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The EM algorithm is useful for latent variable models, where the model
defines P(X, Z | θ), where X is the data set, Z are latent variables, and
θ are the model parameters. One would like find the parameters θ that
maximize the likelihood P(X | θ), but the latent variables Z make the
direct treatment of P(X | θ) difficult. For example, in a mixture model, Z
describes to which cluster each data sample belongs to, while θ describes
the general properties of the clusters. EM-algorithm solves the problem
by alternating between the following two steps:

E-step: Q(Z) ← P(Z | X, θ) (1)

M-step: θ← argmax
θ

EQ(Z) {ln P(X, Z | θ)} , (2)

where EQ is the expectation over the distribution Q.

1. Given a Naı̈ve Bayes model with three binary variables defined by the
tables and data below, run an iteration of the EM algorithm.

P(C)
C=0 0.7
C=1 0.3

P(X1 | C) C=0 C=1
X1=0 0.5 0.8
X1=1 0.5 0.2

P(X2 | C) C=0 C=1
X2 = 0 0.6 0.3
X2 = 1 0.4 0.7

Data:
t X1t X2t

1 1 1
2 0 1



Hint: In Problem 2 of the previous exercise session, we already solved:

P(C1 | X11, X21) =

(

0.769
0.231

)

(3)

P(C2 | X12, X22) =

(

0.455
0.545

)

(4)

Solution:
The E-step was already solved in the previous exercise session: Q(Ct) =

P(Ct | X1t, X2t). For the M-step, let us solve θ1 = P(C = 1). The maximum
of the expected log likelihood will be found at the zero of the derivative:

∂

∂θ1
Eq(C) {ln L} =

∂

∂θ1
[ln P(C1) + ln P(C2)] (5)

=
∂

∂θ1

[

0.769 ln P(C1 = 0) + 0.231 ln P(C1 = 1)
+0.455 ln P(C2 = 0) + 0.545 ln P(C2 = 1)

]

(6)

=
∂

∂θ1
[(0.769 + 0.455) ln(1− θ1) + (0.231 + 0.545) ln θ1]

(7)

= −0.769 + 0.455

1− θ1
+

0.231 + 0.545

θ1
= 0 (8)

θ1 =
0.231 + 0.545

0.769 + 0.455 + 0.231 + 0.545
= 0.388 (9)

We notice that the M-step of Bayesian networks is simply about taking the
expected counts (EC) of each case happening and then normalizing them
into probabilities.

C EC(C) P(C)
C=0 0.769+0.455 0.612
C=1 0.231+0.545 0.388

X1 | C EC(X1 | C = 0) EC(X1 | C = 1) P(X1 | C = 0) P(X1 | C = 1)
X1 = 0 0.455 0.545 0.372 0.702
X1 = 1 0.769 0.231 0.628 0.298

X2 | C EC(X1 | C = 0) EC(X1 | C = 1) P(X1 | C = 0) P(X1 | C = 1)
X2 = 0 0 0 0 0
X2 = 1 0.769+0.455 0.231+0.545 1 1

2. (a) Run k-means (page 424) until convergence in a one-dimensional
problem with five data points (see table below). Use k = 2 and initialize



with µ1 = 3.5 and µ2 = 4.8. (b) Fit a mixture-of-Gaussians (MoG, page
430) to the result by doing an M-step. MoG is a model with a cluster label
C and a Gaussian distribution for the observation given the cluster label:

p(x | C = i) =
1

√

2πσ2
i

exp

[

− (x− µi)
2

2σ2
i

]

. (10)

You can fit the Gaussians by computing the mean µ = E(x) and variance
σ2 = E(x2)− E(x)2 of the data in each cluster. (c) Compute P(C | x = 3).

Data:

t xt

1 1.0
2 2.0
3 4.0
4 5.0
5 6.0

Solution:
(a) Samples t=1,2,3 are closer to µ1 = 3.5 and samples t=4,5 are closer

to µ2 = 4.8 so C1 = C2 = C3 = 1 and C4 = C5 = 2 for the first iteration.
Next the cluster centers are set to the mean of the samples in the cluster:
µ1 = (1.0 + 2.0 + 4.0)/3 = 2.333 and µ2 = (5.0 + 6.0)/2 = 5.5. Again, the
samples are given to the nearest cluster, and this time C1 = C2 = 1 and
C3 = C4 = C5 = 2. Note how sample number 3 at 4.0 switched to cluster
2. The next cluster centers are µ1 = 1.5 and µ2 = 5.0. The nearest clusters
of each sample do not change anymore so the algorithm has converged.

(b) The class probabilities P(C) are determined by normalizing the num-
ber of samples in the cluster into a probability, that is, P(C = 1) = 2/5 =
0.4 and P(C = 2) = 3/5 = 0.6. The variances are

σ2
1 =

1.02 + 2.02

2
− 1.52 = 0.25 (11)

σ2
2 =

4.02 + 5.02 + 6.02

3
− 5.02 = 0.667 (12)

The curves are shown in Figure 1.
(c) From Bayes theorem

P(C = i | x = 3.0) =
p(x = 3.0 | C = i)P(C = i)

p(x = 3.0)
, (13)
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Figure 1: Problem 2. p(x, C) as a function of x. The two curves correspond
to C = 1 and C = 2.

where p(x = 3.0) is constant w.r.t. C and can be ignored. By inserting the
definition of the Gaussian density and dropping out constants, we get

P(C = 1 | x = 3.0) ∝
1√
0.25

exp

[−(3.0− 1.5)2

2 · 0.25

]

· 0.4 = 0.0089 (14)

P(C = 2 | x = 3.0) ∝
1√

0.667
exp

[−(3.0− 5.0)2

2 · 0.667

]

· 0.6 = 0.0366 (15)

and after normalization we get P(C | x = 3.0) =

(

0.195
0.805

)

which can be

compared to the figure. Even though 3.0 is further away from the cluster
center 2, it is more likely to belong to that.

3. Prove Equation (9.70) in the book: For any choise of Q(Z),

ln P(X | θ) = L(Q, θ) + KL (Q ‖ P) , (16)

where

L(Q, θ) = ∑
Z

Q(Z) ln
P(X, Z | θ)

Q(Z)
(17)

KL (Q ‖ P) = −∑
Z

Q(Z) ln
P(Z | X, θ)

Q(Z)
. (18)



Note that L is a functional because one of its arguments, Q, is a function.

Solution:

L(Q, θ) + KL (Q ‖ P) = ∑
Z

Q(Z) ln

[

P(X, Z | θ)

Q(Z)

Q(Z)

P(Z | X, θ)

]

(19)

= ∑
Z

Q(Z) ln

[

P(X, Z | θ)

P(Z | X, θ)

]

(20)

= ∑
Z

Q(Z) ln

[

P(Z | X, θ)P(X | θ)

P(Z | X, θ)

]

(21)

= ∑
Z

Q(Z) ln P(X | θ) (22)

= ln P(X | θ) ∑
Z

Q(Z) (23)

= ln P(X | θ) (24)

4. Show that (a) the E-step (Eq. 1) maximizes L(Q, θ) w.r.t. Q, and (b) the
M-step (Eq. 2) maximizes L(Q, θ) w.r.t. θ, and that (c) after convergence,
L(Q, θ) = ln P(X | θ). Hint: KL (Q ‖ P) ≥ 0 for all distributions Q and P
(proof on page 55 of Bishop).

Solution:
(a)

L(Q, θ) = ln P(X | θ)−KL (Q ‖ P) (25)

ln P(X | θ) is a constant w.r.t. Q and KL (Q ‖ P) ≥ 0 so L(Q, θ) is maxi-
mized when KL (Q ‖ P) = 0. This happens when we set Q(Z) = P(Z |
X, θ) as can be seen from

KL (Q ‖ Q) = −∑
Z

Q(Z) ln
Q(Z)

Q(Z)
= −∑

Z

Q(Z) ln 1 = 0. (26)



(b)

L(Q, θ) = ∑
Z

Q(Z) ln
P(X, Z | θ)

Q(Z)
(27)

=

[

∑
Z

Q(Z) ln P(X, Z | θ)

]

−
[

∑
Z

Q(Z) ln Q(Z)

]

(28)

= EQ(Z) {ln P(X, Z | θ)} − const (29)

We got the same form that is used in the M-step.
(c) After convergence, the E and M-steps do not change anything, or:

Q(Z) = P(Z | X, θ) (30)

θ = argmax
θ

EQ(Z) {ln P(X, Z | θ)} . (31)

In (a), we already showed that KL (Q ‖ P) = 0 when Q(Z) = P(Z | X, θ),
and thus L(Q, θ) = ln P(X | θ)−KL (Q ‖ P) = ln P(X | θ).


