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1. Consider a bent coin and how to estimate the probability of tails . The
random variable X € {0,1} (heads=0, tails=1) is distributed accoring to
the Bernoulli distribution with the parameter u (see page 685 in Bishop,
2006).

(a) Derive a maximum likelihood estimator for u and estimate fi for the
data set from the lecture (7 heads and 5 tails out of 12 tosses).
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The maximum likelihood solution is at the zero of the derivative of the
likelihood:
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Figure 1: Problem 1.(a) The likelihood of u as a function of u on the abso-
lute scale (left) and on the logarithmic scale (right).



(b) Using a fair coin, what is the probability that out of 12 tosses, strictly
more than 10 are heads (see Binomial distribution, page 686).

The Binomial distribution is defined as

N!

Bin(m | N,u) = mﬂm(l — )N —m), )

where m is the number of heads, N = 12 is the number of tosses, and

u = 0.5 is the probability of heads.

P(m > 10) = Bin(m = 11 | 12,0.5) + Bin(m = 12 | 12,0.5) (6)
= 13-0.5'2 ~ 0.0032 (7)
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Figure 2: Problem 1.(b) The Binomial distribution. The probability is plot-
ted as a function of m = 0,1, ...,12 on the absolute scale (left) and on the
logarithmic scale (right).

2. Compute the probability P(C | X) of using each coin in the guessing
game from the lecture (see Bayes’ theorem, p. 15). There are two bent
coins (C € {c1, cp}) with different properties and the player guesses which
coin was used after learning whether the toss was head or tails. The prop-
erties of the coinsare: P(X =t |C=c¢1) =6and P(X =t | C =c3) = 0,.
The used coin is chosen randomly by P(C = ¢1) = 71y and P(C = ¢3) = 71
with Ty + 7 = 1.

The solution is the direct application of the Bayes theorem (first equa-



tion) and the marginalization principle (second equation):

P(X =t | C= Cl)P(C = Cl)

P(C=ci|X=1)= X =1 (®)
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and similarly
PC=cy| X=t)= 272 (11)
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3. The Naive Bayes model has a class label C and observations X1, Xy, ..., Xp
such that P(Xl, Xz, X3, X4, X5, X6, C) = P(C)P(X1 ’C)P(Xz ’C) cee P(X6‘C)
(a) Simplify P(X; | C, X2)

First let us rewrite it without the conditional probability, using just the
joint probabilities. Then we can apply the assumption of the Naive Bayes
model and finally simplify:

(X1]C Xa) = % (44
_ P(O)P(X1 | C)P(X, | C) (15)

P(C)P(X; | C)
=P(X;|C) (16)

(b) Solve the classification problem: P(C | X1, Xa, ..., Xs)

Let us apply the Bayes theorem, the marginalization principle, and fi-



nally the Naive Bayes assumption:

P(X1,X,...,X6 | C)P(C)

P(C| X1, Xp,...,Xg) = PE T %) (17)
_ P(Xy,X,,..., X | O)P(C) 18)

Y P(X1,Xa,...,Xe | C)P(C)
P(X1[COP(X2 | C) ... P(Xs | OP(C) )

T YoP(X: |C)P(X, | C)...P(Xg | C)P(C)

4. Draw a graphical representation of the models in problems 1, 2, and
3 where nodes represent random variables and arrows represent direct
dependencies (see Bayesian Networks, page 360).
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Figure 3: Problem 4.



