
T.61.5140 Machine Learning: Advanced Probablistic Methods
Hollmén, Raiko (Spring 2008)
Problem session, 22nd of February, 2008
http://www.cis.hut.fi/Opinnot/T-61.5140/

1. Draw the graphical model and factor graph (page 399), and run the
sum-product algorithm (page 402, also known as belief propagation) on
pencil and paper for the model below. Variables are S for sprinkler being
on, R for raining, and W for the grass being wet. Compute P(W = t).

P(S)
S=f 0.7
S=t 0.3

P(R)
R=f 0.8
R=t 0.2

P(W | S, R) S=f, R=f S=f, R=t S=t, R=f S=t, R=t
W=f 1.0 0.0 0.0 0.0
W=t 0.0 1.0 1.0 1.0

Solution:
Figure1 shows the graphical model and the factor graph. The factor

graph has a round node for each variable and a square node for each fac-
tor. This model has three factors as can be seen from the model equation
P(S, R, W) = P(S)P(R)P(W | S, R).

R

W

S R

W

S

f f
3f1

2

1 2

5

9

6

8 10

34

7

Figure 1: Problem 1. Left: graphical model. Middle: Factor graph. Right:
Messages µ.

There are two types of messages, from variables to factors and from

factors to variables. They are computed as follows:

µXm→ fs
(Xm) = ∏

l∈ne(Xm)\ fs

µ fl→Xm
(Xm) (1)

µ fx→X0
(X0) = ∑

X1

· · ·∑ XM fs(X0, X1, . . . , XM)
M

∏
m=1

µXm→ fs
(Xm), (2)

where ne(Xm) is the set of factors neighbouring the variable Xm and X0, X1, . . . , XM

are the variables neighbouring the factor fs. Because they are recursive, all
the other incoming messages must have been sent to a node before it can
send its message.

The 10 messages (see right subfigure of Figure 1) can be sent for in-
stance in the following order:

1 : µ f1→S(S) = f1(S) =

(

0.7
0.3

)

(3)

2 : µS→ f3
(S) = µ f1→S(S) =

(

0.7
0.3

)

(4)

3 : µ f2→R(R) = f2(R) =

(

0.8
0.2

)

(5)

4 : µR→ f3
(R) = µ f2→R(R) =

(

0.8
0.2

)

(6)

5 : µ f3→W(W) = ∑
S

∑
R

f3(S, R, W)µS→ f3
(S)µR→ f3

(R) (7)

= ∑
S

∑
R

=

(

0.7 · 0.8 0 0 0
0 0.7 · 0.2 0.3 · 0.8 0.3 · 0.2

)

(8)

= ∑
S

∑
R

=

(

0.56 0 0 0
0 0.14 0.24 0.06

)

(9)

=

(

0.56
0.44

)

(10)

6 : µW→ f3
(W) =

(

1.0
1.0

)

(11)

7 : µ f3→S(S) = ∑
R

∑
W

f3(S, R, W)µR→ f3
(R)µW→ f3

(W) (12)

= ∑
R

∑
W

(

0.8 0 0 0
0 0.2 0.8 0.2

)

(13)

=

(

1.0
1.0

)

(14)

8 : µS→ f1
(S) = µ f3→S(S) =

(

1.0
1.0

)

(15)

9 : µ f3→R(R) = ∑
S

∑
W

f3(S, R, W)µS→ f3
(S)µW→ f3

(W) (16)

= ∑
R

∑
W

(

0.7 0 0 0
0 0.7 0.3 0.3

)

(17)

=

(

1.0
1.0

)

(18)

10 : µR→ f2
(R) = µ f3→R(R) =

(

1.0
1.0

)

(19)

After the messages have been sent in both directions, it is easy to com-
pute different marginals for single variables and for variables within a fac-
tor:

P(X) = ∏
s∈ne(X)

µ fs→X(X) (20)

P(X0, X1, . . . , XM) = fs(X0, X1, . . . , XM)
M

∏
i=0

µXi→ fs
(Xi) (21)

From this we can compute

P(W) = µ f3→W(W) =

(

0.56
0.44

)

(22)

and thus P(W = t) = 0.44.

2. The model in Problem 1 is extended with a variable C for the sky be-
ing cloudy. (a) Draw the graphical model and the factor graph. (b) Why

cannot you run the sum-product algorithm? (c) Where does the inference
stop if you try anyway? (d) One could avoid the problem by using loopy
belief propagation (page 417), explain shortly how.

P(C)
C=f 0.5
C=t 0.5

P(S | C) C=f C=t
S=f 0.5 0.9
S=t 0.5 0.1

P(R | C) C=f C=t
R=f 1.0 0.4
R=t 0.0 0.6

P(W | S, R) S=f, R=f S=f, R=t S=t, R=f S=t, R=t
W=f 1.0 0.0 0.0 0.0
W=t 0.0 1.0 1.0 1.0

Solution:
(a) See Figure 2.

C

RS

W

C

RS

W

f f

f

f 1

2 3

4

Figure 2: Problem 2. Left: graphical model. Right: Factor graph.

(b) The factor graph is not a tree (there is a loop).
(c) The messages in the loop cannot be sent because they are all waiting

for incoming messages before they can send their own.
(d) In loopy belief propagation, each message µ is initialized to unity

(such as

(

1.0
1.0

)

). Then messages are updated iteratively using the nor-

mal message passing formulae. (This procedure might or might not con-
verge to one or the other stable state, but it only gives an approximate
solution. This is because the incoming messages are assumed to be inde-
pendent, which is not true in the loopy case.)

3. The junction tree algorithm is the generalization of the sum-product al-
gorithm to general graphs. When applied to the model in Problem 2, it
would effectively cluster variables S and R into a single variable, say SR,
that has four possible values, f f , ft, t f , and tt to represent the different
combinations of S and R being false or true. (a) Write the joint probability
P(C, SR, W). (b) Draw the graphical model and a factor graph. (c) Com-
pute the conditional probability tables for the modified model.

Solution:
P(C, SR, W) = P(C)P(SR | C)P(W | SR)

C

W

C

W

f

f 1

SR SR

f

3

2

Figure 3: Problem 3. Left: graphical model. Right: Factor graph.

P(C)
C=f 0.5
C=t 0.5

P(SR | C) C=f C=t
SR = f f 0.5 0.36
SR = ft 0 0.54
SR = t f 0.5 0.04
SR = tt 0 0.06

P(W | SR) SR = f f SR = ft SR = t f SR = tt

W=f 1.0 0.0 0.0 0.0
W=t 0.0 1.0 1.0 1.0

4. For the model in Figure 4, construct a junction tree (also known as join
tree). This is formed by moralizing the graph (connecting co-parents), for-
getting the direction of the edges, triangulating (adding a chord to each
chordless cycle of four or more nodes), and finally creating a junction tree
based on the resulting graph. The junction tree has a node for each maxi-
mal clique of the previous graph. Temporarily all the nodes are connected
with weighted edges, the weight being the number of shared variables in
the two cliques. A maximum weight spanning tree is formed, and other
edges and all weight can be forgotten. These nodes (cliques) correspond to
the small square nodes of the factor graph. One still needs to add the vari-
ables in the graph as round nodes. Variables in the intersection of neigh-
bouring cliques need to be clustered into a single variable, just like S and
R in Problem 3. (Note that a variable may appear many times. Note also
that the junction tree is not unique, there can be many ways to triangulate
and to choose a maximum spanning tree.)

B
C

A

D
E

F

G

Figure 4: Problem 4.

Solution:

B
C

A

D
E

F

G

B
C

A

D
E

F

G

B
C

A

D
E

F

G

B
C

A

D
E

F

G

AB

BDE BCE

DEF EFG

11
2

2

2

1
1

1

AB

BDE BCE

DEF EFG

AB

BDE BCE

DEF EFG

B

A

C

EF

BE

G

DE

Moralize
Forget directions

Triangulate

Find maximal
cliques

Count

shared variables

Maximum spanning tree

Add
variables

Figure 5: Solution of Problem 4.

Note that the subgraph with nodes where a particular variable A . . . G
appears, is unbroken. This is essential for the sum-product algorithm to
work properly. The procedure with the maximum spanning tree etc. en-
sures that this property holds for each variable.

