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1. Consider a bent coin and how to estimate the probability of tails µ. The
random variable X ∈ {0, 1} (heads=0, tails=1) is distributed accoring to
the Bernoulli distribution with the parameter µ (see page 685 in Bishop,
2006).
(a) Derive a maximum likelihood estimator for µ and estimate µ̂ for the
data set from the lecture (7 heads and 5 tails out of 12 tosses).

P({Xi}
12
i=1 | µ) =

12

∏
i=1

Bern(Xi | µ) (1)

= µ5(1 − µ)7 (2)

The maximum likelihood solution is at the zero of the derivative of the
likelihood:

∂

∂µ
P({Xi}

12
i=1 | µ) = 5µ4(1 − µ)7 − 7µ5(1 − µ)6 = 0 (3)

µ̂ =
5

12
≈ 0.42 (4)
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Figure 1: Problem 1.(a) The likelihood of µ as a function of µ on the abso-
lute scale (left) and on the logarithmic scale (right).



(b) Using a fair coin, what is the probability that out of 12 tosses, strictly
more than 10 are heads (see Binomial distribution, page 686).

The Binomial distribution is defined as

Bin(m | N, µ) =
N!

m!(N − m)!
µm(1 − µ)(

N − m), (5)

where m is the number of heads, N = 12 is the number of tosses, and
µ = 0.5 is the probability of heads.

P(m > 10) = Bin(m = 11 | 12, 0.5) + Bin(m = 12 | 12, 0.5) (6)

= 13 · 0.512 ≈ 0.0032 (7)
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Figure 2: Problem 1.(b) The Binomial distribution. The probability is plot-
ted as a function of m = 0, 1, . . . , 12 on the absolute scale (left) and on the
logarithmic scale (right).

2. Compute the probability P(C | X) of using each coin in the guessing
game from the lecture (see Bayes’ theorem, p. 15). There are two bent
coins (C ∈ {c1, c2}) with different properties and the player guesses which
coin was used after learning whether the toss was head or tails. The prop-
erties of the coins are: P(X = t | C = c1) = θ1 and P(X = t | C = c2) = θ2.
The used coin is chosen randomly by P(C = c1) = π1 and P(C = c2) = π2

with π1 + π2 = 1.

The solution is the direct application of the Bayes theorem (first equa-



tion) and the marginalization principle (second equation):

P(C = c1 | X = t) =
P(X = t | C = c1)P(C = c1)

P(X = t)
(8)

=
P(X = t | C = c1)P(C = c1)

∑
2
i=1 P(X = t | C = ci)P(C = ci)

(9)

=
θ1π1

θ1π1 + θ2π2
(10)

and similarly

P(C = c2 | X = t) =
θ2π2

θ1π1 + θ2π2
(11)

P(C = c1 | X = h) =
(1 − θ1)π1

(1 − θ1)π1 + (1 − θ2)π2
(12)

P(C = c2 | X = h) =
(1 − θ2)π2

(1 − θ1)π1 + (1 − θ2)π2
. (13)

3. The Naı̈ve Bayes model has a class label C and observations X1, X2, . . . , X6

such that P(X1, X2, X3, X4, X5, X6, C) = P(C)P(X1 |C)P(X2|C) . . . P(X6|C).
(a) Simplify P(X1 | C, X2)

First let us rewrite it without the conditional probability, using just the
joint probabilities. Then we can apply the assumption of the Naı̈ve Bayes
model and finally simplify:

(X1 | C, X2) =
P(C, X1, X2)

P(C, X2)
(14)

=
P(C)P(X1 | C)P(X2 | C)

P(C)P(X2 | C)
(15)

= P(X1 | C) (16)

(b) Solve the classification problem: P(C | X1, X2, . . . , X6)

Let us apply the Bayes theorem, the marginalization principle, and fi-



nally the Naı̈ve Bayes assumption:

P(C | X1, X2, . . . , X6) =
P(X1, X2, . . . , X6 | C)P(C)

P(X1, X2, . . . , X6)
(17)

=
P(X1, X2, . . . , X6 | C)P(C)

∑C P(X1, X2, . . . , X6 | C)P(C)
(18)

=
P(X1 | C)P(X2 | C) . . . P(X6 | C)P(C)

∑C P(X1 | C)P(X2 | C) . . . P(X6 | C)P(C)
(19)

4. Draw a graphical representation of the models in problems 1, 2, and
3 where nodes represent random variables and arrows represent direct
dependencies (see Bayesian Networks, page 360).
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Figure 3: Problem 4.


