T.61.5140 Machine Learning: Advanced Probablistic Methods

Hollmén, Raiko (Spring 2008)
Problem session, 25th of January, 2008
http:/ /www.cis.hut.fi/Opinnot/T-61.5140/

1. Consider a bent coin and how to estimate the probability of tails μ. The random variable $X \in\{0,1\}$ (heads $=0$, tails=1) is distributed accoring to the Bernoulli distribution with the parameter μ (see page 685 in Bishop, 2006).
(a) Derive a maximum likelihood estimator for μ and estimate $\hat{\mu}$ for the data set from the lecture (7 heads and 5 tails out of 12 tosses).

$$
\begin{align*}
P\left(\left\{X_{i}\right\}_{i=1}^{12} \mid \mu\right) & =\prod_{i=1}^{12} \operatorname{Bern}\left(X_{i} \mid \mu\right) \tag{1}\\
& =\mu^{5}(1-\mu)^{7} \tag{2}
\end{align*}
$$

The maximum likelihood solution is at the zero of the derivative of the likelihood:

$$
\begin{align*}
\frac{\partial}{\partial \mu} P\left(\left\{X_{i}\right\}_{i=1}^{12} \mid \mu\right) & =5 \mu^{4}(1-\mu)^{7}-7 \mu^{5}(1-\mu)^{6}=0 \tag{3}\\
\hat{\mu} & =\frac{5}{12} \approx 0.42 \tag{4}
\end{align*}
$$

Figure 1: Problem 1.(a) The likelihood of μ as a function of μ on the absolute scale (left) and on the logarithmic scale (right).
(b) Using a fair coin, what is the probability that out of 12 tosses, strictly more than 10 are heads (see Binomial distribution, page 686).

The Binomial distribution is defined as

$$
\begin{equation*}
\left.\operatorname{Bin}(m \mid N, \mu)=\frac{N!}{m!(N-m)!} \mu^{m}(1-\mu)^{(} N-m\right) \tag{5}
\end{equation*}
$$

where m is the number of heads, $N=12$ is the number of tosses, and $\mu=0.5$ is the probability of heads.

$$
\begin{align*}
P(m>10) & =\operatorname{Bin}(m=11 \mid 12,0.5)+\operatorname{Bin}(m=12 \mid 12,0.5) \tag{6}\\
& =13 \cdot 0.5^{12} \approx 0.0032 \tag{7}
\end{align*}
$$

Figure 2: Problem 1.(b) The Binomial distribution. The probability is plotted as a function of $m=0,1, \ldots, 12$ on the absolute scale (left) and on the logarithmic scale (right).
2. Compute the probability $P(C \mid X)$ of using each coin in the guessing game from the lecture (see Bayes' theorem, p. 15). There are two bent coins $\left(C \in\left\{c_{1}, c_{2}\right\}\right)$ with different properties and the player guesses which coin was used after learning whether the toss was head or tails. The properties of the coins are: $P\left(X=t \mid C=c_{1}\right)=\theta_{1}$ and $P\left(X=t \mid C=c_{2}\right)=\theta_{2}$. The used coin is chosen randomly by $P\left(C=c_{1}\right)=\pi_{1}$ and $P\left(C=c_{2}\right)=\pi_{2}$ with $\pi_{1}+\pi_{2}=1$.

The solution is the direct application of the Bayes theorem (first equa-
tion) and the marginalization principle (second equation):

$$
\begin{align*}
P\left(C=c_{1} \mid X=t\right) & =\frac{P\left(X=t \mid C=c_{1}\right) P\left(C=c_{1}\right)}{P(X=t)} \tag{8}\\
& =\frac{P\left(X=t \mid C=c_{1}\right) P\left(C=c_{1}\right)}{\sum_{i=1}^{2} P\left(X=t \mid C=c_{i}\right) P\left(C=c_{i}\right)} \tag{9}\\
& =\frac{\theta_{1} \pi_{1}}{\theta_{1} \pi_{1}+\theta_{2} \pi_{2}} \tag{10}
\end{align*}
$$

and similarly

$$
\begin{align*}
& P\left(C=c_{2} \mid X=t\right)=\frac{\theta_{2} \pi_{2}}{\theta_{1} \pi_{1}+\theta_{2} \pi_{2}} \tag{11}\\
& P\left(C=c_{1} \mid X=h\right)=\frac{\left(1-\theta_{1}\right) \pi_{1}}{\left(1-\theta_{1}\right) \pi_{1}+\left(1-\theta_{2}\right) \pi_{2}} \tag{12}\\
& P\left(C=c_{2} \mid X=h\right)=\frac{\left(1-\theta_{2}\right) \pi_{2}}{\left(1-\theta_{1}\right) \pi_{1}+\left(1-\theta_{2}\right) \pi_{2}} \tag{13}
\end{align*}
$$

3. The Naïve Bayes model has a class label C and observations $X_{1}, X_{2}, \ldots, X_{6}$ such that $P\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, C\right)=P(C) P\left(X_{1} \mid C\right) P\left(X_{2} \mid C\right) \ldots P\left(X_{6} \mid C\right)$.
(a) Simplify $P\left(X_{1} \mid C, X_{2}\right)$

First let us rewrite it without the conditional probability, using just the joint probabilities. Then we can apply the assumption of the Naïve Bayes model and finally simplify:

$$
\begin{align*}
\left(X_{1} \mid C, X_{2}\right) & =\frac{P\left(C, X_{1}, X_{2}\right)}{P\left(C, X_{2}\right)} \tag{14}\\
& =\frac{P(C) P\left(X_{1} \mid C\right) P\left(X_{2} \mid C\right)}{P(C) P\left(X_{2} \mid C\right)} \tag{15}\\
& =P\left(X_{1} \mid C\right) \tag{16}
\end{align*}
$$

(b) Solve the classification problem: $P\left(C \mid X_{1}, X_{2}, \ldots, X_{6}\right)$

Let us apply the Bayes theorem, the marginalization principle, and fi-
nally the Naïve Bayes assumption:

$$
\begin{align*}
P\left(C \mid X_{1}, X_{2}, \ldots, X_{6}\right) & =\frac{P\left(X_{1}, X_{2}, \ldots, X_{6} \mid C\right) P(C)}{P\left(X_{1}, X_{2}, \ldots, X_{6}\right)} \tag{17}\\
& =\frac{P\left(X_{1}, X_{2}, \ldots, X_{6} \mid C\right) P(C)}{\sum_{C} P\left(X_{1}, X_{2}, \ldots, X_{6} \mid C\right) P(C)} \tag{18}\\
& =\frac{P\left(X_{1} \mid C\right) P\left(X_{2} \mid C\right) \ldots P\left(X_{6} \mid C\right) P(C)}{\sum_{C} P\left(X_{1} \mid C\right) P\left(X_{2} \mid C\right) \ldots P\left(X_{6} \mid C\right) P(C)} \tag{19}
\end{align*}
$$

4. Draw a graphical representation of the models in problems 1, 2, and 3 where nodes represent random variables and arrows represent direct dependencies (see Bayesian Networks, page 360).
5.
6.

Figure 3: Problem 4.

