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1. Show that the EM algorithm is a special case of the VB-EM algorithm
where the family of approximate distributionis q(θ) for the parameters is
restricted to delta distributions (distributions where the whole probability
mass is concentrated on a single point). Some assumptions have to be
made: The family of approximate distribution q(Z) for latent variables Z
should include the true posterior p(Z | X, θ). KL-divergence will go to
infinity, so the minimization has to be considered as a limiting process (in
practice by ignoring the term q ln q that can be considered constant). Also,
VB-EM usually has a prior for θ, while EM does not. Let us consider the
version of EM with a prior for the parameters.

EM algorithm with a prior for parameters:

q(Z) ← p(Z | X, θ) (1)

θ← argmax
θ

Eq(Z) {ln p(X, Z, θ)} (2)

VB-EM algorithm:

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))} (3)

q(θ)← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X, Z))} (4)

Kullback-Leibler divergence:

KL (q(x) ‖ p(x)) = Eq(x)

{

ln
q(x)

p(x)

}

(5)

Solution:
Starting from the VB-E step and assuming that q(θ) is a delta distribu-



tion we get:

q(Z) ← argmin
q(Z)

Eq(θ) {KL (q(Z) ‖ p(Z | X, θ))} (6)

= argmin
q(Z)

KL (q(Z) ‖ p(Z | X, θ)) (7)

= p(Z | X, θ), (8)

where the first step is the expectation over the delta distribution, which is
just the value at the single point where the mass is concentrated. The sec-
ond step follows from the fact that KL-divergence is minimized (becomes
0) when the two distributions are the same.

Starting from the VB-M step and assuming that q(θ) is a delta distribu-
tion we get:

q(θ)← argmin
q(θ)

Eq(Z) {KL (q(θ) ‖ p(θ | X, Z))} (9)

= argmin
q(θ)

Eq(Z,θ) {ln q(θ)− ln p(θ | X, Z)} (10)

= argmin
q(θ)

Eq(Z,θ) {− ln p(θ | X, Z)} (11)

= argmax
q(θ)

Eq(Z,θ)

{

ln
p(θ, X, Z)

p(X, Z)

}

(12)

= argmax
q(θ)

Eq(Z,θ) {ln p(θ, X, Z)} (13)

θ← argmax
θ

Eq(Z) {ln p(θ, X, Z)} (14)

In the third step we drop the term Eq(θ){ln q(θ)}. If we consider distribu-
tions q that are getting peakier and peakier at different points θ, this term
depends only on the shape of the distribution and not the point θ where it
is located. In that sense it is a constant that can be dropped. (In the limit
where it becomes a delta distribution this term goes to infinity.) In the fift
step, p(X, Z) is also dropped because it is a constant with respect to q(θ).
The last step is about the delta distribution for q(θ), where we just want
to find the single point θ and the expectation over q(θ) is just the value at
the single point.



2. Consider two extensions of probabilistic principal component analysis
(PPCA) with mixture models. The model equation xj = Asj + ǫ j and
the noise model p(ǫ j) = N(ǫ j | 0, vI). The parameters are fixed to A =
(

1 −1
1 1

)

, v = 0.01, and mixture coefficients π = 0.5 in all cases. The

sources sj are distributed according to the mixture of Gaussians. The two
cases are: (a) The mixing coefficients πk are shared among the two sources
s1j and s2j

p(sj) =
2

∑
k=1

πkN(sj | µk, Σk), (15)

µ1 =

(

0
0

)

, µ2 =

(

3
0

)

, (16)

Σ1 =

(

1 0
0 1

)

, Σ2 =

(

1 0
0 1

)

. (17)

(b) The mixture is done individually to the two sources s1j and s2j.

p(s1j) =
2

∑
k=1

π1kN(s1j | µ1k, σ
2
1k), (18)

p(s2j) =
2

∑
k=1

π2kN(s2j | µ2k, σ
2
2k), (19)

µ11 = 0, µ12 = 0, µ21 = 0, µ22 = 0 (20)

σ11 = 1, σ12 = 0.3, σ21 = 1, σ22 = 0.3. (21)

Sketch p(xj | A, v) in both cases.

Solution:
First we should note that the noise variance v is so small that we prac-

tically need to consider only the prior distribution of the sources and map

it to the data space. The mapping is such that source vector s =

(

1
0

)

maps to the data vector x =

(

1
1

)

and the direction of the other other

source axis we get from s =

(

0
1

)

that maps to x =

(

−1
1

)

.



The densities are plotted in Figure 1. Case (a) is a clustering model,
whereas (b) resembles independent component analysis (ICA).
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Figure 1: Left: Problem 2(a). Contours of p(xj | A, v). Right: Problem 2(b).
Contours of p(xj | A, v). The horizontal axis is x1j and the vertical axis is
x2j in both plots.


