)
Parameterization

I P(S = j) = πj, ∑J
j=1 πj = 1, πj ≥ 0

I Mixing coefficients πj
I The form of component distribution P(X|S = j)

depends on X



Mixture models

Gaussian mixture model
I P(X) = ∑J

j=1 πjN (x|µj, Σj)
I Parameters πj, µj, Σj

Mixture of Bernoulli distributions for 0-1 data
I P(X) = ∑J

j=1 πjp(x|θj)
I Parameters πj, θj, where θ = p(x = 1)

The whole is the sum of its parts



EM algorithm in general

Parameter estimation in the mixture model
I Framework of maximum likelihood (ML)
I Expectation Maximation algorithm (EM)
I EM algorithm is iterative
I converges to a (local) maximum likelihood estimate

EM algorithm, repeat until convergence
I E-step
I M-step



Mixture modeling, 0-1 data

Probability of an observed data vector x:

p(x) =
d

∏
i=1

θ
xi
i (1− θi)1−xi

Probability of an observed data vector x:

p(x|πj, Θ) =
J

∑
j=1

πjp(x|θj) =
J

∑
j=1

πj

d

∏
i=1

θ
xi
ji (1− θji)1−xi



EM algorithm for the 0-1 mixture model

In the E-step, the expected values of the hidden states are
estimated

p(j|xn, πk, θk) =
πk

j p(xn|θk
j )

∑J
j′=1 πk

j′p(xn|θk
j′)



EM algorithm for the 0-1 mixture model

In the M-step, the values of the parameters are updated:

πk+1
j =

1
N

N

∑
n=1

p(j|xn, πk, θk)

θk+1
j =

1
Nπk+1

j

N

∑
n=1

p(j|xn, πk, θk)xn.



Clustering with a mixture model

I A cluster is associated with each of the component
distributions

I The observations are allocated to the clusters
according to the maximum posterior probabilities:

j∗ = argmax
j

p(j)p(x|j, θj) = argmax
j

πj

d

∏
i=1

θ
xi
ji (1− θji)1−xi


