T.61.5140 Machine Learning: Advanced Probablistic Methods

Hollmén, Raiko (Spring 2008)
Problem session, 29th of February, 2008
http:/ /www.cis.hut.fi/Opinnot/T-61.5140/
0. Jaakko Hollmén gave a demonstration on his software package Zone for clustering zero-one data. This will be part of the project assignment.

1. Given a Naïve Bayes model with four binary variables C, X_{1}, X_{2}, X_{3}, that is $P\left(C, X_{1}, X_{2}, X_{3}\right)=P(C) P\left(X_{1} \mid C\right) P\left(X_{2} \mid C\right) P\left(X_{3} \mid C\right)$ and a dataset with five samples $t=1 \ldots 5$ (see table below), write the likelihood function $P\left(C, X_{1}, X_{2}, X_{3} \mid \boldsymbol{\theta}\right)$ of the model parameters $\boldsymbol{\theta}$ (the values in the conditional probability tables). Find $P(C)$ and $P\left(X_{1} \mid C=1\right)$ that maximize the likelihood (use the notation $\theta_{1}=P(C=1)$ and $\theta_{2}=P\left(X_{1}=1 \mid C=1\right)$).

Data: | t | C_{t} | $X_{1 t}$ | $X_{2 t}$ | $X_{3 t}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 0 | 1 | 0 | 1 |
| 2 | 1 | 0 | 1 | 0 | |
| 3 | 0 | 0 | 1 | 0 | |
| | 4 | 1 | 0 | 1 | 1 |
| | 5 | 1 | 1 | 1 | 0 |

Solution:
Assuming the 5 samples independent of each other, the likelihood of the parameters is the product of probabilities of each data sample given the parameters, that is:
$L(\boldsymbol{\theta})=\prod_{t=1}^{5} P\left(C_{t}, X_{1 t}, X_{2 t}, X_{3 t}\right)=\prod_{t=1}^{5} P\left(C_{t}\right) P\left(X_{1 t} \mid C_{t}\right) P\left(X_{2 t} \mid C_{t}\right) P\left(X_{3 t} \mid C_{t}\right)$

Note that we write $P(C)$ as a shorthand of $P(C \mid \boldsymbol{\theta})$ etc. Because the logarithm function is monotonically increasing, the maximum likelihood is the same as maximum log-likelihood, and we would prefer sums over products, so let us turn to study the likelihood on the logarithmic scale.

$$
\begin{equation*}
\log L(\boldsymbol{\theta})=\sum_{t=1}^{5}\left[\log P\left(C_{t}\right)+\sum_{i=1}^{3} \log P\left(X_{i t} \mid C_{t}\right)\right] \tag{2}
\end{equation*}
$$

The maximum of L can be found at the zero of the derivative. Most terms of L are constant w.r.t. a particular parameter, so many of them can be dropped out.

$$
\begin{align*}
0 & =\frac{\partial \log L(\boldsymbol{\theta})}{\partial \theta_{1}}=\frac{\partial}{\partial \theta_{1}} \sum_{t=1}^{5} \log P\left(C_{t}\right) \tag{3}\\
& =\frac{\partial}{\partial \theta_{1}} 3 \log \theta_{1}+2 \log \left(1-\theta_{1}\right)=\frac{3}{\theta_{1}}-\frac{2}{1-\theta_{1}}=0 \tag{4}\\
\theta_{1} & =3 / 5 \tag{5}\\
P(C) & =\binom{0.4}{0.6} \tag{6}
\end{align*}
$$

The solution of θ_{2} is very similar:

$$
\begin{align*}
0 & =\frac{\partial \log L(\theta)}{\partial \theta_{2}}=\frac{\partial}{\partial \theta_{2}} \sum_{t=1}^{5} \log P\left(X_{1 t} \mid C_{t}\right) \tag{7}\\
& =\frac{\partial}{\partial \theta_{1}} \log P\left(X_{12} \mid C_{2}\right)+\log P\left(X_{14} \mid C_{4}\right)+\log P\left(X_{15} \mid C_{5}\right) \tag{8}\\
& =\frac{\partial}{\partial \theta_{1}} 2 \log \theta_{2}+\log \left(1-\theta_{2}\right)=\frac{1}{\theta_{2}}-\frac{2}{1-\theta_{2}}=0 \tag{9}\\
\theta_{2} & =1 / 3 \tag{10}\\
P\left(X_{1} \mid C=1\right) & \approx\binom{0.67}{0.33} \tag{11}
\end{align*}
$$

We can note that the maximum likelihood solution is basically about counting how many times each case happens, for instance $C=1$ happens in three cases out of five so $P(C=1)=3 / 5$ for the maximum likelihood estimate of $\boldsymbol{\theta}$.
2. Given a Naïve Bayes model with three binary variables defined by the tables below, classify the data set below. Classification is defined as $C^{*}=$ $\arg \max _{C} P\left(C \mid X_{1}, X_{2}\right)$.

$\mathrm{P}(\mathrm{C})$	
$\mathrm{C}=0$	0.7
$\mathrm{C}=1$	0.3

$P\left(X_{1} \mid C\right)$) $\mathrm{C}=0$	$\mathrm{C}=1$
$X_{1}=0$	0.5	0.8
$X_{1}=1$	0.5	0.2
$P\left(X_{2} \mid C\right)$) $\mathrm{C}=0$	$\mathrm{C}=1$
$X_{2}=0$	0.6	0.3
$X_{2}=1$	0.4	0.7
t	$X_{1 t} \quad X_{2 t}$	
Data: 1	1	
2	0	

Solution:

$P\left(C \mid X_{1}, X_{2}\right)=\frac{P\left(C, X_{1}, X_{2}\right)}{P\left(X_{1}, X_{2}\right)}$, where $P\left(X_{1}, X_{2}\right)$ is a normalization constant. We have four cases:

$$
\begin{align*}
P\left(C_{1}=0, X_{11}, X_{21}\right) & =P\left(C_{1}=0\right) P\left(X_{11}=1 \mid C_{1}=0\right) P\left(X_{21}=1 \mid C_{1}=0\right) \\
& =0.7 \cdot 0.5 \cdot 0.4=0.14 \tag{12}\\
P\left(C_{1}=1, X_{11}, X_{21}\right) & =P\left(C_{1}=1\right) P\left(X_{11}=1 \mid C_{1}=1\right) P\left(X_{21}=1 \mid C_{1}=1\right) \\
& =0.3 \cdot 0.2 \cdot 0.7=0.042 \tag{13}\\
P\left(C_{2}=0, X_{12}, X_{22}\right) & =P\left(C_{2}=0\right) P\left(X_{12}=0 \mid C_{2}=0\right) P\left(X_{22}=1 \mid C_{2}=0\right) \\
& =0.7 \cdot 0.5 \cdot 0.4=0.14 \tag{14}\\
P\left(C_{2}=1, X_{12}, X_{22}\right) & =P\left(C_{2}=1\right) P\left(X_{12}=0 \mid C_{2}=1\right) P\left(X_{22}=1 \mid C_{2}=1\right) \\
& =0.3 \cdot 0.8 \cdot 0.7=0.168 \tag{15}
\end{align*}
$$

The normalization constants are

$$
\begin{align*}
& P\left(X_{11}, X_{21}\right)=P\left(C_{1}=0, X_{11}, X_{21}\right)+P\left(C_{1}=1, X_{11}, X_{21}\right)=0.182 \tag{16}\\
& P\left(X_{12}, X_{22}\right)=P\left(C_{2}=0, X_{12}, X_{21}\right)+P\left(C_{2}=1, X_{12}, X_{21}\right)=0.308 \tag{17}
\end{align*}
$$

Now we can get the posterior probabilities for the classifications by normalizing:

$$
\begin{align*}
& P\left(C_{1} \mid X_{11}, X_{21}\right)=\frac{P\left(C_{1}, X_{11}, X_{21}\right)}{P\left(X_{11}, X_{21}\right)}=\binom{0.769}{0.231} \tag{18}\\
& P\left(C_{2} \mid X_{12}, X_{22}\right)=\frac{P\left(C_{2}, X_{12}, X_{22}\right)}{P\left(X_{12}, X_{22}\right)}=\binom{0.455}{0.545} \tag{19}
\end{align*}
$$

The best guess or the maximum a posteriori classification is thus $C_{1}^{*}=0$ and $C_{2}^{*}=1$.
Problems 3 and 4 were left for the next session.

