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0. Jaakko Hollmén gave a demonstration on his software package Zone
for clustering zero-one data. This will be part of the project assignment.

1. Given a Naı̈ve Bayes model with four binary variables C, X1, X2, X3, that
is P(C, X1, X2, X3) = P(C)P(X1 | C)P(X2 | C)P(X3 | C) and a dataset with
five samples t = 1 . . . 5 (see table below), write the likelihood function
P(C, X1, X2, X3 | θ) of the model parameters θ (the values in the condi-
tional probability tables). Find P(C) and P(X1 | C = 1) that maximize the
likelihood (use the notation θ1 = P(C = 1) and θ2 = P(X1 = 1 | C = 1)).

Data:

t Ct X1t X2t X3t

1 0 1 0 1
2 1 0 1 0
3 0 0 1 0
4 1 0 1 1
5 1 1 1 0

Solution:
Assuming the 5 samples independent of each other, the likelihood of

the parameters is the product of probabilities of each data sample given
the parameters, that is:

L(θ) =
5

∏
t=1

P(Ct, X1t, X2t, X3t) =
5

∏
t=1

P(Ct)P(X1t | Ct)P(X2t | Ct)P(X3t | Ct)

(1)

Note that we write P(C) as a shorthand of P(C | θ) etc. Because the loga-
rithm function is monotonically increasing, the maximum likelihood is the
same as maximum log-likelihood, and we would prefer sums over prod-
ucts, so let us turn to study the likelihood on the logarithmic scale.

log L(θ) =
5

∑
t=1

[

log P(Ct) +
3

∑
i=1

log P(Xit | Ct)

]

(2)



The maximum of L can be found at the zero of the derivative. Most terms
of L are constant w.r.t. a particular parameter, so many of them can be
dropped out.

0 =
∂ log L(θ)

∂θ1
=

∂

∂θ1

5

∑
t=1

log P(Ct) (3)

=
∂

∂θ1
3 log θ1 + 2 log(1 − θ1) =

3

θ1
−

2

1 − θ1
= 0 (4)

θ1 = 3/5 (5)

P(C) =

(

0.4
0.6

)

(6)

The solution of θ2 is very similar:

0 =
∂ log L(θ)

∂θ2
=

∂

∂θ2

5

∑
t=1

log P(X1t | Ct) (7)

=
∂

∂θ1
log P(X12 | C2) + log P(X14 | C4) + log P(X15 | C5)

(8)

=
∂

∂θ1
2 log θ2 + log(1 − θ2) =

1

θ2
−

2

1 − θ2
= 0 (9)

θ2 = 1/3 (10)

P(X1 | C = 1) ≈

(

0.67
0.33

)

(11)

We can note that the maximum likelihood solution is basically about count-
ing how many times each case happens, for instance C = 1 happens in
three cases out of five so P(C = 1) = 3/5 for the maximum likelihood
estimate of θ.

2. Given a Naı̈ve Bayes model with three binary variables defined by the
tables below, classify the data set below. Classification is defined as C∗ =
arg maxC P(C | X1, X2).

P(C)
C=0 0.7
C=1 0.3



P(X1 | C) C=0 C=1
X1=0 0.5 0.8
X1=1 0.5 0.2

P(X2 | C) C=0 C=1
X2 = 0 0.6 0.3
X2 = 1 0.4 0.7

Data:
t X1t X2t

1 1 1
2 0 1

Solution:
P(C | X1, X2) = P(C,X1,X2)

P(X1,X2)
, where P(X1, X2) is a normalization con-

stant. We have four cases:

P(C1 = 0, X11, X21) = P(C1 = 0)P(X11 = 1 | C1 = 0)P(X21 = 1 | C1 = 0)

= 0.7 · 0.5 · 0.4 = 0.14 (12)

P(C1 = 1, X11, X21) = P(C1 = 1)P(X11 = 1 | C1 = 1)P(X21 = 1 | C1 = 1)

= 0.3 · 0.2 · 0.7 = 0.042 (13)

P(C2 = 0, X12, X22) = P(C2 = 0)P(X12 = 0 | C2 = 0)P(X22 = 1 | C2 = 0)

= 0.7 · 0.5 · 0.4 = 0.14 (14)

P(C2 = 1, X12, X22) = P(C2 = 1)P(X12 = 0 | C2 = 1)P(X22 = 1 | C2 = 1)

= 0.3 · 0.8 · 0.7 = 0.168 (15)

The normalization constants are

P(X11, X21) = P(C1 = 0, X11, X21) + P(C1 = 1, X11, X21) = 0.182 (16)

P(X12, X22) = P(C2 = 0, X12, X21) + P(C2 = 1, X12, X21) = 0.308 (17)

Now we can get the posterior probabilities for the classifications by nor-
malizing:

P(C1 | X11, X21) =
P(C1, X11, X21)

P(X11, X21)
=

(

0.769
0.231

)

(18)

P(C2 | X12, X22) =
P(C2, X12, X22)

P(X12, X22)
=

(

0.455
0.545

)

(19)

The best guess or the maximum a posteriori classification is thus C∗
1 = 0

and C∗
2 = 1.

Problems 3 and 4 were left for the next session.


